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New insights into natural variability and anthropogenic
forcing of global/regional climate evolution
Tongwen Wu1, Aixue Hu 2, Feng Gao 3,4,5, Jie Zhang 1 and Gerald A. Meehl2

Because of natural decadal climate variability—Atlantic multi-decadal variability (AMV) and Pacific decadal variability (PDV) —the
increase of global mean surface air temperature (GMSAT) has not been monotonic although atmospheric greenhouse-gas (GHG)
concentrations have been increasing continuously. It has always been a challenge regarding how to separate the effects of these
two factors on GMSAT. Here, we find a physically based quasi-linear relationship between transient GMSAT and well-mixed GHG
changes for both observations and model simulations. With AMV and PDV defined as the combination of variability over both the
Atlantic and Pacific basins after the GHG-related trend is removed, we show that the observed GMSAT changes from 1880 to 2017
on multi-decadal or longer timescales receive contributions of about 70% from GHGs, while AMV and PDV together account for
roughly 30%. Moreover, AMV contributes more to time-evolving GMSAT on multi-decadal and longer timescales, but PDV leads
AMV on decadal timescales with comparable contributions to GMSAT trends.
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INTRODUCTION
Although the influence of decadal climate variability on regional
and global climate has been studied previously,1 additional
attention has been brought to bear on this problem due to the
2000–2014 global warming slowdown2–10 which occurred during
a time of continuously increasing greenhouse gas (GHGs)
concentrations. Both observational and modeling studies have
explored potential mechanisms to explain this warming slowdown
and concluded that internal decadal variability played a major
role. The internally generated variability is associated with Pacific
decadal variability (PDV, often associated with the Interdecadal
Pacific Oscillation, IPO)11–19 and Atlantic multi-decadal variability
(AMV, often associated with the Atlantic Multidecadal Oscillation,
AMO).20–28 Additional contributions likely came from radiative
cooling effects29–33 due to volcanic aerosols and consequent
dimming of sunlight. Such decadal climate variability can lead to a
redistribution of the heat absorbed by the climate system. For
example, more energy can be transported into the subsurface and
deep oceans instead of warming the upper few tens meters of
ocean, thus contributing to a slowdown in global mean surface air
temperature (GMSAT) increase.13,34–40 A linkage between the
time-evolution of observed GMSAT and PDV has been established
whereby there is a weaker GMSAT increase for PDV negative
phase (with the tropical Pacific somewhat cooler than average on
decadal timescales) and accelerated warming for PDV positive
phase since the early 20th century.41,42

However, these results may be affected by how the externally
forced and the internally generated GMSAT changes are separated
due to the fact that these factors work on the observed GMSAT
simultaneously. Generally, the SAT trends over a century are
dominated by external forcings; variability on timescales shorter

than a decade are more typically associated with natural
variability. Variability between these two timescales is primarily
the result of the interplay between the externally forced and
internally generated changes.4,5,18,19,43–46 The simplest way to
isolate the naturally occurring SAT changes from human-induced
ones on both global and regional scales in observations is to
remove the GMSAT linear trend. This is intended to represent the
effects of the increase in GHGs, and is typically considered to be
the anthropogenic climate change signal.41 But since the changes
of anthropogenic forcing are not linear in time, this method
inevitably leaks some human-induced changes into the residuals.
Another commonly used method is based on climate model
simulations, such as the externally forced GMSAT change as
represented by a multi-model ensemble mean of 20th century
climate model simulations.41,42 Averaging across the multi-model
ensemble removes most of the randomly occurring internally
generated variability, leaving the externally forced response
including both the GHGs and natural forcings (solar and
volcanoes). At the same time, other methods4,17,26–29,47–51 based
on more complicated mathematics or statistics have been
proposed to analyze time-varying GMSAT trends. Because none
of these techniques has a direct physical connection to the time-
evolution of the actual anthropogenic forcing, it is not surprising
that these methods often produce inconsistent results. Here we
propose a more physically consistent way to separate the
influences of anthropogenic forcing and internal decadal varia-
bility by relating the forced GMSAT change in observations
directly to changes of anthropogenic sources, and the residual
GMSAT evolution to AMV and PDV.
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RESULTS
Global mean SAT change vs. GHGs
Figure 1a shows the annual mean (thin black line) and 9-year
running mean (thick black line) of the area-weighted GMSAT
between 60oS to 60oN from the Hadley Center Climate Research
Unit (HadCRU) data version 4 from 1880 to 2017.52 The exclusion
of polar-regions is due to the lack of long term reliable
observations there (Supplementary Fig. 1). GMSAT rises more
than 1 °C in the last one and half centuries, half of which has been
attributed to the increased GHG concentrations by many previous
studies.18,48 To collectively consider the effects of well-mixed
GHGs on GMSAT, we employ the concept of equivalent CO2

(CO2_e hereafter) to include all well-mixed GHGs (e.g., CO2, CH4,
NOx, CFCs). To derive CO2_e, the observed time-evolving effective
radiative forcing from each individual GHG source is summed up
to get the total radiative forcing based on Intergovernmental

