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Evaluation and pathways for achieving agricultural
resilience under the framework of climate-smart
agriculture
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Agriculture faces increasing climate, financial, environmental, and social challenges, which
bring into question its ability to withstand shocks and pressures. Strengthening agricultural
resilience can effectively address these issues. Reasonably evaluating agricultural resilience
and improving it based on climate-smart agriculture practices is particularly important to
agricultural sustainability. This research utilized the cloud model and the dynamic fuzzy set
Qualitative Comparative Analysis approach to evaluate agricultural resilience levels, groun-
ded in the Drive-Pressure-State-Impact-Response framework, across 30 Chinese provinces
from 2011 to 2022. It seeks paths to achieve high resilience from CSA technology, climatic
productive potential, digitization, and agricultural fiscal expenditure, and analyzes path
selection under different grain production areas and levels of digital inclusive finance. Key
findings include: (1) Agricultural resilience has shown a gradual upward trend, transitioning
from low levels (2011-2014) to moderate (2015-2018) and medium-high (2019-2022)
resilience. (2) Three driving pathways for agricultural resilience were identified: the
digitalization-technology linkage, digitalization-technology-financial support enhancement,
and digitalization-technology-climate resource hybrid approach. (3) Digitization and CSA
technologies serve as core pillars, with their integration alongside fiscal spending or climate
production potential further boosting agricultural resilience. (4) From the perspective of
major grain-producing areas, CSA practices should be customized based on their unique
natural conditions and socio-economic environments to enhance agricultural resilience. The
path to agricultural resilience also varies under different levels of DIF. The importance of
agricultural fiscal expenditure gradually weakens at higher levels of DIF, while digitalization
and CSA technologies become key factors at moderate levels of DIF. At lower levels of DIF,
digitization, climate production potential, and agricultural fiscal expenditure become strong
supports.
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Introduction

lobal agriculture faces converging stresses—from climate

change, water scarcity, soil degradation, trade frictions,

the COVID-19 pandemic, and the Russia-Ukraine con-
flict—that have raised production costs, pushed up food prices,
and heightened food insecurity (Timmer 2022). They also jeo-
pardize current and future food security and sustainable agri-
cultural development (Tendall, Joerin et al. 2015; Seekell, Carr
et al. 2017; Andersen, Alston et al. 2018; Birthal and Hazrana,
2019; Dardonville, Bockstaller et al. 2022), with downstream
effects on human well-being (Reyers, Moore et al. 2022). As a
foundation of national economies, resilient agricultural develop-
ment and secure food supplies are therefore strategic priorities
(Bhatnagar, Chaudhary et al. 2024). In response to these chal-
lenges, governments and international organizations have laun-
ched initiatives to reduce systemic risks. In 2019, the European
Union adopted the 2030 Biodiversity Strategy, the EU Soil
Strategy for 2030, and the Farm to Fork Strategy (Zawita-
Niedzwiecki 2021). The OECD (2020) synthesized lessons on
Strengthening Agricultural Resilience in the Face of Multiple
Risks; and the FAO (2021) underscored how climate change,
conflict, and macroeconomic downturns intensify food insecurity
(Li, Guo et al. 2024). Despite these initiatives, significant uncer-
tainties remain at both global and regional levels. Thus,
strengthening the stability, health, and sustainability of agri-
cultural systems has become a global imperative (Hansen, Ingram
et al. 2020).

Uncertainty amplifies volatility and vulnerability across farm-
ing systems. Coupled with rising expectations for farmer income
and uneven educational attainment (Popescu, Popescu et al.
2022), building resilient agricultural systems remains difficult.
Some regions have mitigated risks through targeted measures
(Yao, Ma et al. 2024), whereas others have stagnated or declined.
Following Holling’s introduction of “resilience” in ecology
(Holling 2001), the concept has been widely used to characterize
an agricultural system’s capacity to absorb shocks, adapt, and
transform (Saifi and Drake 2008; Folke, Carpenter et al. 2010;
Folke 2016; Bullock, Dhanjal-Adams et al. 2017). However, to
translate this theoretical framework effectively into policies and
practices, rigorous assessment of agricultural resilience is indis-
pensable (Yang, Zhang et al. 2023). This raises key research
questions: How can agricultural resilience be scientifically asses-
sed? What are the dynamics of resilience development? How can
weaknesses in resilience be identified? These questions demand
further exploration and call for analytical approaches that con-
sider multiple, interacting dimensions of agricultural systems.
One promising approach lies within the climate-smart agriculture
(CSA) paradigm, where interventions that raise productivity and
incomes, bolster adaptive capacity, and reduce emissions can
improve resilience (Lipper, Thornton et al. 2014). Yet CSA out-
comes hinge on interacting conditions—including climate, tech-
nology, digitalization, and public finance (Supit, van Diepen et al.
2010; Patle, Kumar et al. 2019; Cordovil, Bittman et al. 2020; Liu,
Wang et al. 2022; Ma and Rahut 2024; Sun, Xia et al. 2024;
Vishnoi and Goel 2024). This underscores the importance of
examining resilience not only as an outcome, but also as a
dynamic process shaped by conjunctural factors. Such a per-
spective is particularly relevant for understanding how agri-
cultural nations navigate complex trade-offs and pursue pathways
toward sustainable development.

China provides a compelling case: as a major agricultural
nation facing the dual imperatives of greener and more modern
agriculture, its experience has implications for global risk miti-
gation and adaptive governance (Zhou, Chen et al. 2023). Eval-
uating China’s agricultural resilience to climate change is
therefore both crucial and necessary. Against this backdrop, this
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study evaluates agricultural resilience in China across 30 pro-
vinces from 2011 to 2022 and probes the pathways through which
CSA-related conditions shape resilience outcomes.

To address these questions, we integrate three complementary
methodological approaches. First, the DPSIR framework is
adopted to construct a systematic indicator system that captures
the full causal chain from socio-economic drivers and environ-
mental pressures to policy responses, offering a holistic lens for
operationalizing agricultural resilience. Second, the cloud model
is applied to translate diverse indicators into a comparable resi-
lience index, and addressing the fuzziness and randomness in
agricultural data. Third, dynamic fuzzy-set Qualitative Com-
parative Analysis (fsQCA) is employed to identify equifinal
configurations of CSA-related conditions—such as digitalization,
CSA technologies, climate productivity, and fiscal support—
associated with high or low resilience. Together, these approaches
provide a comprehensive framework for studying agricultural
resilience. Therefore, this study contributes in three ways: First, it
introduces the DPSIR framework to agricultural resilience eva-
luation, creating a comprehensive indicator system. This aims to
provide a systematic analytical framework for understanding the
response mechanisms of global agricultural systems under climate
change and external shocks. Second, it applies the cloud model
for more scientifically rigorous and robust resilience measure-
ment. Third, it uses dynamic fsSQCA to analyze the impact of
multi-factor synergy on agricultural resilience and reveal multiple
pathways for resilience enhancement under different develop-
ment scenarios.

Literature Review

Agricultural resilience. Agricultural resilience is essential for
ensuring food security and fostering stable economic growth
(Yao, Ma et al. 2024), and has attracted significant scholarly
attention. Enhancing agricultural resilience is crucial for ensuring
the safety of agricultural production and modernization (Qiao,
Chen et al. 2024). Scholarly research has focused on the con-
ceptualization, measurement, and improvement of agricultural
resilience. The term “resilience” originated in the natural sciences,
such as physics and engineering, referring to an object’s ability to
return to its original state after deformation. Holling (1973) first
introduced resilience to ecology, and it has been applied in var-
ious fields, including social sciences and economics (Bakker, de
Koning et al. 2019; Lomboy, Belinario et al. 2019). In economics,
Comfort integrated resilience with economic studies, positing that
an economic resilience system demonstrates its capacity for self-
repair and renewal only after being affected by external shocks,
and that this process is non-linear (Zhou, Chen et al. 2023). Since
then, the concept has been widely adopted in regional economics
(Di Pietro, Lecca et al. 2021) and industrial development (Canello
and Vidoli 2020; Grabner and Modica 2022). Agricultural pro-
duction, similarly influenced by a range of natural, economic, and
social factors, often faces issues such as reduced crop yields and
environmental degradation. Consequently, research on agri-
cultural resilience has garnered attention (Dardonville, Bock-
staller et al. 2022).

Agricultural resilience refers to the ability of agricultural
systems to resist, recover, and adapt after exposure to shocks
(Meuwissen, Feindt et al. 2019). Research has expanded to
agricultural communities (Bowles, Mooshammer et al. 2020;
Hasnain, Munir et al. 2023), ecosystems (Anderegg, Konings et al.
2018; Zhao, Fang et al. 2021), and economies (Berry, Vigani et al.
2022). The measurement of agricultural resilience lacks a unified
set of indicators. From the agricultural system itself, the core
includes the agricultural economy, production, and ecosystems,
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relying on internal mechanisms to mitigate risks and prevent
hazards, thereby advancing high-quality agricultural develop-
ment. Its measurement often examines aspects such as the
agricultural economy, production, and ecosystems (Volkov,
Zi¢kiené et al. 2021; Berry, Vigani et al. 2022; Yang, Zhang
et al. 2022). It also evaluates resilience dimensions like resistance
and adaptability (Luo, Nie et al. 2024), or uses indicator
frameworks like the PSR (Pressure-State-Response) (Jatav and
Naik, 2023; Yao, Ma et al. 2024).

Measurement methods include qualitative tools like case
studies (Berry, Vigani et al. 2022) and quantitative approaches
such as Al (Karanth, Benefo et al. 2023), entropy weight-TOPSIS
(Qiao, Chen et al. 2024), and spatial economic geography analysis
(Huang and Ling, 2018). Factors influencing resilience include
climate change (Burchfield and Poterie, 2018), urbanization
(Wang, Shao et al. 2019; Wang, Bai et al. 2021), agricultural
inputs (Tao, Ma et al. 2023), and uncertainties (Adhikari, Timsina
et al. 2021). Therefore, prioritizing agricultural risk management
(Meza, Eyshi Rezaei et al. 2021), increasing agricultural
specialization, and enhancing resilience are critical (Vroeginde-
wey and Hodbod, 2018). Enhancing resilience requires diversified
agricultural structures (Birthal and Hazrana 2019), insurance
(Xie, Zhang et al. 2024), and technological innovations like Al
biochar, and remote sensing (Jung, Maeda et al. 2021; Hasnain,
Munir et al. 2023). Fiscal support, efficient water storage, and
improved land-use efficiency all play key roles (Smith and
Edwards 2021).

Climate-Smart Agriculture (CSA). Climate extremes, such as
droughts and floods, pose significant threats to agricultural
development (Anderson, Bayer et al. 2020). CSA aims to address
these challenges by combining climate adaptation with advanced
technologies to improve food production in extreme conditions
(Lipper, Thornton et al. 2014; Patra and Babu 2022; Walsh, Renn
et al. 2024). CSA is widely recognized as a transformative and
sustainable approach that enhances agricultural productivity
while addressing climate change (Adesipo, Fadeyi et al. 2020). Its
core goal is to achieve climate change adaptation, reduce green-
house gas emissions, and improve resource efficiency through
innovative technologies, management practices, and policy sup-
port. This paves the way for a modern agricultural development
path that meets both environmental protection requirements and
economic feasibility. Research highlights CSA’s positive impact
on agricultural development, including increased crop vyields,
higher incomes (Amadu, McNamara et al. 2020), improved food
security (Belay, Mirzabaev et al. 2024; Santalucia and Sibhatu,
2024), reduced farmer vulnerabilities (Martinez-Baron, Alarcon
de Antdén et al. 2024), and lower agricultural greenhouse gas
emissions (McNunn, Karlen et al. 2020). These factors collectively
contribute to greater resilience (Taylor, 2018).

Based on this consensus, governments, international organiza-
tions such as the Food and Agriculture Organization (FAO), and
various non-governmental organizations (NGOs) are actively
promoting the adoption of CSA. Small-scale farmers worldwide
are implementing various CSA practices and technologies, such as
reduced tillage, water and nutrient management, crop diversifica-
tion, and improved pest and disease control (Zakaria, Azumah
et al. 2020; Vatsa,Ma et al. 2023). In India, the Climate-Smart
Villages initiative has encouraged farmers to adopt CSA practices
(Hariharan, Mittal et al. 2020). Similarly, agricultural training
programs in Ghana have been used to increase farmers’
knowledge of CSA and promote the adoption of these
technologies (Martey,Etwire et al. 2021). It is estimated that by
2030, 500 million farmers worldwide will have adopted CSA
technologies (Komarek, Thurlow et al. 2019).

CSA requires more than just technological adoption; it calls for
multi-sector partnerships involving farmers, researchers, the
private sector, and policymakers to enhance resilience and
resource efficiency (Makate, Makate et al. 2019; Zerssa, Feyssa
et al. 2021). By fostering community resilience, knowledge
sharing, and collective bargaining, CSA empowers smallholders
to sustain environmentally friendly practices (Zhou, Ma et al.
2024). Additionally, CSA promotes sustainable land use and
ecosystem services through digital technologies (Lajoie-O’Malley,
Bronson et al. 2020). However, there is a gap in research
exploring the combined effects of climate resources, rural
digitalization, and financial support on agricultural resilience.
Given the influence of climate resources on crop yields (Chen,
Park et al. 2019; Hasanuzzaman, Bhuyan et al. 2020), and the
emerging role of digital technologies in food safety and climate
adaptation (Cesco, Sambo et al. 2023; Ojo, Kassem et al. 2023), it
is crucial to evaluate how these factors work together to optimize
CSA interventions.

Evaluation and contribution. Firstly, existing research recog-
nizes the importance of agricultural resilience in modernization.
However, current agricultural resilience indicator systems often
focus on economic, production, and ecological dimensions, or on
the PSR framework, neither of which fully capture the level of
resilience. This study develops an evaluation system based on the
resistance, recovery, and adaptability of agricultural resilience,
using the DPSIR framework. A cloud model is employed to
measure resilience values from panel data, addressing gaps in
previous assessments. Secondly, CSA emphasizes improving
productivity, adapting to climate change, and reducing green-
house gas emissions—key components of agricultural resilience.
However, agricultural production is complex and influenced by
economic, social, and natural factors, making a one-size-fits-all
approach impractical. Given the limited integration of climate
resources, digital technologies, and financial support in CSA
research, this study develops region-specific CSA practice com-
binations to leverage synergies among multiple factors and
enhance resilience. It considers CSA technologies, rural digitali-
zation, climate resources, and agricultural finance, using dynamic
fsQCA to identify tailored resilience improvement paths within
the CSA framework, contributing to high-quality agriculture.
Finally, the implementation of CSA varies by region, particularly
in major grain-producing areas and those at different stages of
digital inclusive finance development. The study rigorously dis-
cusses these varying scenarios.

The main innovations of this study are: (1) Methodological
Innovation: A cloud model is used to measure agricultural
resilience, addressing the fuzziness in indicator dimension
selection. The study expands the research scale from cross-
sectional data to panel data, applying dynamic panel fsQCA to
identify multi-factor combinations that enhance resilience, over-
coming the limitations of single-factor analyses. (2) Innovation in
Indicator Framework: The study constructs a resilience indicator
system based on the DPSIR framework, broadening existing
evaluation systems. (3) Enrichment of Research Perspectives: The
study explores how CSA practice combinations impact resilience,
highlighting differences in CSA paths between major grain-
producing regions and areas with varying levels of digital
inclusive finance development. This approach offers valuable
insights for future research and supports the enhancement of
agricultural resilience against external risks. Figure 1 shows the
research framework.

The structure of the article is as follows: Section "Materials and
Methodologies" details the research methods, data, and sources,
including the cloud model and dynamic fsQCA; Section "Results"
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Fig. 1 Research map.

presents the empirical results; Section "Discussion” discusses the
findings; Section "Conclusion and Policy Implications” sum-
marizes the article and offers policy suggestions.

Materials and Methodologies
Methodologies

Cloud model evaluation method. The cloud model, originally
proposed by Li Deyi, is a mathematical tool designed to bridge
qualitative concepts with quantitative representations under
conditions of uncertainty (Li, Liu et al. 2009). Given that the
cloud model can overcome the limitations of probability theory
and fuzzy mathematics in handling uncertainty, fuzziness, ran-
domness, and correlations, it can effectively address the issues of
randomness and fuzziness in agricultural resilience assessment.
Therefore, this paper uses the cloud model to evaluate the agri-
cultural resilience level in China. The evaluation follows four
main steps:

(1) Compute the expectation (Ex).

We partition the study object—characterized by n evaluation
indicators (j=1, 2, ..., n)—into m ordered levels (i=1, 2, ..., m).
For indicator j at level i, the level cloud is modeled as two
connected one-sided clouds that meet at the expectation Exl,
which serves as the boundary between the left and right sub-
clouds. Let Liyin! and Ly, denote the lower and upper bounds of
level i, respectively (see Equation 1).

Li + Linin

Exi _ “max

= 5 ey

(2) Compute the entropy (En) )
The second step is to calculate the entropy value En! of the
connected cloud, as shown in Equation 2.
En' — i

2k +3

Entropy reflects the range of variation of the cloud droplets
within the domain, that is, how widely the indicator values are
dispersed around the expectation. Its computation depends on
two constants, a; and k;, as defined in Equation 3. Here, k;
denotes the order of the distribution density function
corresponding to a;, and its value is influenced by both the
length of the interval for level i and the associated half-interval
length a;

The calculation of a; differs depending on whether the
evaluation indicator is positive (higher values imply greater
resilience) or negative (higher values imply lower resilience):

()

e — 1g0.5
g {1 - (Hiﬂ

For a positive indicator, the left and right half-interval lengths
of level i are given by Equation 4.

(€)

Li*l

min

— Li+l _ Exi

max

Qe = Ex' —
left (4)

airight
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Fig. 2 Forward Normal Cloud Generator.

For a negative indicator, the left and right half-interval lengths
of level i are given by Equation 5.

Ay = Ex' — Lit) )

airight = L;alx — Ex'

Thus, entropy En! captures the tolerance of indicator values
around the expectation for each level, ensuring that both the
directionality of indicators and their distribution characteristics
are appropriately represented in the evaluation.

(3) Compute the hyper-entropy (He).

The third step is to calculate the hyper-entropy value He of the
connected cloud, as shown in Equation 6. Hyper-entropy reflects
the uncertainty of the entropy En, that is, the extent to which the
cloud droplets deviate from an ideal normal distribution. In
practical terms, it measures the stability of the cloud model: a
smaller He indicates more concentrated cloud droplets and a
more stable evaluation, while a larger He suggests greater
fluctuation.

He' =« (6)

A constant a is introduced to represent the fuzzy threshold of
cloud floating. This parameter controls the sensitivity of the
model to deviations. Following the characteristics of the
parameters and prior research (Zhang and Shang 2023), a is set
to 0.01 in this study to ensure stability.

(4) Comprehensive evaluation using the forward cloud
generator

Since agricultural resilience assessment requires the transfor-
mation from qualitative concepts to quantitative values, a forward
normal cloud generator is employed to simulate cloud droplets
(see Fig. 2). Based on the numerical characteristics of the cloud C
[Ex, En, He] and the classification criteria of indicator level
intervals, the generator takes the expectation (Ex), entropy (En),
hyper-entropy (He), and the number of cloud droplets (N) as
inputs, and outputs the distribution positions of N simulated
droplets.