Panel on Climate Change (IPCC) 5th Assessment Report (AR5)53

Table AII.1.2, and then this total radiative forcing is converted into
the concentration of CO2_e (see methods section for details). From
1881 to 2011, the observed CO2 concentration increases by 99
parts per million by volume (ppmv; from 291 to 390 ppmv; red line
in Fig. 1a), but CO2_e increases by 177 ppmv (from 295 to 472
ppmv; blue line in Fig. 1a). When GMSAT is plotted against CO2_e,
the observed GMSAT changes almost linearly with CO2_e for both
annual mean and 9-year running mean data with a rate of about
0.43 ± 0.11 °C per 100 ppmv CO2_e (Fig. 1b). This linear relation-
ship is more obvious when the CO2_e is above 350 ppmv (roughly
after 1980 which might be related to the larger rate of CO2_e
increase as shown in Supplementary Fig. 2), coincident with the
rapid global warming period as shown in Fig. 1a. Before 1980, the
large variations of the GMSAT imply that internal variability and
natural external forcings (e.g., volcanoes) may have played a more
important role in modulating GMSAT on decadal timescales, while

Fig. 1 Concentration of the atmospheric CO2 and equivalent CO2, and observed and simulated global mean surface air temperature
anomalies (GMSAT). GMSAT is defined as area-weighted man surface air temperature between 60oS and 60oN. a Annual-mean (thin black line)
and its 9-year smoothed (thick black line) time series of GMSAT anomalies relative to the 1881–1910 mean derived from HadCRU data
(Methods), and atmospheric CO2 (red line) and equivalent CO2 (CO2_e, blue line) concentrations. b Red and blue points denote the annual
mean and its 9-year smoothed GMSAT change with CO2_e from 1880 to 2017, respectively. c CMIP5 1pct_CO2 experiment (Methods), and the
GMSAT anomalies relative to the mean of the first 5 years run for each CMIP5 model. d CMIP5 historical from 1881 to 2005 and RCP4.5
experiments from 2006 to 2017 (Methods), and the reference climate is the mean of 1881 to 1910. Solid black Lines in b, c, d denote linear
trend of 9-year smoothed GMSAT; red lines in c and d represent the ensemble mean GMSAT, and the shading represents the GMSAT spread of
the 16 CMIP5 models
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the changes in GHGs dominate centennial timescale trends. This
will be discussed in more detail below.
To further verify this linear relationship, we analyze two sets of

the Coupled Model Intercomparison Project phase 5 (CMIP5)
experiments from 16 models.54 These include the idealized
experiment with one percent CO2 increase per year compound
(hereafter 1pct_CO2) and the 20th century historical experiment
from 1850 to 2005 with time-evolving natural and anthropogenic
forcings (hereafter 20 C). To extend the 20 C experiment to 2017,
the experiment using representative concentration pathway 4.5
(RCP4.5) is used. To be consistent with observations, GMSAT for
the model simulations is also defined as an area-weighted mean
between 60oS and 60oN. By using CO2_e as in observations, the
ensemble mean rate of GMSAT changes is 0.63 ± 0.10 °C per 100
ppmv CO2_e for 1pct_CO2 runs and 0.56 ± 0.12 °C per 100 ppmv
CO2_e for the 20 °C experiments (Fig. 1c, d). Although both of the
GMSAT change rates are higher than the observed, the over-
estimation is statistically significant for the 1pct_CO2 runs and
insignificant for the 20 °C runs based on a student t-test,
suggesting that the lack of aerosols in the 1pct_CO2 runs likely
contributes to this overestimation. In fact, this can be seen clearly
by comparing the ensemble mean GMSAT changes in these two
sets of model simulations with the ensemble mean GMSAT linear
trend (red vs. black lines in Fig. 1c, d). Without the aerosols, these
two lines are almost non-distinguishable (Fig. 1c); with aerosols,
the GMSAT long-term linear trend departs significantly from the
ensemble mean for certain time periods (Fig. 1d). It is worth
noting that there is an overly strong response of the CMIP models
to aerosol forcing, especially volcanic aerosols, in comparison to
observations (Fig. 1b vs. d).55 Nevertheless, our results indicate
that the transient GMSAT changes on decadal or longer timescales
for both observations and model simulations can be scaled
linearly by changes of CO2_e concentration.
To further test whether this relationship holds at regional scales,

12 grid points are randomly selected with 6 grid points over land
and 6 points over ocean from observations. Results show that the
same linear relationship between grid point temperature changes
and CO2_e generally holds well (Fig. 2), especially for the 9-year
running mean data. The least square fit trends on the selected grid
points are larger over land and smaller over ocean than the global
mean, which is consistent with the overall greater land warming
and less ocean warming due to the differences in heat capacity.
The uncertainty varies from one grid point to another which is
associated with the SAT variability on regional scales.

Definition of the decadal climate modes (AMV and PDV)
Because of the linear relationship between GMSAT and CO2_e, the
GHG-induced SAT changes can be derived by regressing CO2_e
onto global mean or regional SAT, or sea surface temperature
(SST). With nonlinear changes of CO2_e over the 20th century
(Fig. 1a), the resulting nonlinear changes of regional SAT, GMSAT,
and SST induced by CO2_e (Supplementary Figs. 2 and 3) need to
be properly removed in order to avoid the leakage of this signal
into decadal climate mode variability. To derive the AMV and PDV
indices, a rotated empirical orthogonal function (REOF) analysis is
applied to the 9-year running mean SSTs in a domain that extends
over both the Atlantic and Pacific basins between 40oS and 60oN
after the removal of the CO2_e-induced regional SST changes (see
Methods section for details). The resulting REOF time series and
spatial patterns are shown in Fig. 3. The REOF1 time series is
almost identical to the more classic AMO defined as the area-
weighted SSTs in the North Atlantic between equator and 60oN
after the removal of the global mean SST time series56 with a
correlation coefficient of 0.80 (Fig. 2a blue and black lines). The
REOF2 time series is nearly the same as a more typical IPO index
defined as the first principle component (PC1) of the empirical
orthogonal function (EOF) analysis for the Pacific basin after the