(a) Cloud droplet generation.

First, a normal random number En’ is generated with Ex as the
mean and He as the standard deviation. Then, a second normal
random number x; is drawn with Ex as the mean and En’ as the

standard deviationJ. Each x; serves as a quantitative realization of
the qualitative concept C. Its certainty degree u(x;)—that is, the
degree to which x; belongs to C—is then calculated Equation 7.
The pair (x;, u(x;)) fully captures the qualitative-to-quantitative
transformation. Repeating this process iteratively yields N cloud

droplets.

(. — Fx)?
(x] Ex)} @

() = exp [ A

(b) Determination of evaluation levels.

Each indicator is assigned to one of L evaluation levels (L=1L,,
L,, ..., L,,), where m is the total number of levels. The forward
cloud generator is then used to produce the standard cloud model
diagram, which represents the evaluation levels of each indicator.

(c) Calculation of comprehensive certainty.

For each indicator j at level m, the certainty degree i is
obtained through the cloud generator. The probability of

occurrence of each level is represented by these certainty values.
The composite certainty degree Ry, for each resilience level is then
calculated by weighting the certainties with indicator weights
(derived from the entropy weight method), as expressed in
Equation 8:

R, = 2wty (®)

where w; is the weight of indicator j, and p, is the certainty
degree of indicator j at level m.

(d) Final determination of resilience level.

Finally, the horizontal characteristic value method is applied to
integrate the comprehensive certainties across all levels, yielding
the overall agricultural resilience index R (Equation 9), where t
denotes the number of levels.

t
R=Y mtRim
m=1 R

m=1"m

)

Dynamic fsQCA. The fuzzy-set Qualitative Comparative Analysis
(fsQCA) method combines fuzzy set theory with Boolean algebra,
integrating both quantitative and qualitative approaches. By
leveraging Boolean logic, fsSQCA helps reduce variable omission
bias and mitigate endogeneity issues that are common in tradi-
tional regression models (Wang, Zhang et al. 2023). This
approach is particularly effective for uncovering the outcomes of
multifactor interactions and identifying multiple pathways that
may lead to the same result (Huang, Bu et al. 2023).

In fsQCA, causal relationships are expressed in two forms:
necessary conditions and sufficient conditions (Dul 2016). A
necessary condition implies that the outcome cannot occur
without it, whereas a sufficient condition refers to a specific
combination of factors that is adequate to generate the outcome.
Within each causal pathway, the presence or absence of variables
helps to distinguish between core variables, which show strong
causal links to the outcome, and peripheral variables, which have
weaker associations (Pappas and Woodside 2021). Different
combinations of these variables can thus produce distinct
pathways to the same outcome (Beynon, Jones et al. 2020).

Unlike conventional methods that focus on the net effect of
single variables or on mediation and moderation effects, fsQCA
emphasizes the interplay of causal combinations, thereby
revealing the systemic and configurational nature of complex
mechanisms (Kumar, Sahoo et al. 2022). However, traditional
fsQCA has mainly been applied to cross-sectional data, which
limits its ability to capture variations across time and space
(Chang and Zhao 2024). To overcome this limitation, this study
adopts dynamic fsQCA, which extends the method into the
spatiotemporal dimension. This allows us to explore how
combinations of conditions evolve over time and across regions,
thereby providing deeper insights into the dynamic causal
configurations that shape agricultural resilience.

Variables
Dependent variable. The outcome variable is agricultural resi-
lience, a cornerstone of high-quality agricultural development.
Agricultural systems comprise economic, social, production,
and ecological subsystems (Volkov, Zickiené et al. 2021; Berry,
Vigani et al. 2022; Yang, Zhang et al. 2022). The DPSIR fra-
mework—an extension of the PSR framework developed by the
European Environmental Agency (EEA)—captures resistance,
recovery, and adaptability. This study applies the DPSIR fra-
mework to construct an evaluation system for agricultural
resilience.

“Driving Force” (D) and “Pressure” (P) address the “why,”
factors that influence agricultural resilience. Driving forces
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Table 1 Outcome variables and References.

Effective irrigation area rate
Agricultural research
expenditure

Agricultural technological
Investment in agricultural fixed

Indicator Variables Variable Description Reference

Drive Agricultural output value Agricultural output value/Number of rural population (RMB/person) (Yang, Zhang et al. 2023)
Rural household per capita Direct data (RMB/person) (Meuwissen, Feindt et al.
disposable income 2019)

Agricultural industrial structure  Agricultural output /Agricultural, forestry, animal husbandry, and fishery  (Boehlje 1999)
output (%)
Grain yield Grain yield/total population (kg/per capita) (Tittonell 2020)

Pressure  Aging population Population aged 65 and above in rural areas/Population in rural areas (%) (Ren, Zhou et al. 2023)
Disaster rate Crop disaster area/Affected area of crops (%) (Guan, Zang et al. 2021)
Pesticide use Pesticide use/Cropped Area(tons/Hectare) (Egeru, Bbosa et al. 2022)
Fertilizer use Pure quantity of Agricultural fertilizer/Cropped Area(kg/hectare) (Meuwissen, Feindt et al.

2019)
(Cao, Guo et al. 2022)
Agricultural plastic film usage Agricultural Plastic Film Usage /Cropped Area(tons/Hectare) (Liu, He et al. 2014)
Diesel use Diesel use /Cropped Area(ton/Hectare) (Govaerts, Verhulst et al.
2009)
Water use Water consumption /Cropped Area (cubic meter/Hectare) (Adonadaga, Ampadu et al.
2022)

State Agricultural industry Added value of primary industry/GDP (%) (Wang, Qiao et al. 2020)
Engel coefficient for rural Direct data(%) (Tao, Ma et al. 2023)
residents
Rural population aged 15-64 Rural population aged 15-64/Population in rural areas (%) (Ren, Zhou et al. 2023)

Impact Agricultural carbon emissions Estimated by formula (tons/RMB) (Ma, Long et al. 2021)
Agricultural non-point source Estimated by formula (tons/RMB) (Liu, Wang et al. 2022)
pollution
Rural employment Employment in the primary industry/Total number of employed people  (Yu, Fennell et al. 2022)

(%)
Per capita living expenses in Direct data (RMB) (Zhao and Zhao 2024)
rural areas
Area of soil erosion control Direct data (Hectare) (Laflen, Lal et al. 2020)
Response  Agricultural machinery power Total Agricultural Machinery Power/Cropped Area (KW/Hectare) (Meuwissen, Feindt et al.

Effective Irrigation Area/Cropped Area (%)
Estimated by formula (ten thousand RMB)

Agricultural patents(www.cnki.net)
The proportion of fixed asset investment in agriculture, forestry, animal

2019)
(Peshin, Hansra et al. 2020)
(Jambo and Traub 2023)

(Zhang and Shang 2023)
(Ye, Zou et al. 2022)

assets

husbandry, and fishery to total rural fixed asset investment (%).

include economic development, food security, and higher farmer
incomes, while pressures include population aging in rural areas,
environmental pollution, and agricultural disasters.

“State” (S) and “Impact” (I) describe the “how” of the
agricultural system after disturbances. State refers to the
condition of the agricultural industry, household consumption,
and rural labor; impact concerns shocks arising from agricultural
pollution, population aging, and changes in farmers’ living
standards associated with economic development.

“Response” (R) answers “what to do,” focusing on actions to
mitigate disturbances, such as advancing agricultural technology,
increasing mechanization, boosting research investment, expand-
ing agricultural fixed assets, and implementing soil- and water-
conservation measures.

A total of 24 indicators are selected to build the agricultural
resilience evaluation system, guided by principles of scientific
rigor, system coherence, representativeness, and feasibility (see
Table 1).

Conditional variables. This study examines CSA technologies—
water-saving irrigation, no-tillage planting, and straw incor-
poration—implemented at different stages of production (Sun,
Xia et al. 2024). No-tillage reduces soil disturbance (Cordovil,
Bittman et al. 2020), while water-saving irrigation enhances
economic and ecological benefits via advanced techniques such as
drip and pipeline irrigation (Patle, Kumar et al. 2019). Straw

incorporation boosts soil fertility by decomposing straw into
essential nutrients, including nitrogen, phosphorus, and organic
matter (Liu, Wang et al. 2022). These technologies, which are
widely used in China (Guo and Zhang 2023), are key to advan-
cing CSA practices and strengthening agricultural resilience.

The effectiveness of CSA practices is influenced by factors such
as climate conditions (Supit, van Diepen et al. 2010), digital
development (Ma and Rahut 2024), and fiscal policies (Sun, Xia
et al. 2024). Climatic potential productivity, which reflects the
optimal biological yield achievable under ideal climate conditions,
is crucial for effective CSA implementation, as favorable climates
conditions can reduce greenhouse-gas emissions and increase
yields (Lipper,Thornton et al. 2014). This study calculates
regional climatic potential productivity using the Thomthwaite
Memorial model, with the Equation 10, Equation 11 and
Equation 12:

Py = 3000[1 — 6—0.0009695(ET—20)] (10)
1.05R
ET = I (11)
[1+ (14 1.05/E)]
E, = 300 + 25T + 0.05T"> (12)

Where: Pgr denotes climate production potential (gm= a'l);
ET denotes mean annual average evapotranspiration (mm); E,
denotes annual potential evapotranspiration (mm); R denotes
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Table 2 Condition variables.

Variable

Reference

Outcome variable AR
Conditional variables
No-till planting

Straw returning
Rural digitalization

Climatic yield potential

Water saving irrigation

Digital inclusive finance
Agricultural fiscal expenditure

compute outcome

(Supit, van Diepen et al. 2010)
(Cordovil, Bittman et al. 2020)
(Patle, Kumar et al. 2019)
(Liu, Wang et al. 2022)
(Vishnoi and Goel 2024)

(Ma and Rahut 2024)

(Sun, Xia et al. 2024)

annual precipitation (mm); and T denotes the mean annual
temperature (°C). Equation 11 and Equation 12 apply if and only
if R>0.316Ey; when R <0.316E,, set E,=R.

Digitalization underpins the implementation of CSA, boosting
agricultural productivity (Vishnoi and Goel 2024). The extent of
rural digitalization is measured by rural broadband access and
digital inclusive finance (Zhao and Zhao 2024). Fiscal support
helps mitigate the impacts of extreme weather and market
fluctuations, ensuring food safety (Sun, Xia et al. 2024). The share
of agricultural, forestry, and water expenditures in total fiscal
spending reflects the level of fiscal support for agriculture, as
shown in Table 2.

Research scope and data sources. This research analyzes agri-
cultural resilience across 30 Chinese provinces from 2011 to 2022,
covering the vast majority of the country’s agricultural areas and
representing a wide spectrum of development levels—from highly
developed coastal regions to less developed inland areas. This
selection does not include Tibet, Hong Kong, Macau, and Taiwan
due to data limitations. For the purpose of path analysis, the
provinces are categorized into 13 major grain-producing areas
and 17 non-major grain-producing areas.

The data used in this study are drawn from authoritative
national statistical sources to ensure reliability and comprehen-
siveness. Data on agricultural production, ecology, rural econ-
omy, and farmers’ livelihoods are obtained from the China Rural
Statistical Yearbook. Agricultural R&D investment data are
drawn from the China Science and Technology Statistical
Yearbook, while agricultural patent data are obtained from the
China National Knowledge Infrastructure (CNKI). Rural popula-
tion data are sourced from the China Population and Employ-
ment Statistics Yearbook, and data on rural broadband access and
agricultural expenditures are obtained from the China Statistical
Yearbook. The digital inclusive finance index, crucial for assessing
rural digitalization, is provided by Peking University’s Digital
Finance Research Center. Finally, data on CSA technologies are
obtained from the China Agricultural Machinery Industry
Yearbook.

Results

Evaluation of Agricultural Resilience Levels

Determining the evaluation criteria for agricultural resilience.
According to relevant literature, agricultural resilience is divided
into five evaluation levels: I, IL, III, IV, and V—corresponding to
very low, low, moderate, high, and very high resilience, respec-
tively (Zhang and Shang 2023). Indicator intervals are defined
using percentile-based cutoffs. To limit the influence of extreme
values and following prior studies, we set the lower and upper
cutoffs at the 10th and 90th percentiles, and evenly partition the
middle range into three levels (Huang, Zhang et al. 2021; Zhang
and Shang 2023). The resulting classification is: 0-10% (Level I),

10%-36% (Level II), 36%-62% (Level III), 62%-90% (Level IV),
and 90%-100% (Level V).

Computing the digital characteristics of the cloud model. Based on
the boundary values of the evaluation levels, the numerical
characteristics of the cloud model are calculated using Equation 1
to Equation 6, and the results are summarized in Table 3. The
three values in parentheses in Table 3 represent Ex, En, and He,
respectively (Zhang and Shang 2023).

Establishing agricultural resilience evaluation criteria. Cloud
models for the evaluation indicators were generated using the
parameters Ex, En, and He, and the results were averaged across
2000 model runs to reduce randomness. For brevity, only six
representative indicators are displayed in Fig. 3.

The legends of Fig. 3 indicate whether the indicators are
positive or negative. When the initial cloud droplet, shown in red,
appears at Level V, it denotes a negative indicator, where smaller
values are more favorable for agricultural resilience. For example,
Fig. 3d illustrates that agricultural carbon emission intensity is a
negative indicator: higher emission intensity hinders the devel-
opment of green agriculture, suppresses resilience, and correlates
inversely with resilience levels. In contrast, Fig. 3f illustrates that
agricultural patents are a positive indicator, with a higher number
of patents reflecting greater technological advancement and
resilience.

A wider value range for a resilience indicator at a given level
increases the likelihood that cloud droplets fall within that level.
For values near Level I or Level V, those below or above Ex are
assumed to have a 100% probability of belonging to the respective
level.

Agricultural resilience evaluation results. Based on the constructed
evaluation system, the certainty for each agricultural resilience
level was derived using the forward standard cloud generator. The
comprehensive certainty for each level was then obtained through
the entropy weight method (Lee and Chang 2018) and Equation
8. These results provide the basis for analyzing the spatiotemporal
evolution of agricultural resilience in China.

As shown in Fig. 4, the lengths of the bars, ranging from red for
Grade I to green for Grade V, represent the membership degrees
of agricultural resilience in Grades I to V, respectively. For each
year on the horizontal axis, a longer bar in a higher-grade color
indicates a greater probability that the agricultural resilience for
that year is at a higher grade. China’s average agricultural
resilience level increased from Grade II (2011-2014) to Grade III
(2015-2018), and further to Grade IV (2019-2022), indicating
significant progress and reaching an upper-middle level in recent
years.

Based on the spatial and temporal evolution map of
agricultural resilience levels across 30 provinces (municipalities)
in China (Fig. 5), the study found that the agricultural resilience
levels between regions exhibit significant spatial differentiation
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V level
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1l level

Resilience level
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Table 3 Numerical characteristics of the cloud model for different levels of agricultural resilience.

Indexes

(2.8655,0.7332,0.01)
(24563.2098,3923.6278,0.01)
(0.7063,0.0392,0.01)
(1622.3862,544.4950,0.01)
(6.6903,2.9448,0.01)
(12.4569,9.4203,0.01)
(1.664,11.9653,0.01)
(0.01195,0.0086,0.01)
(4.6070,15.9692,0.01)
(0.0034,0.0231,0.01)
(0.0063,0.0227,0.01)
(21.1000,3.6188,0.01)
(25.7500,3.9112,0.01)
(0.7936,0.0267,0.01)
(0.0989,0.0736,0.01)
(0.0080,0.0068,0.01)
(55.5305,6.7081,0.01)
(19981.0716,3764.9472,0.01)
(12522.5900,2904.6768,0.01)
(1.1937,0.1472,0.01)
(0.9683,0.1892,0.01)
(7453.9797,1649.6770,0.01)
(1258.8500,428.8736,0.01)
(0.7601,0.1404,0.01)

(15645.9582,5524.8467,0.01)
(0.6007,0.0823,0.01)
(11928.0125,4285.7770,0.01)
(6595.9980,2789.4761,0.01)

(1.4487,0.4544,0.01)
(595.8393,205.3858,0.01)
(9.7024,4.2604,0.01)
(31.2069,11.1126,0.01)
(5.0761,10.2695,0.01)
(0.0251,0.0135,0.01)
(9.5738,20.0624,0.01)
(0.0069,0.0143,0.01)
(0.0140,0.0175,0.01)
(13.5880,3.7735,0.01)
(29.1000,4.6445,0.01)
(0.7314,0.0419,0.01)
(0.1627,0.0848,0.01)
(0.0139,0.0078,0.01)
(41.4235,7.6178,0.01)
(0.8450,0.2357,0.01)
(0.5733,0.1937,0.01)
(3898.1179,1997.2302,0.01)
(421.1100,291.3475,0.01)
(0.4084,0.2445,0.01)

(3608.2140,1923.9681,0.01)

(10447.5144,2427.5130,0.01)
(0.6095,0.1266,0.01)

(0.9928,0.2644,0.01)
(0.5204,0.0398,0.01)
(396.7674,110.8990,0.01)
(12.5368,2.3745,0.01)
(43.7208,9.7734,0.01)
(9.3454,3.6292,0.01)
(0.0352,0.0071,0.01)
(13.3970,3.8146,0.01)
(0.0118,0.0047,0.01)
(0.0237,0.0103,0.01)
(9.6380,2.5008,0.01)
(32.5380,3.1667,0.01)
(0.6852,0.0308,0.01)
(0.2224,0.0486,0.01)
(0.0196,0.0048,0.01)
(31.7990,7.7830,0.01)
(8061.0611,1627.4429,0.01)
(0.4016,0.0685,0.01)
(1865.1157,1148.5517,0.01)
(155.6200,114.5707,0.01)
(0.1957,0.0679,0.01)

(7589.2535,2096.5117,0.01)

(0.4594,0.0553,0.01)
(1269.4210,1524.2506,0.01)

(0.6747,0.2363,0.01)
(215.034,161.9939,0.01)
(16.8194,2.1284,0.01)
(56.9287,10.0796,0.01)
(18.43015,3.0916,0.01)
(0.0485,0.0089,0.01)
(29.8630,2.3075,0.01)
(0.0243,0.0031,0.01)
(0.0416,0.0046,0.01)
(5.4850,3.7895,0.01)
(37.5430,2.2551,0.01)
(0.6422,0.0365,0.01)
(0.3077,0.0461,0.01)
(0.0277,0.0041,0.01)
(18.223,12.4668,0.01)
(6001.7724,1622.3521,0.01)
(0.4654,0.1044,0.01)
(0.3146,0.0719,0.01)
(679.4901,639.0953,0.01)
(48.8600,47.2205,0.01)
(0.1126,0.0639,0.01)

(5017.8780,968.8346,0.01)
(0.3928,0.0238,0.01)
(4090.7122,682.4874,0.01)
(73.9650,62.7669,0.01)

(0.2301,0.1175,0.01)
(153.4512,68.6970,0.01)

(0.3893,0.1057,0.01)
(57.1270,36.5635,0.01)
(23.5340,1.2721,0.01)
(76.9580,8.923,0.01)
(42.57025,1.1299,0.01)
(0.0687,0.0056,0.01)
(65.4262,2.4611,0.01)
(0.0691,0.0012,0.01)
(0.0865,0.0036,0.01)
(1.5350,1.0968,0.01)
(45.9050,1.4651,0.01)
(0.5952,0.0182,0.01)
(0.4644,0.0265,0.01)
(0.04215,0.0025,0.01)
(5.5420,3.2886,0.01)
(0.14875,0.0829,0.01)
(8.5000,7.1375,0.01)
(0.0357,0.0282,0.01)

@
Cc2
C3
C4
C5
Cé
C8
Cco
C10
cn
C12
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C15
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due to differences in industrial structure, policy responses, and
resource endowments.