removal of the global mean trend11,12,57 with a correlation
coefficient of 0.73 (red and orange lines in Fig. 3a). The spatial
patterns of REOF1 and REOF2 resemble the spatial patterns of the
AMO and IPO in their own basins, respectively (Fig. 3b, c),
consistent with previous studies.56,57 But the connections to other
basin differ a bit, especially for AMV, where there is a negative IPO-
like pattern in the Pacific for the REOF1 pattern, and an AMO-like
pattern in the Atlantic that is stronger than the classical AMO
defined in56 (Supplementary Fig. 4). This implies that the simple
removal of the GMSAT time series will remove part of the AMV’s
contribution to the transient changes of GMSAT and regional SAT
which further leads to an underestimation of the AMV influence
on global and regional SAT changes. Connections to global
climate must consider that there are contributions from both
basins in this definition of AMV. Conversely, the PDV pattern is
centered mostly in the Pacific with a classic IPO pattern, with only
weak connections to the Atlantic. Therefore, most of the
contributions to global climate from PDV defined in this way are
from the Pacific basin. Hereafter, we define the REOF1 time series
as AMV, and the REOF2 time series as PDV, and the corresponding
spatial patterns as AMV and PDV patterns. This definition will be
used throughout the following discussion and all data mentioned
hereafter are the 9-year running mean data. The underlying
assumption for using 9-year running mean data is that the linear
relationship between SAT and CO2_e is closer than that between
annual mean SAT and CO2_e as the climate needs time to
equilibrate with the changes of CO2_e forcing (or lagged response
of the climate system to CO2_e forcing).
A few recent studies25–28 pointed out the potential of mode

mixing during the mode-deriving processes by using filtering.
Here although we have applied an REOF technique to maximize
the signals of AMV and PDV via analyzing the 9-year running
mean data, the resulting AMV and PDV are negatively correlated
with a correlation coefficient of −0.39. This could result from
mode mixing or maybe more physically represents an interaction
between these two modes since they occur simultaneously in
both observations and coupled model simulations. On decadal or
longer timescales, the interaction between these two modes could
possibly not be avoidable which needs to be studied further.

Contribution of GHGs and internally generated decadal climate
variability to long-term global and hemispheric mean SAT changes
After the removal of the GHG-induced trend (blue line in
Supplementary Fig. 3a), the residual GMSAT anomaly (red line in
Supplementary Fig. 3a) exhibits significant multi-decadal time-
scale variability. This variability is highly correlated to AMV on
centennial timescales, suggesting a more important role of AMV
as defined above in contributing to observed GMSAT time-
evolution along with the long-term trend contributed by
anthropogenic forcings, in a good agreement with recent
studies.26–29

To further quantify this relationship, multiple linear regression is
applied to the observed GMSAT and AMV, PDV and CO2_e (Fig. 4).
With the combined effects of these three factors, the observed
9-year running GMSAT is recovered at values over 99% (Fig. 4a). If
only CO2_e and AMV (or PDV) are used for the regression, the
recovery of GMSAT is 98.7% (94.7%). As indicated in the methods
section, there is no correlation between CO2_e and AMV, or
between CO2_e and PDV, but the AMV and PDV are negatively
correlated to each other. From the regression coefficients shown
in the methods section, the changes of the regression coefficients
when different modes are combined with CO2_e are small for
AMV, but large for PDV. This may imply that the overall
contribution of AMV to the GMSAT changes in the last century-
and-a-half is larger than the PDV’s. Because of the use of
standardized indices for CO2_e, AMV and PDV, it is assessed that
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the overall contribution from CO2_e to GMSAT changes is 70%,
with 30% from AMV and PDV.
According to Fig. 1a, GMSAT should increase 0.76 °C at the rate

of 0.43 °C/100ppmv (CO2_e) due to the change of CO2_e from 295
ppmv in 1881 to 472 ppmv in 2011. From our regression analyses

above, AMV, PDV can cause GMSAT variations of ±0.24 °C and
±0.09 °C in this period, respectively. Therefore, the observed
GMSAT transient evolution on centennial or longer timescales is
dominated by the CO2_e effect with significant modifications from
climate variability on decadal and multi-decadal timescales.

Fig. 2 Observed annual surface air temperature (SAT) anomalies and atmospheric equivalent CO2 (CO2_e) concentrations. Here, 12 sites are
randomly selected with 6 land sites (left panels) and 6 ocean sites (right panels). Red and blue points denote annual mean and its 9-year
smoothed of SAT change with CO2_e from 1880 to 2017, respectively
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The contribution of CO2_e to hemispheric SAT changes in the
recent century is larger in the Southern Hemisphere than in the
Northern Hemisphere (80% vs. 64%, Fig. 4b, c). Correspondingly
the combined contribution of the decadal climate modes to
hemispheric SAT in the North is larger than that in the South (36%
vs. 20%) with AMV being more important than PDV (Fig. 4b, c). It
worth nothing that the residual SAT in the Southern Hemisphere
follows AMV well before 1940s, but there is a general cooling
trend after the mid-1940s (Supplementary Fig. 3) which might

have contributed to the observed sea ice growth in the southern
oceans58 and needs to be studied further.
In comparison with previous studies13,14,17,37,41,42,59 that have

pointed out the important role of PDV or decadal-timescale
tropical Pacific SSTs in setting the pace of the observed GMSAT
changes, here we show that AMV (with its contributions from the
Pacific in this definition) could play a role in modulating this pace
on multi-decadal or longer timescales, with PDV being more
important on decadal timescales. The combination of CO2_e and
AMV can reproduce the observed GMSAT better than the

Fig. 3 AMV and PDV indices and their spatial patterns from Rotated Empirical Orthogonal Function (REOF) Analysis. The patterns is derived by
regressing the AMV or PDV index on the residual of 9-year smoothed HadiSST from 1881–2017 after CO2-induced effects are removed. Lines
labeled REOF1 and REOF2 in panel a denote normalized AMV and PDV time series of the first two principal components. AMO_t index is the
normalized AMO index based on ref. 56 IPO_t is the IPO index derived based on ref. 57 (Methods). Shading in b and c highlights the spatial
pattern of REOF1 and REOF2. Numbers at the right top corner in b and c denote percent variance explained by REOF1 and REOF2 modes.
Contour intervals for panels b and c are 0.04℃ per standard deviation of AMV or PDV
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combination of CO2_e and PDV for the last century and half. The
latter combination overestimates the GMSAT changes for the
periods 1900–1930 and 1972–1998, but underestimates those
changes for the 1930–1972 and 1998–2013 periods with the
former combination doing a much better job (Fig. 4). However, for
the warming in the recent few years, the latter combination
performs much better due mostly to the upward trending PDV

(Fig. 4) with a somewhat upward trend in enhanced CO2_e
(Supplementary Fig. 2). Despite the strong relationship between
GMSAT and AMV, the 21-year running lead-lag correlations show
that most of the time PDV leads AMV by a few years regardless of
whether they are positively or negatively correlated (Supplemen-
tary Fig. 5), suggesting that PDV could be playing a role in AMV
(see more discussion in Method section). This might be the reason
for realistically simulated GMSAT trends from specifying the
tropical Pacific SSTs to observations.14 However, a few recent
studies suggest that PDV may not contribute to the variability of
the global mean climate much with the AMV dominating the
multidecadal global mean climate variability.26–29 The discrepancy
between our result and these few recent studies may be induced
by the different methods to remove the GHG effect or due to the
different methodology to derive the AMV and PDV which needs to
be studied further.
A caveat in the discussions above is that the possible effect of

aerosols on AMV60,61 was not removed. As shown in Supplemen-
tary Fig. 6, the removal of the global mean aerosol effect does not
produce a major influence on the resulting AMV time evolution or
its spatial patterns. However regional aerosol changes, such as
over North America, Europe, and even Asia could potentially have
some effect on AMV possibly after the 1940s (Supplementary
Fig. 7, Supplementary Table 1). This is because the aerosol optical
depth, a measure of the aerosol forcing in these regions, shows
significant correlation with AMV after 1940s, but not with PDV.
This might be causing changes in the relationship between PDV
and AMV from a positive correlation before the 1930s to a mostly
negatively correlation afterwards (Supplementary Fig. 5). This
needs to be studied further (see Method for more discussion).

Contributions of GHGs and decadal climate modes to decadal
GMSAT changes
To evaluate the contributions of GHGs and decadal climate modes
(AMV and PDV) to decadal timescale GMSAT trends, the GMSAT is
divided into sub-periods based on AMV/PDV phase transitions.
Because of the different frequencies of PDV and AMV, the timing
of their phase transitions is not the same. To compensate for these
differences, the GMSAT was first sub-divided into four periods
(Table 1) based on AMV phase transitions, then into 8 periods
based on both PDV and AMV (Table 2). In general, the GHG-
induced GMSAT trends are enhanced with an AMV/PDV phase
transition from negative to positive, but weakened with an AMV/
PDV phase transition from positive to negative. In-phase changes
of AMV/PDV will make a larger contribution from decadal internal
modes to GMSAT trends, and vice versa for out-of-phase changes.
As shown in Table 1, the AMV’s contribution to GMSAT trends is

significantly larger than the GHGs’ contribution during the first
AMV phase transition (1910–1941), is similar in magnitude for the
second AMV phase transition (1942–1974), and is significantly
smaller than GHGs’ in the last two AMV phase transitions
(1975–1999 and 2000–2013). The increasing contributions from
GHGs over the 20th century are related to the accelerated rate of
CO2_e changes, which varies from about 0.5 ppmv per year before
1945 to up to 3 ppmv per year after 1945 (Supplementary Fig. 2).
This suggests that as the rate of GHG increase is continuously
rising, the influence of AMV/PDV on GMSAT could become
gradually less significant, agreeing with a previous study that
examined the influence of PDV on future climate.62 For example,
the contribution of GHGs to the GMSAT trend is two to three times
larger than that from AMV and PDV for the recent two AMV phase
transitions, but is much less for the earlier two AMV phase
transitions.
However, when contributions from both AMV and PDV are

considered in the GMSAT time series, the contribution of PDV to
GMSAT trends is a similar magnitude to the AMV’s contribution, or
even larger, in certain periods (Table 2). There are four periods

Fig. 4 Multiple linear regression of CO2_e, AMV, PDV on global or
hemispheric mean surface air temperature anomalies. The global or
hemispheric mean surface air temperature anomalies is defined as
area-weighted and 9-year running mean of global (60oS to 60oN) or
hemispherical (60oS to equator or equator to 60oN) surface air
temperature after the removal of CO2_e-induced temperature
change. Solid black lines denote the time series of 9-year running
mean SAT anomalies relative to the mean of 1881 to 1910, other
color solid lines and the number in brackets at top left denote
composited contributions of CO2_e, AMV, and PDV to GMSAT and
their correlation coefficients with 9-year running mean SAT. Dashed
lines and numbers in brackets at top right denote the individual
contribution of CO2_e, AMV, PDV-induced SAT to GMSAT and the
percentage of their individual contributions. Panel a is for the
GMSAT, panels b and c are for the Northern and Southern
Hemispheric SAT
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with in-phase changes of PDV and AMV, and out-of-phase
changes in the other four periods. The GMSAT trends from the
in-phase PDV/AMV are larger than GHG-induced GMSAT trends,
especially in the early 20th century. For the most recent period
(2010–2013), the much faster warming contribution from PDV
makes up about 1/3 of the warming with 43% from GHGs and only
8% from AMV. Out-of-phase PDV/AMV results in a much smaller
contribution to the GMSAT trends from the decadal internal
modes than from GHGs. For the periods 1953–1990 and
1991–2009, the combined contribution of PDV and AMV to the
GMSAT trends is less than 50% compared to that from GHGs
alone. Nevertheless, both PDV and AMV are capable of
significantly modulating the GMSAT time evolution on decadal
timescales and the strength of this modulation depends on
whether their changes are in-phase or out-phase.