Figure 5a shows the spatiotemporal distribution of the first
resilience level (low resilience) from 2011 to 2022. The national
average membership value rose from 0.081 in 2011 to 0.184 in
2022. At the provincial level, Inner Mongolia, Heilongjiang,
Xinjiang, Jilin, and Gansu recorded relatively high values, with
Heilongjiang peaking at 0.472 in 2020. In contrast, provinces such
as Hebei, Shanxi, Jiangxi, and Hunan consistently showed lower
values, mostly below 0.1.

Figure 5b depicts the distribution of the second resilience level
(low-to-moderate resilience). The national average membership
value increased from 0.182 in 2011 to 0.322 in 2022. Provinces
such as Sichuan, Hubei, Henan, Shandong, Anhui, Liaoning, and
Hebei recorded relatively high values, while Heilongjiang and
Gansu also showed an upward trend. In coastal provinces such as
Zhejiang and Shanghai, values fluctuated considerably, whereas
Shanxi, Inner Mongolia, Jiangxi, and Qinghai exhibited smaller
changes.

Figure 5c presents the distribution of the third resilience level
(moderate resilience). The national average membership value
increased slightly from 0.219 in 2011 to 0.259 in 2022. Provinces
such as Inner Mongolia, Jilin, Heilongjiang, Jiangxi, and Henan
displayed gradual increases, whereas Hebei, Liaoning, Jiangsu,
Anhui, Shandong, Hubei, Hunan, and Sichuan declined. Non-
grain-producing regions such as Tianjin, Shanxi, Guangxi,
Guizhou, Yunnan, and Gansu remained relatively stable.

Figure 5d reveals the distribution of the fourth resilience level
(moderately high resilience). The national average membership
value declined from 0.202 in 2011 to 0.075 in 2022. Provinces
including Jiangsu, Shandong, Zhejiang, and Guangdong recorded
increasing values, particularly after 2020, while Hebei, Inner
Mongolia, Heilongjiang, and Liaoning showed persistently low or
declining values.

Figure 5e illustrates the fifth resilience level (high resilience).
The national average membership value fell from 0.316 in 2011 to
0.159 in 2022. Except for Qinghai, where values increased slightly,
most provinces showed a downward trend.

Figure 5f shows the comprehensive resilience index across 30
provinces. The national average increased from 2.624 in 2011 to
3.379 in 2022. Hubei recorded the largest increase (from 2.62 to
3.79), while Beijing had the smallest (from 2.55 to 2.84). In terms
of annual growth rates, Beijing was the lowest (0.95%) and
Guizhou the highest (3.60%). Spatial disparities are evident:
Beijing, Shanghai, Qinghai, and Hainan consistently recorded
lower values, while Heilongjiang, Shandong, and Sichuan
remained higher. From 2016 to 2019, most provinces showed
steady growth, followed by greater fluctuations after 2020.

Configuration analysis. Configural analysis focuses on how
multiple antecedent conditions combine into distinct configura-
tions that jointly explain the occurrence of an outcome, empha-
sizing conjunctural causation rather than the independent effect
of single variables. Unlike traditional regression-based methods
that assume linear and additive effects, this approach recognizes
that different combinations of conditions may lead to the same
outcome through alternative pathways. In the context of this
study, agricultural resilience is not determined by a single factor
but emerges from the complex interplay of technological, finan-
cial, digital, and climatic dimensions. Therefore, the dynamic
fsQCA method is adopted to capture how these condition sets
evolve over time and to identify multiple, time-sensitive pathways
through which resilience can be enhanced under the framework
of climate-smart agriculture (CSA). By integrating the temporal
dimension, dynamic fsQCA provides a more nuanced
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Fig. 3 Cloud Model Index Diagram for Agricultural Resilience. a Cloud model for Agricultural output value (C1), a positive indicator; b cloud model for
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Fig. 4 The proportions of comprehensive certainty degree of agricultural
resilience different levels by year.

1 V]

understanding of how changing policy environments, technolo-
gical adoption, and resource endowments shape resilience tra-
jectories across regions.

Data calibration. Dynamic fsQCA requires calibrating raw mea-
sures into fuzzy sets and assigning membership scores to each
province-year case on every condition and the outcome. Fol-
lowing established practice (Pappas and Woodside 2021), we
applied direct three-anchor calibration. For each variable, full
membership, the crossover, and full non-membership were set at
the pooled 2011-2022 percentiles of 95%, 50%, and 5%,

respectively, to ensure temporal comparability. Since all indica-
tors in this study are defined as positive contributors to resilience,
no reverse-coding was required. The resulting fuzzy-set scores p
€ [0,1] and the variable-specific anchors are reported in Table 4.
Sensitivity to alternative anchors (e.g., 90%-50%-10%) is exam-
ined in Section “Robustness test”.

Necessity analysis. Before conducting the configural analysis, a
necessity analysis of individual antecedent conditions is per-
formed to determine whether any single condition is essential for
the outcome. A condition is considered necessary if its presence is
required for the outcome to occur, though its presence alone does
not guarantee the outcome. According to relevant literature
(Schneider and Wagemann 2012), a consistency score above 0.9
indicates that the condition is necessary for the outcome. How-
ever, as shown in Table 5, all conditions in this analysis have
consistency scores below 0.9, meaning no single factor is suffi-
cient on its own. This suggests that agricultural resilience, within
the context of climate-smart agriculture (CSA), is influenced by a
combination of factors rather than by any one condition.

Analysis of sufficient condition configurations. To identify differ-
ent combinations of conditions that lead to the same outcome,
sufficiency analysis of configurations is performed (Wang, Zhang
et al. 2023). The sufficiency criterion requires a consistency level
of 0.75 or higher (Schneider and Wagemann 2012). Based on
previous studies (Wang, Zhang et al. 2023) and the specific
context of this research, both the consistency and PRI thresholds
were established at 0.85.

In the counterfactual analysis, no assumptions were made
regarding the presence or absence of conditions in order to avoid
subjective bias. Augmented intermediate and simplified solutions
were applied to derive the configuration results, identifying core
and peripheral conditions. These findings are presented in Table 6.
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Fig. 5 Spatiotemporal Evolution of Agricultural Resilience Levels. a Spatiotemporal distribution of the first resilience level (low resilience) from 2011 to
2022; b spatiotemporal distribution of the second resilience level (low-to-moderate resilience) from 2011 to 2022; ¢ spatiotemporal distribution of the third
resilience level (moderate resilience) from 2011 to 2022; d spatiotemporal distribution of the fourth resilience level (moderately high resilience) from 2011
to 2022; e spatiotemporal distribution of the fifth resilience level (high resilience) from 2011 to 2022; f spatiotemporal evolution of the comprehensive
agricultural resilience index from 2011 to 2022.

In Table 6, the consistency values for the six configurations of =~ The entire solution accounts for 56.0% of high resilience cases.
high agricultural resilience (H1-H3) are 0.983, 0.98, 0.983, 0.98, The research results can be further summarized into the
0.981, and 0.986, all above 0.75, indicating that the explanatory following pathways: “Digital-Technology Synergy” (H1), “Digi-
power of the conditions is strong. Overall, the consistency tal-Technology-Financial Support Enhancement” (H2a, H2b),
across the six configurations is 0.975, meaning that 97.5% of the and “Digital-Technology-Climate Resource Synergy” (H3a,
cases align with these paths, showing a significant contribution. ~H3b, H3c).
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Table 4 Calibration of variables.
Variables Fully affiliated Intersection Fully unaffiliated
Outcome variable Agricultural Resilience 3.7410 3.0543 2314
Conditional variables Climate Productivity Potential 2270.903 1390.182 486.848
No-Tillage Technology 3049.863 69.815 0.000
Water-Saving Irrigation 1880.019 239.080 22.880
Straw Returning to the Field 6414.9810 688.730 75.858
Rural Digitalization 1034.340 176.600 5.455
Digital Financial Inclusion Index 398.820 255.931 40.143
Agricultural Fiscal Expenditure 0.1712 0.114 0.052

The “Digital-Technology Synergy” path (H1) includes core
conditions of Water-Saving Irrigation, Straw Returning to the
Field, and Digital Financial Inclusion Index, with No-Tillage
Technology as a peripheral condition. This suggests that the
promotion and use of rural digitalization provides a platform for
smallholder farmers to access advanced agricultural technologies,
management expertise, and inclusive finance. In addition,
technologies such as Water-Saving Irrigation and Straw Return-
ing to the Field enable agricultural production to rapidly adapt to
climate change (Mango, Makate et al. 2018). By increasing
farmers’ awareness and improving access to funding, the
adoption of CSA (Climate-Smart Agriculture) technologies can
be enhanced (Everest, 2021), promoting sustainable and high-
quality agricultural development, thereby improving agricultural
resilience. This path is particularly relevant for major grain-
producing provinces such as Henan, Hebei, and Inner Mongolia.
These regions have a relatively solid agricultural foundation, and
although their Climate Productivity Potential is weak, as seen in
extreme rainfall events in Henan in 2021 and Hebei in 2023, and
dust storms in Inner Mongolia in 2022, the frequent natural
disasters negatively impact agricultural production. However,
through the Digital-Technology synergy, agricultural resilience
can be effectively improved.