Contributions of GHGs and decadal climate modes to decadal
regional SAT changes
To further study the contributions of the GHGs, AMV, and PDV to
regional SAT changes, CO2_e is regressed onto the regional SAT,
while AMV and PDV are regressed onto the SAT residual (Fig. 5
and Supplementary Fig. 8). It is not surprising that the GHG-
induced SAT increase is generally larger over land than ocean
(Fig. 5a). The interior land areas of Eurasia and North America,
especially the arid-areas and semiarid-areas from central Asia to
northern China and Mongolia, are the regions where SAT warming
is most sensitive to GHG increases compared to other regions of
the globe. The regression patterns of AMV and PDV in Figs. 5b, 4c
are similar to the patterns in Fig. 3b, c. That is, positive AMV is
related to a warmer SAT in most regions except the southern
oceans, parts of subtropical South Atlantic and equatorial Pacific,
and parts of central Asia, India and the Southeast Asian peninsula,
a fraction of equatorial Africa, and South America. The remote
influence of AMV is suggested to be caused by the AMV excited
circumglobal waves which propagate the North Atlantic SST
anomaly signal through an atmospheric bridge into the Pacific
and Indian Oceans63–66 and by ocean circulation changes in the
South Atlantic.67 For PDV, warmer SAT appears in most parts of
the globe too, except the subtropical Pacific, the Atlantic and
Indian sectors of the Southern Ocean, and parts of Europe. The
multiple linear regression suggests a recovery of more than 80%
of the observed regional SAT in most areas, implying that these
three factors have played a dominant role in determining not only
the variability and change of SAT on the scale of global mean, but
also on the regional scales.
On the decadal timescale, we discuss two periods: 1953–1990

and 1991–2010. In the first, AMV is trending towards negative, but
PDV is trending towards positive, and vice versa for the second
period. As shown in Fig. 6a, b, the SAT trends resemble the PDV
pattern in the Pacific, but AMV pattern in the Atlantic. The
contribution of GHGs to the regional SAT trends is very similar for

these two periods but slightly larger for the second period. After
removing the GHG-induced warming, the residual SAT trends
show a weak positive PDV pattern in the Pacific and a strong
negative AMV pattern in the Atlantic in the first period, but a
strong negative PDV pattern in the Pacific and a strong positive
AMV pattern in the Atlantic for the latter period. The magnitude of
the PDV and AMV-related regional SAT trends is in general much
larger than GHG-induced trends, suggesting that on regional
scales, the decadal internal modes play a more dominant role in
determining the local SAT trends. But on the global scale, the
contributions of PDV and AMV to SAT trends tend to cancel each
other out, leaving GHGs to be the dominant factor.

Projection of future SAT
The AMV and PDV defined in this study have some of the same
characteristics as definitions in previous studies56,57 and have
dominant multi-decadal timescale variability with a period about
50–80 years for AMV43,68 and 30–50 years for PDV.69 As shown in
Fig. 3a, AMV appears to be entering a transition from positive to
negative phase since 2005, and PDV is transitioning to a positive
phase after 2010. This out-of-phase change of AMV and PDV
would minimize their combined influence on SAT, leaving the
GHGs to be the dominant factor determining the SAT trends in the
next couple of decades if the current tendency of the AMV and
PDV does not change. If CO2_e keeps the present rate of increase
of about 3 ppmv per year (Supplementary Fig. 2), we can project
the future regional SAT trend based on the linear relationship of
CO2_e and SAT. Figure 7 shows the two standard deviation values
of regional residual SAT (panel a) and its ratio with the projected
SAT warming due to increased GHGs, where a value greater than
one represents the 95% significance level (panel b). In general, the
warming on land is statistically significant on the multi-decadal
timescale, but insignificant over most ocean regions. In other
words, the internal variability induced by AMV/PDV could over-
come the GHG-induced warming in southeastern China, the
Southeast United States, parts of South America and Africa, most
parts of the Pacific, North Atlantic, and the Southern Ocean on this
timescale, but not in other parts of the world on decadal
timescales (Fig. 7b).
A caveat for this projection is that as discussed in the method

section and shown in Supplementary Fig. 12, the linear relation-
ship between SAT and CO2_e found here could break down for a
rapid rise of the CO2_e where the logarithmic fit could be a better
choice. Although we have used a 9-year running mean data to
consider the lagged response of the SAT to changes of CO2_e,
with a potentially much more rapid changes in CO2_e in the future
climate, our projected changes of SAT due to CO2_e for the next
few decades could be overestimated.