Another key pathway is the “Digital-Technology-Financial
Support Enhancement” path (H2a, H2b). In the H2a path, No-
Tillage Technology, Rural Digitalization, and Digital Financial
Inclusion Index are core conditions, with Agricultural Fiscal
Expenditure as a peripheral condition supporting agricultural
resilience. In the H2b path, Water-Saving Irrigation, Straw
Returning to the Field, and Digital Financial Inclusion Index are
core conditions, while Rural Digitalization and Agricultural Fiscal
Expenditure serve as peripheral conditions. Although these two
sub-pathways (H2a and H2b) emphasize different configurations
of core technologies and digital factors, they both highlight the
importance of Digital Financial Inclusion as a core driving force.
This force works effectively with different agricultural technol-
ogies (soil protection-focused in H2a vs. resource-circular in
H2b), supported by Rural Digitalization and Agricultural Fiscal
Expenditure, which provide flexible support to create stable and
efficient resilience-enhancing solutions. The improvement of
agricultural resilience does not rely on a single “optimal solution”
but can be achieved through the “Digital-Technology-Financial”
framework. Depending on the regional resource endowments and
stages of development, a flexible configuration of technologies
and policy tools can lead to resilience-building outcomes (Kabato,
Getnet et al. 2025). This model is suitable for regions like Gansu
and Xinjiang, which are arid and have weak climate productivity
potential.

The “Digital-Technology-Climate Resource Synergy” path
(H3a, H3b, H3c) emphasizes the impact of climate resources.
In these three paths, Water-Saving Irrigation and Straw
Returning to the Field, along with Digital Financial Inclusion
Index, remain core conditions, while Climate Productivity

Potential and Rural Digitalization provide peripheral support.
This can be explained by the fact that, driven by rural
digitalization, digital financial inclusion has made significant
progress, providing farmers with the financial support needed to
develop industries and adopt green technologies. Additionally,
higher Climate Productivity Potential benefits the implementa-
tion of CSA technologies, which, in turn, promotes the
development of green ecological agricultural models (Rong, Hong
et al. 2023). These paths show that the improvement of
agricultural resilience depends not only on core drivers that are
universally applicable across different contexts but also on
differentiated support strategies that align with local climate
resource endowments. Therefore, in regions with different
climate resource endowments, as long as the core foundation of
resource-circulation technologies and digital financial support is
solid, combined with matching digital services or climate
adaptation management, high agricultural resilience can be
achieved. Typical cases include agricultural resource-rich regions
such as Hunan, Sichuan, and Jiangsu, which focus on agricultural
technological innovation.

In contrast, the low agricultural resilience configurations (L1
and L2) reveal the reasons for insufficient resilience. In the L1
path, Climate Productivity Potential is the core condition, while
the absence of No-Tillage Technology, Water-Saving Irrigation,
Straw Returning to the Field, Rural Digitalization, and Digital
Financial Inclusion Index leads to low agricultural resilience
(Adegbite and Machethe 2020). This indicates that even with
favorable natural conditions, if essential technologies and digital
financial support are lacking, the system remains vulnerable. In
the L2 path, although Agricultural Fiscal Expenditure is a core
condition, the absence of other key conditions still results in low
agricultural resilience. This suggests that fiscal expenditure alone,
without a supporting technological system, resource management
measures, and digital empowerment, cannot effectively translate
into robust system resilience.

Regional analysis. CSA practices demonstrate varying levels of
effectiveness between major and non-major grain-producing
areas. Major grain-producing areas, characterized by favorable
climatic conditions, fertile soils, and abundant water resources,
play a key role in national food security. This study adopts the
classification criteria outlined in the National Grain Security
Medium- and Long-Term Planning Outline (2008-2020) to
analyze configuration solutions for these regions separately,
accounting for regional differences. The analysis results are
shown in Table 7.

As shown in Table 7, the configuration analysis for major
grain-producing areas aligns closely with the “Digital-Technology
Synergy”, “Digital-Technology-Fiscal Support Enhanced”, and
“Digital-Technology-Climate Resource Synergy” models.

In Gl1, the core condition is the Digital Financial Inclusion
Index, supported by peripheral conditions such as No-Tillage
Technology, Water-Saving Irrigation, and Straw Returning to the
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Table 6 Configuration analysis results.
Condition High agricultural resilience Low agricultural
resilience
H1 H2 H3 L1 L2
H2a H2b H3a H3b H3c
Climate Productivity Potential ® ® . . . Y
No-Tillage Technology . [ ® ® ® ®
Water-Saving Irrigation (] () () (] ® ®
Straw Returning to the Field [ [ o [ ® R
Rural Digitalization () . . . . ® ®
Digital Financial Inclusion Index [ [ [ [ o [ ® ®
Agricultural Fiscal Expenditure ° . [
Consistency 0.983 0.98 0.983 0.98 0.981 0.986 0.962 0.957
PRI 0.963 0.943 0.957 0.941 0.946 0.966 0.898 0.893
Raw coverage 0.359 0.295 0.365 0.317 0.317 0.357 0.39 0.428
Unique coverage 0.048 0.02 0.0Mm 0.022 0.022 0.006 0.063 0.101
Intergroup consistency adjustment distance 0.016 0.016 0.02 0.004 0.035 0.031 0.055 0.062
Intra-group consistency adjusted distance 0.069 0.081 0.075 0.075 0.063 0.069 0.075 0.081
Solution PRI 0.95 0.887
Solution consistency 0.975 0.951
Solution coverage 0.56 0.53
ignifies the existence of a core condition.
gnifies the presence of a peripheral condition.
ignifies the absence of a core condition.
signifies the absence of a peripheral condition.
“Blank” signifies that the presence or absence of a condition variable is irrelevant to the outcome.
Table 7 Configuration Results for Major and Non-major Grain-producing Areas.
Major Grain producing areas Non grain producing
areas
G1 G2 G3 G4 G5 N1 N2
Climate Productivity Potential ® ® . . ) . ®
No-Tillage Technology . . ® Y ® .
Water-Saving Irrigation ° [} ° . . [ )
Straw Returning to the Field . [} . . ® ®
Rural Digitalization . . ) . .
Digital Financial Inclusion Index o [ [ . .
Agricultural Fiscal Expenditure [ ® [ [
Consistency 1 0.968 0.994 0.988 0.983 0.978 0.974
PRI 1 0.938 0.989 0.974 0.962 0.874 0.877
Raw coverage 0.416 0.465 0.39 0.28 0.341 0.298 0.284
Unique coverage 0.039 0.085 0.029 0.018 0.009 0.101 0.088
Intergroup consistency adjustment distance 0 0.051 0.016 0.027 0.039 0.039 0.035
Intra-group consistency adjusted distance 0 0.069 0.035 0.035 0.029 0.127 0.115
Solution PRI 0.952 0.888
Solution consistency 0.97 0.974
Solution coverage 0.687 0.386
“@" signifies the existence of a core condition.
“e" signifies the presence of a peripheral condition.
" signifies the absence of a core condition.
®" signifies the absence of a peripheral condition.
“Blank” signifies that the presence or absence of a condition variable is irrelevant to the outcome.

Field, while Climate Productivity Potential is absent. This
suggests that strong digital finance compensates for weaker
natural advantages by reducing technology adoption costs and
improving resource allocation. In G2, the core conditions are
Water-Saving Irrigation, Straw Returning to the Field, and
Agricultural Fiscal Expenditure, with No-Tillage Technology as
a peripheral condition and Climate Productivity Potential absent,
highlighting a policy focus on investing fiscal resources in
resource-saving technologies under environmental pressures. G3
and G4 both center on the Digital Financial Inclusion Index but

| (2026)13:105 | https://doi.org/10.1057/s41599-025-06409-z

differ in their peripheral conditions: G3 includes Climate
Productivity Potential, Water-Saving Irrigation, Straw Returning
to the Field, and Rural Digitalization, while G4 emphasizes
Climate Productivity Potential, Water-Saving Irrigation, and
Rural Digitalization, with No-Tillage Technology absent. This
shows that areas with better climate conditions benefit from
combining digital finance with rural digital infrastructure. In G5,
the core conditions are Climate Productivity Potential, No-Tillage
Technology, and Rural Digitalization, supported by the peripheral
conditions Water-Saving Irrigation and Straw Returning to the
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Field. This indicates that in regions with favorable natural
conditions, conservation tillage and digitalization boost resilience,
with water- and soil-management technologies enhancing but not
driving resilience.

In non-grain-producing regions, N1 and N2 both feature
Water-Saving Irrigation and Agricultural Fiscal Expenditure as
core, but commonly lack Climate Productivity Potential or Straw
Returning to the Field among the peripheral conditions. This
pattern reveals a reliance on a narrow, fiscally supported
technology set in the face of resource constraints, with insufficient
ecological practices and limited multi-factor synergies to sustain
resilience gains.

Different levels of inclusive finance. Digital financial inclusion
enhances financial accessibility, driving rural industrial revitali-
zation and supporting CSA practices. However, regions with
varying levels of financial inclusion follow different CSA path-
ways. To assess this impact, the study uses the equal interval
method to categorize financial inclusion into three groups—high,
medium, and low (Tang, Li et al. 2020). Configuration solutions
for each group are then analyzed to identify distinct CSA path-
ways, as shown in Table 8.

High DFI regions: As shown in Table 8, the Digital Financial
Inclusion (DFI) Index is the core driver of agricultural resilience.
In H1, H4, and H5, DFI combines with water-saving irrigation
and rural digitalization to strengthen sustainability and adaptive
capacity. Inclusive finance does more than widen credit access;
paired with data-enabled services, it raises efficiency and
improves factor allocation. By contrast, in H2, H3, and H6, DFI
remains core but resilience gains are capped when complemen-
tary technologies or public spending are absent—for example,
without agricultural fiscal expenditure or no-tillage technology,
systems can stay fragile despite strong DFI. Finance alone is
insufficient; it must be coupled with technology diffusion and
public investment. Resource-constrained areas also have room to
expand the coverage and effectiveness of financial services.