Table 1. Trends of area-averaged global mean SAT based on AMV phase changes and contributions from anthropogenic forcing and nature
variability

Periods SAT trend (oC per decade) AMV-index trend (per year) PDV-index trend (per year)

9-year smoothed CO2_e-induced The residual AMV-induced PDV-induced

1910–1941 0.110 0.025 0.085 0.069 0.012 0.096 0.050

1942–1974 −0.014 0.051 −0.065 −0.048 −0.006 −0.067 −0.025

1975–1999 0.166 0.130 0.036 0.034 0.013 0.047 0.053

2000–2013 0.089 0.125 −0.035 −0.019 −0.013 −0.026 −0.052

Note: statistics represent changes in 9-year smoothed HadCRUT anomalies relative to reference period of 1961 to 1990. TAS residual denotes the CO2_e-
induced SAT. Trends of AMV-induced and PDV-induced SAT are calculated for global SAT anomalies that had contributions from AMV and PDV variations
(shown in Fig. 3)

T. Wu et al.

7

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2019)    18 



DISCUSSION
Here by combining both observations and model simulation, we
study how the interplay of anthropogenic climate change and
internally generated decadal climate variability would determine
the transient global and regional surface temperature changes. It
is found that the GHG-induced SAT changes can be linearly scaled
by the GHG change. Defined as the combined variability in the
Atlantic and Pacific basins after the removal of GHG-induced SAT
changes, both AMV and PDV play a significant role in modulating
global mean and regional SAT changes in the past a century-and-
a-half. Regression analysis indicates that the observed global
mean SAT changes from 1880 to 2017 come 70% from
contributions from GHGs, with AMV and PDV contributing a
combined 30% with a possible higher contribution from AMV.
Overall, the AMV contributes significantly to the global mean SAT
transient changes on multidecadal timescale, however, the
contributions of PDV and AMV to global mean SAT have similar

magnitudes on decadal timescales with the PDV leading AMV in
most parts of the 20th century. Moreover, when PDV and AMV are
in-phase, the contribution of natural decadal variability to global
and regional climate can be significantly larger than that from
GHGs, but an out-of-phase change of PDV and AMV could
minimize their contribution to global and regional climate. As the
GHGs increase further, our study shows a declined influence of the
PDV and AMV to global and regional climate relative to that
of GHGs.
By assuming a constant rate of GHG increase in next few

decades, our analysis indicates that the GHG-induced warming will
dominate the internal decadal-timescale variability in most land
regions except southeastern China and North America where a
less than global mean warming is likely to be experienced due to
natural decadal variability. Further, in most ocean regions, AMV
and PDV can still insert significant influence, resulting in large
uncertainty on projecting the SAT changes there.

Fig. 5 Multi-regression coefficients of 9-year smoothed SAT with standardized CO2_e, AMV and PDV indices, and correlation. a–c denote
regression coefficients for CO2_e, AMV, PDV. d denotes that the correlation coefficient between the combined SAT of CO2_e, AMV, PDV-
induced and the 9-year smoothed SAT. Values significant at the 99% level using a Student’s t-test are stippled. The contour intervals are 0.2℃
per 100 ppmv CO2_e for panel a, 0.1℃ per standard deviation of AMV (panel b) or PDV (panel c), and 0.2 for panel d (unitless)

Table 2. Trends of area-averaged global mean SAT and contributions from anthropogenic forcing and nature variability

Periods SAT trend (oC per decade) AMV index trend (per year) PDV index trend (per year)

9-year smoothed CO2_e-induced The residual AMV-induced PDV-induced

1900–1912 −0.153 0.024 −0.177 −0.045 −0.062 −0.063 −0.253

1913–1927 0.118 0.025 0.093 0.054 0.020 0.075 0.083

1928–1952* 0.070 0.020 0.050 0.055 −0.031 0.076 −0.126

1953–1960* 0.056 0.101 −0.045 −0.074 0.017 −0.036 0.153

1961–1970 −0.036 0.071 −0.108 −0.111 −0.033 −0.155 −0.136

1971–1990* 0.147 0.136 0.012 −0.029 0.049 −0.040 0.200

1991–2009* 0.163 0.115 0.048 0.055 −0.039 0.077 −0.159

2010–2013 0.313 0.136 0.176 0.026 0.101 0.036 0.412

Note: The first column marked by “*” denotes the period when the AMV and PDV indices show opposite trends. The global mean SAT is defined as the area-
weighted mean of SAT between 60oS and 60oN. The anthropogenic forcing is represented as CO2_e, and the nature variability is represented by AMV and PDV
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It worth pointing out that to derive AMV and PDV, the only
externally forced response being removed is due to CO2_e. Effects
from other external forcings, such as solar and volcanoes, are still
within the residual SAT data. Thus our method is significantly
different from the method which uses the multi-model ensemble
mean to represent the forced changes.41,42 This is because the
forced trend, represented by the multi-model ensemble mean
GMSAT, includes both anthropogenically and naturally forced
components, and the trend removed in this study includes only
the GHG component. The difference between these two trends
should be the naturally forced component which could affect the
AMV and PDV examined here. Certain differences from this study
and previous studies on the contribution of AMV and PDV to
GMSAT and the spatial patterns of AMV and PDV could rise from
these different methodologies used to remove the forced trend.
The motivation for us to keep the solar and volcano effects in the
residual SAT is that the natural forcing is an integral part of natural

variability. The climate indices, including AMV and PDV, derived
from proxy data do not exclude the effect of the natural forcing.
To do a fair comparison of the climate indices derived from
modern observations and proxy data, it is necessary to keep the
natural forcing effect within the analyzed data.

METHODS
Gridded observational data sets
We primarily used the Hadley Centre–Climate Research Unit combined
land surface air temperature and sea surface temperature (HadCRUT4)
version 4.6.0.0 (https://www.metoffice.gov.uk/hadobs/hadcrut4/). Had-
CRUT4 is a 5°lon × 5°lat gridded dataset of the observed global historical
monthly surface temperature anomalies (relative to a 1961–1990 reference
period) from 1850 to 2017, neither interpolated nor variance adjusted52.
The SST of HadCRUT4 is based on HadSST3 (version HadSST.3.1.1.0) which
is a dataset of global monthly sea surface temperature anomalies

Fig. 6 Linear trends of SAT and the SAT trend contributed by CO2_e, AMV and PDV. a, b Linear trends of 9-year smoothed gridded annual SAT
anomalies during the period of 1953 to 1990, and 1991 to 2010, respectively. c, d CO2_e-induced SAT trends. e, f Residual SAT trends
associated with AMV. Stippling indicates the 95% statistical confidence using a Student’s t-test. The contour interval is 0.1℃ per decade
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produced by taking in-situ measurements of SST from ships and buoys,
rejecting measurements that fail quality checks, converting the measure-
ments to anomalies by subtracting climatological values from the
measurements, and calculating a robust average of the resulting anomalies
on a 5° by 5° grid.70,71

To test the observed data set uncertainty, we also analyzed a widely
used global 2° × 2° grid National Aeronautics and Space Administration
(NASA) Goddard Institute for Space Studies (GISS) Surface Temperature
Analysis dataset from 1881 to 2017,72,73 which covers most regions of the
globe by sampling at the station level for land, and using ship-based and
satellite-based measurements for ocean (https://data.giss.nasa.gov/
gistemp/). A figure similar to Fig. 1 is shown in Supplementary Fig. 9.
The results from the GISS data set are mostly consistent with
HadCRUT data.
To derive the climate indices of AMV and PDV, we also used the objectively

interpolated HadISST at 1 × 1 degree horizontal resolution74 in order to avoid
the influence of missing data on the resulting AMV and PDV indices and
spatial patterns (https://www.metoffice.gov.uk/hadobs/hadisst/).

Global HadCRUT annual mean estimates and 9-year smoothing
As shown in Supplementary Fig. 1, the spatial and temporal coverage of
the SAT observations is not uniform, especially before the 1920s, and in
regions poleward of 60o. To get a better spatial and temporal coverage, the
global gridded annual mean HadCRUT data were calculated for grid boxes
where data are available for more than 67% of year i.e., at least eight
months per year. Regions poleward of 60o are excluded from our
calculation due to the significant lack of observed samples. Then, 9-year

smoothed SAT values are calculated for annual mean data using an
unweighted running-time mean.

CMIP5 models data sets
Simulations of 16 models from the Coupled Model Intercomparison Project
phase 5 (CMIP5)54 were used (ACCESS1-3, BCC-CSM1-1, BCC-CSM1-1m,
CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, FGOALS-g2, GFDL-CM3,
GISS-E2-R, HadGEM2-AO, IPSL-CM5A-MR, MIROC5, MPI-ESM-MR, MRI-
CGCM3, NorESM1-M). Idealized 1pct_CO2 and historical experiments from
1850 to 2005 and representative concentration pathway 4.5 (RCP4.5)75

experiments from 2006 to 2017 (20C hereafter) were used.
The 1pct_CO2 experiment is a common standardized forcing scenario

that specifies atmospheric CO2 to increase at a rate of 1%/year compound
from a model initial state at the level of 285 ppmv CO2 in 1850 AD until the
concentration doubles at model year 70 (or quadruples at model year 140)
and is then held constant. These runs reach the present equivalent CO2

(CO2_e) concentration—estimated to be 494.6 ppmv in 2017 using
expression (2)—at year 55 in the 1pct_CO2 experiment (observed CO2

concentration around this time is about 400 ppmv; see next section for the
definition of CO2_e concentration). Therefore, only the first 55 years of
1pct_CO2 experiments are analyzed in Fig. 1c.
The 20 C experiments are run from 1850 to 2005 with time-evolving

anthropogenic (e.g., CO2, CH4, NOx, O3, etc.) and natural forcings (solar and
volcanic aerosols). To extend the model data to 2017, the RCP4.5 scenario
is used from 2006 to 2017. The RCP4.5 scenario is considered to be a
medium level scenario for anthropogenic GHG emissions.75 In Fig. 1d, the
CO2_e concentrations from 1881 to 2005 are observed, but those from
2006 to 2017 are estimated from the CO2 concentrations that are used in
RCP4.5 in the same period, and then converting them to CO2_e
concentrations by applying expression (2) below.

CO2 and CO2_e data sets
The observed atmospheric CO2, a major greenhouse house gas (GHG),
increases from 290 parts per million by volume (ppmv) in 1881 to 404
ppmv in 2017. (Fig. 1a, https://www.esrl.noaa.gov/gmd/ccgg/trends/global.
html#global_data). When the global mean surface air temperature
(GMSAT) changes are plotted against the changes of CO2 concentration
(Supplementary Fig. 10), we find a linear relationship between the
transient HadCRU GMSAT variations and CO2 with a mean rate of change
0.83 ± 0.07 °C per 100 ppmv CO2 for period 1880–2017 (Supplementary Fig.
10a). A linear relationship between GMSAT and CO2 is also found in the
1pct_CO2 and 20 C experiments from all CMIP5 models with an ensemble
mean warming rate of 0.66 ± 0.11 °C per 100 ppmv CO2 for the former
(Supplementary Fig. 10b) and 1.04 ± 0.23 °C per 100 ppmv CO2 for the
latter (Supplementary Fig. 10c). Apparently, the 1pct_CO2 experiments
underestimate the observed warming rate, while there is an over-
estimation in the 20 C experiments. Since the observed GHGs include
not only CO2, but also methane (CH4), ozone (O3), nitrous oxide (NOx),
chlorofluorocarbons (CFCs), etc., the different simulated rate of GMSAT
changes in these two sets of experiments is likely due to the difference in
forcings, such that the 1pct_CO2 experiments include only CO2, but all
known anthropogenic forcings as while as the natural forcings are
included in the 20 C experiments.
To reconcile the differences in these two sets of CMIP5 experiments and