Medium DFI regions: Resilience can still rise through
coordination among other conditions. In M1, M2, and M4, core
technologies—no-tillage and straw returning—combined with
peripheral supports (water-saving irrigation and agricultural fiscal
expenditure) provide a workable path to upgrading resilience.
This suggests that even where DFI is nascent, pairing technolo-
gical innovation with fiscal inputs advances sustainable develop-
ment. In M3, M5, and M6, however, the absence of climate
productivity potential and water-saving irrigation limits improve-
ments even when straw returning and DFI are core. Policymakers
should integrate technology diffusion with financial services,
avoiding reliance on a single lever and accounting for local
resource constraints.

Low DFI regions: Scarce digital finance markedly constrains
upgrading. Although technologies such as no-tillage and water-
saving irrigation may be core, weak fiscal support and limited
digital services make gains hard to sustain. In L1 and L2, these
technologies are core, but weak agricultural fiscal expenditure and
minimal rural digitalization blunt their impact, entrenching
reliance on traditional techniques and ad hoc support. In L3, even
with climate productivity potential and fiscal spending as core
conditions, resilience is difficult to lift without reinforcing effects
from DFI and rural digitalization. The structural bottleneck is
clear: limited information and liquidity make resilience building
especially challenging. Priorities should include strengthening
rural financial systems, improving financial literacy, and expand-
ing the reach and usability of digital finance so that technology
adoption can be financed at scale and the sector can shift toward
a more resilient, modern production paradigm.
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Robustness test. Robustness tests on thresholds and anchors were
conducted to confirm the results, as shown in Table 9. First, the
consistency threshold was raised from 0.85 to a stricter 0.90. The
results showed that the consistency of all high agricultural resi-
lience paths (H1-H3) remained above 0.975, and the composition
of all core conditions (such as digital inclusive finance, water-
saving irrigation, etc.) did not change (as shown in Table 6). Next,
we adjusted the calibration anchor points (setting the full mem-
bership, crossover point, and full non-membership points to the
90%, 50%, and 10% percentiles, respectively) to alter the dis-
tribution of set membership. Under this setting, although some
marginal conditions changed and the overall coverage experi-
enced only a slight fluctuation (from 0.560 to 0.542), the core
condition combinations driving high resilience and theoretical
paths (such as “digitalization-technology” synergy) remained
stable. These checks indicate that the configuration analysis
results are not sensitive to changes in parameter settings, and the
core conclusions are robust.

Discussion

Evolutionary characteristics and enhancement pathways of
agricultural resilience in China. This study analyzes the dynamic
evolution of agricultural resilience in China at both the national
and provincial levels from 2011 to 2022. At the national level,
agricultural resilience shows expansion in the medium-low and
medium levels, and contraction in the medium-high and high
levels, indicating that while agricultural resilience in China has
improved, it still faces structural challenges in transitioning from
traditional production models to medium-high resilience systems.
This may be due to the agricultural policy system focusing more
on “engineering resilience”—the ability to restore agricultural
facilities to their pre-shock state—while “evolutionary resi-
lience”—the ability to adapt, learn, and transform—remains
relatively weak. This is consistent with the views of Zhou et al.
(Zhou, Han et al. 2021). Particularly after 2020, the combined
impacts of the pandemic and climate change slowed the growth of
agricultural resilience and increased volatility, further exposing
weaknesses in adaptation and transformation mechanisms. At the
provincial level, traditional agricultural provinces, such as Hebei,
Liaoning, and Shandong, have experienced slow agricultural
transformation due to their traditional production models, cli-
mate change pressures, and delayed policy responses. In contrast,
non-traditional agricultural regions, such as Jiangsu and Zhejiang,
have achieved higher levels of resilience improvement through
innovation-driven approaches, increased R&D investment, and
policy guidance.

Digital inclusive finance plays a key role in several resilience-
enhancing pathways, aligning with the “digital countryside”
policy, which prioritizes financial technology channels and data
infrastructure in core grain-producing areas (Yang, Ji et al. 2024).
For instance, in pathways such as “digital-technology synergy”,
the combination of water-saving irrigation and straw returning
measures with digital inclusive finance has significantly enhanced
agricultural resilience. Existing studies have shown (Liu, Liu et al.
2021) that digital finance not only helps expand agricultural
production financing channels but also promotes the adoption of
new agricultural production technologies by reducing transaction
costs. In regions with lower climate productivity, digital finance
can somewhat compensate for the adverse effects of climate
shortcomings. In areas with more favorable climate conditions,
digital finance can deeply integrate with rural digitalization,
significantly amplifying the efficiency of precision services and
market linkages, thereby enhancing the agricultural system’s
ability to cope with risks. This finding reminds us that meaningful
resilience improvements are unlikely to be achieved through just
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Table 9 Robustness test results.
Test1 High agricultural resilience Test2 High agricultural resilience

H1 H2 H3 H1 H2 H3

H2a H2b H3a H3b H3c H2a H2b H3a H3b H3c

Climate Productivity Potential ® ® . . . ® ® . . .
No-Tillage Technology . [} ® ® . [ ® ®
Water-Saving Irrigation [ ] o [ ] o [ ] [ ] [ ] [ ]
Straw Returning to the Field [ ) o [ ) [} o [ J [ J [ J
Rural Digitalization [ . . ° . [ . . . .
Digital Financial Inclusion Index o [ ) o o o o [ J o [ J [ J [ J [ J
Agricultural Fiscal Expenditure . ° . .
Consistency 0.983 0.980 0.980 0981 0.983 0986 0975 0970 0975 0970 0972 0.978
PRI 0963 0943 0941 0946 0957 0966 0954 0928 0945 0926 0932 0.954
Raw coverage 0359 0.295 0317 03177 0365 0357 0333 0256 0334 0282 0.284 0336
Unique coverage 0.048 0.020 0.022 0.022 0.011 0.006 0.050 0.018 0.011 0.020 0.023 0.006
Intergroup consistency adjustment distance 0.016 0.016 0.004 0.035 0.020 0.031 0.031 0.023 0.035 0.058 0.058 0.051
Intra-group consistency adjusted distance 0.069 0.081 0.075 0.063 0.075 0.069 0115 0121 0109 0115 0109 0.115
Solution PRI 0.950 0.945
Solution consistency 0.975 0.969
Solution coverage 0.560 0.542
"@" signifies the existence of a core condition.
“e" signifies the presence of a peripheral condition.
“®" signifies the absence of a core condition.
“®" signifies the absence of a peripheral condition.
“Blank” signifies that the presence or absence of a condition variable is irrelevant to the outcome.

one or two factors. For example, climate adaptation strategies
must be combined with technological promotion and fiscal
support to effectively enhance resilience, which is consistent with
previous research conclusions (Tran, Rafiola et al. 2020).

There are differences in the pathways for enhancing agricul-
tural resilience between major grain-producing regions and non-
grain-producing regions. In grain-producing areas, the combina-
tion of water-saving irrigation and straw returning frequently
appears in the pathways, indicating that water resource manage-
ment and soil improvement are key to agricultural resilience.
Existing studies have shown that under the context of climate
change, water-saving irrigation can improve water use efficiency
(Guo and Zhang 2023; Xuan, Bai et al. 2025), and straw returning
helps improve soil fertility and enhance crop resistance to stress
(Zheng, Zhu et al. 2022), The widespread application of these
technologies not only enhances agricultural sustainability but also
strengthens the agricultural system’s ability to cope with climate
change (Devkota, Devkota et al. 2022). In non-grain-producing
regions, however, there is often a dual constraint: insufficient
climate productivity and a lack of straw-returning technology,
with water resource management and policy support being key
factors for improving agricultural resilience (e.g., N1 and N2
pathways). Consistent with the views of Fang et al. (Fang and Zhu
2024), the combination of water-saving irrigation and fiscal
support can help farmers better address technological short-
comings and enhance the agricultural system’s resilience to risks.

Theoretical contributions. High levels of agricultural resilience
contribute to agricultural modernization and high-quality agri-
cultural development (Qiao, Chen et al. 2024). Agricultural pro-
duction is influenced by various factors, especially the challenges
posed by the “dual carbon” goals, extreme climate change, and
the instability of international affairs. The use of climate-smart
agriculture (CSA) technologies can effectively mitigate carbon
emissions, ensure food security, and promote sustainable agri-
cultural development. The study of the combined impact of
multiple factors on agricultural resilience in the context of
climate-smart agriculture provides a new and interesting
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perspective. This research focuses on agricultural resilience and
employs the dynamic fsQCA method to identify the impact of
various factor combinations on agricultural resilience. The results
show that different combinations of factors yield different effects
(Guedes, da Conceicdo Gongalves et al. 2016). The use of CSA
technologies and digitalization is fundamental to achieving these
pathways, further confirming the importance of digital develop-
ment and climate-smart technologies in enhancing agricultural
resilience, such as improving agricultural productivity and redu-
cing carbon emissions in agriculture (Lipper, Thornton et al.
2014; McNunn, Karlen et al. 2020).

The theoretical contributions of this study are as follows: First,
based on the DPSIR framework, an innovative evaluation index
system for agricultural resilience is constructed, and the cloud
model is used to assess the resilience levels and statuses of
dynamic panel data, filling the gap in existing literature. Second,
using the dynamic fsSQCA method, the study identifies three
pathways based on the context of climate-smart agriculture: the
“digitalization + technology” interactive pathway, the “digitaliza-
tion + technology + fiscal support” enhanced pathway, and the
“digitalization + technology + climate resource support” mixed
pathway. The study explores how various factor combinations,
such as digital finance, technological innovation, fiscal support,
and climate resources, interact to shape resilience outcomes. This
nuanced understanding of the complementarity and substitut-
ability of different elements adds depth to agricultural resilience
theory, particularly in contexts influenced by climate change and
technological transformation. In this way, the study provides a
more comprehensive and dynamic theoretical framework that
goes beyond traditional single-factor theories. Lastly, the
proposed combination pathways are superior to traditional
single-factor theories and establish a more comprehensive
theoretical framework.

Practical Implications. In addition to theoretical contributions,
this study holds significant practical value, particularly in pro-
moting resilience in agricultural systems, formulating relevant
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policies, and implementing agricultural technology innovations.
The key practical implications are as follows:

(1) The results of this study reveal the key factors required in
different regions and resilience pathways, offering policymakers
valuable insights into designing tailored agricultural resilience
policies. For instance, in grain-producing areas, policies should
focus on the integration of digital financial services and
agricultural technology innovations, while in non-grain-
producing areas, the focus should be on increasing fiscal support
and promoting advanced agricultural technologies.

(2) For agricultural technology promotion systems, this
research offers a clear “priority list” and “combination strategy”
to address the common dilemma faced by agricultural extension
services and farmers regarding which technologies to prioritize.
Given the numerous CSA technologies available, this study
identifies the core and auxiliary roles of various technologies in
building agricultural resilience.

(3) Agricultural service enterprises can leverage the research to
offer customized “resilience enhancement service packages”
tailored to the specific needs of different regions. For instance,
by providing a “G4 pathway full-service package” in a particular
province, agricultural service providers can become specialized
solution suppliers, offering comprehensive services that address
both technological and financial needs. These service packages
could include everything from technology adoption and training
to ongoing financial and technical support, ultimately helping
farmers strengthen their resilience against climate-related
challenges.

International comparative value. This study offers a valuable
international comparison framework for enhancing agricultural
resilience globally. Its international comparative value is reflected
in the following aspects:

(1) Comparing Resilience Pathways Across Countries

By comparing resilience pathways in major and non-major
grain-producing regions, this study reveals both shared challenges
and regional differences in enhancing agricultural resilience. For
example, developed countries typically lead in digital finance and
technological innovation, while developing countries face chal-
lenges related to technological gaps and limited financial
resources. The study provides valuable reference points for
countries to tailor their resilience-enhancing strategies based on
their specific contexts.

(2) Global Perspective on Climate Change Adaptation

The study highlights the profound impact of climate change on
agricultural resilience and explores how different regions are
adapting to these challenges. The findings offer a basis for
international knowledge sharing and collaboration on climate
change adaptation strategies, particularly in areas such as water
resource management and soil protection. Global cooperation in
technology transfer and financial support is essential to help
vulnerable regions increase resilience.

(3) Global Agricultural Digitalization and Fiscal Support
Collaboration

The study demonstrates the pivotal role of digital finance and
technological innovation in enhancing agricultural resilience. By
comparing countries with different levels of digital finance
inclusion, the study highlights the potential for cross-country
cooperation. Developed countries can share their digital experi-
ences and provide funding to help other regions accelerate digital
transformation in agriculture. Such international cooperation will
not only improve agricultural productivity but also strengthen
global agricultural systems’ ability to adapt to climate change,
ensuring the stability and sustainability of global agriculture.

Research limitations. This study makes significant contributions
to the pathways for achieving agricultural resilience, but there are
some limitations. First, it constructs the evolution trend of agri-
cultural resilience using panel data from 2011 to 2022, but with
increased uncertainty in agricultural systems due to climate
change, policy iterations, and technological innovations, future
research could incorporate higher-frequency data (e.g., quarterly
or monthly) to capture resilience responses to short-term shocks.
Second, while the study relies on macro-level statistical data, it
has limitations in reflecting grassroots perceptions. Future studies
could combine surveys and interviews with stakeholders, such as
farmers and local policymakers, to provide more contextualized
resilience narratives and highlight obstacles in technology pro-
motion and policy implementation. Third, the study uses
dynamic fsQCA to identify paths and drivers of agricultural
resilience, and future research could combine these findings with
predictive methods like machine learning or system dynamics to
create an “Agricultural Resilience Scenario Simulation System”
for optimizing resilience paths under various policy and climate
scenarios.

Conclusion and Policy Implications

Conclusion. This study systematically examines the spatio-
temporal evolution and formation mechanisms of agricultural
resilience in China from 2011 to 2022, drawing the following key
conclusions:

Although agricultural resilience in China has improved overall
during the observation period, internal structural imbalances
have become more pronounced. The national average resilience
level has increased from Level II to Level IV. However, the
narrowing of the medium-high and high resilience tiers, along
with the expansion of the medium-low tiers, reveals a challenge in
transitioning the system from “incremental growth” to “quality
enhancement”. This structural dilemma is particularly evident
across provinces: traditional agricultural provinces are con-
strained by path dependencies related to natural conditions and
industrial structures, leading to slow resilience growth, while
innovative eastern provinces have made significant progress by
leveraging the synergy of technology and digitalization.

Agricultural resilience improves through multiple pathways
rather than a single optimal model. Configuration analysis
identifies three equally effective paths: “digitalization-technology”
synergy, “digitalization-technology-financial support” enhance-
ment, and “digitalization-technology-climate resources” synergy.
These findings confirm that the construction of resilience
depends on the alignment of core driving factors and regional
endowments. Notably, digital inclusive finance plays a central role
as a common core element across all paths, expanding financing
channels and reducing the costs of technology adoption.
Furthermore, there are significant path dependencies between
grain-producing and non-grain-producing regions. The former
relies on the deep integration of technology and digitalization to
ensure production capacity, while the latter requires a combina-
tion of financial and technological support to overcome resource
constraints.

In conclusion, the key to shifting China’s agricultural resilience
from “engineering resilience” to “evolutionary resilience” lies in
constructing a policy system that can stimulate the synergy of
multiple factors. Future efforts should focus on enhancing the
inclusiveness and penetration of digital finance. In addition, regional
governance strategies should be implemented to guide the optimal
allocation of technology, capital, and digital platforms according to
regional endowments, systematically fostering the adaptability,
learning, and transformation capabilities of agriculture.

| (2026)13:105 | https://doi.org/10.1057/s41599-025-06409-z 17



ARTICLE

Policy implications. This study provides diverse solutions for
improving agricultural resilience, with key policy implications:

(1) Focus on water resource management and soil improve-
ment as the primary means to enhance resilience in major grain-
producing regions. The research results show that multiple
pathways in major grain-producing regions such as Shandong,
Henan, and other provinces, repeatedly highlight the high-
frequency combination of “water-saving irrigation + straw
returning.” Specifically, during the construction of high-
standard farmland, intelligent irrigation and soil health improve-
ment plans should be implemented concurrently. The full
“collect-transport-return-measure” chain for straw management
should be improved, with integrated applications for field sensing,
variable irrigation, and yield/moisture monitoring to stabilize
output and income during climate shocks.

(2) Shift from “engineering resilience” to “evolutionary
resilience” and accelerate the modernization transformation of
traditional agriculture. The research results show that while
medium-tier resilience expands, the medium-high/high tiers
contract, with insufficient resilience improvement in traditional
agricultural provinces such as Hebei, Liaoning, and Shandong.
Policy combinations should support ecological agriculture,
climate-resilient crops, agro-processing, cold chains, and resilient
supply chains that combine orders and futures contracts. This
should facilitate the transition from a single grain-dominated
system to a diversified “grain—economy—feed—processing”
model, enhancing the ability to adapt and reconstruct in response
to complex shocks.

(3) Promote cross-regional knowledge sharing and flow of
resources to reduce spatial imbalances. The research results show
that regions with medium-high resilience, such as Jiangsu and
Zhejiang, perform steadily, while many areas in the northeast and
northwest fall into low or medium-low resilience tiers, showing
significant spatial differentiation. Specifically, a national-level
resilience technology demonstration corridor and an “East
technology to West, South capital to North” cooperation
mechanism should be established. Through “contract diffusion
+ outcome sharing,” leading enterprises and cooperatives should
be encouraged to export technologies, management practices, and
service models to low-resilience regions, while setting up
replicable standardized operating packages to accelerate
convergence.

(4) Promote the collaborative diffusion of “Digital Finance +
Key CSA Technologies.” The research findings show that high-
resilience pathways HI1/H2/H3 are centered around digital
financial inclusion, water-saving irrigation, and straw returning
(with no-tillage technology as an important supplement), while
the absence of these elements in L1/L2 leads to low resilience.
Specifically, an integrated “tech-finance-service” package (includ-
ing technology lists, interest-subsidized loans/financing leases,
and doorstep services) should be established at the county level.
This package should link equipment procurement, operation and
maintenance, and digital agricultural service platforms, creating a
closed-loop diffusion mechanism from financing, procurement,
installation, to monitoring and evaluation.

(5) Shift fiscal spending from a “scattergun approach” to a
“technology-finance” combination linked to performance out-
comes. The research results show that fiscal support combined
with key technologies (H2a/H2b and N1/N2) can significantly
improve agricultural resilience, while L2 indicates that fiscal
expenditure alone is insufficient to translate into resilience.
Additionally, G2 reflects the dependency on fiscal support.
Specifically, subsidies should be tied to performance indicators
such as the “technology adoption rate, water-saving intensity, soil
organic matter improvement, and emissions reduction.” A
results-based payment (RBF) approach should be implemented
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with inter-provincial differentiated allocation, directing funds
primarily to operators who adopt water-saving irrigation, straw
returning, and no-tillage practices.

Data availability
The data are available from the corresponding author on rea-
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