the differences between CMIP5 simulations and observations, we employ
the concept of equivalent CO2 (CO2_e hereafter) to include all well mixed-
GHGs (e.g., CO2, CH4, NOx, CFCs). To derive CO2_e, the observed time-
evolving effective radiative forcing from each individual GHG source is
summed up to get the total radiative forcing based on the Intergovern-
mental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) Table
AII.1.253, and then this total radiative forcing is converted into the
concentration of CO2_e as outlined below.
The observational data of atmospheric CO2 concentration from 1851 to

2005 are the CMIP5-recommended global CO2 observation data set. The
global averaged CO2 data from 2006 to 2017 are downloaded from https://
www.esrl.noaa.gov/gmd/ccgg/trends/global.html#global_data. Equivalent
CO2 (CO2_e) in this work is defined as the amount of CO2 used in a
model calculation that results in the same radiative forcing of the surface-
troposphere system as that caused by all well-mixed Greenhouse Gases
(WMGHG) including CO2. The time series of annual CO2_e from 1881 to
2011 is calculated using the expression to convert from historical WMGHG

Fig. 7 Internal variations of SAT and its relative importance to
CO2_e-induced SAT. a The standard deviation of residual SAT of 9-
year running annual mean HadCRU SAT anomalies from 1881 to
2017 computed by removing CO2_e-induced SAT from the total SAT.
b Ratio between GHG-induced SAT changes due to assumed 90
ppmv CO2_e increase in the next 30 years and the two-standard
deviation of residual SAT
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effective radiative forcing (ERF) based on the Fifth Assessment Report (AR5)
Table AII.1.2,

CO2 e ¼ CO2 orig � eERF
5:35; (1)

where CO2_orig is 278 ppmv in year 1750 and ERF (in Wm−2) is relative to a
zero baseline in year 1750 and represents additional forcing compared
with pre-industrial levels. The CO2_e data in the period from 2012 to 2017
were estimated using a highly linear correlation relationship between CO2

and CO2_e during the period of 1991 to 2011 (Supplementary Fig. 11),

CO2 e ¼ CO2 � 1:46� 98:60: (2)

From 1881 to 2011, the observed CO2 concentration increases by 99 ppmv
(from 291 to 390 ppmv; Fig. 1a red line), but CO2_e increases by 177 ppmv
(from 295 to 472 ppmv; Fig. 1a blue line).

Trend estimates
The trend of HadCRU SAT variations during the period from 1881 to 2017
with atmospheric CO2_e concentration in Fig. 1b was calculated using a
linear regression and its statistical uncertainty is calculated as the standard
deviation of running trends in a 100 ppmv CO2_e window. The trend of
ensemble CMIP5-model SAT variations with CO2 concentration in Fig. 1c
and CO2_e concentration in Fig. 1d are calculated using global (60oS to
60oN) annual mean surface air temperature from 16 CMIP5 climate
models54 for the historical forcing from year 1880 until 2005 and followed
by the RCP4.5 scenario to year 2017. Its statistical uncertainty in Fig. 1c, d is
calculated as the standard deviation of 16 CMIP5 simulated trends.
Would the linear relationship between CO2_e and GMSAT hold for much

larger changes in CO2_e? To answer this question, the full length of the
1pct_CO2 experiment is analyzed. As mentioned earlier, the CO2_e in the
full length of the 1pct_CO2 experiment changes from 285 ppmv to 1140
ppmv. As shown in Supplementary Fig. 12, the linear relationship between
CO2_e and GMSAT performs better than a logarithmic fit for a smaller
change of CO2_e, such as a change of CO2_e less than 200–300 ppmv
which is the case in this study (top panel in Supplementary Fig. 12).
However, for a much larger change of CO2_e, the linear fit may not be the
best, and the logarithmic fit or another nonlinear fit may perform better. In
reality, CO2_e changes that occur in a period of less than a century may not
be significantly larger than 300 ppmv. Therefore, in most cases, for climate
changes on decadal or multi-decadal timescales, the linear fit between
CO2_e and GMSAT is a good approximation for the GHG-induced global
and regional SAT changes.

Definition of AMV and PDV index
AMV index is commonly derived by subtracting the global (60°N–60°S)
mean SST time series from the area-weighted North Atlantic mean SST
time series56 or the linear detrended North Atlantic SST.45 The PDV index is
traditionally defined as either the second empirical orthogonal function
(EOF) of low-pass filtered Pacific basin SSTs (the first EOF being the trend),
or the first principle component (PC1) of the EOF analysis after removing
the global mean trend.57 Another option for defining the PDV is to use the
tripole PDV Index based on the difference between the SSTA averaged
over the central equatorial Pacific and the average of the SSTA in the
Northwest and Southwest Pacific.76 In this study, AMV and PDV indices are
defined as the time series of the first and the second leading components
of the REOF analysis for residual SSTA after removing the CO2_e-induced
regional SSTA changes over Pacific and Atlantic regions between 110oE to
0o and between 40oS to 60oN. Therefore, these definitions of AMV and PDV
differ from the previous AMV20,21 and PDV11,12 definitions since there are
connections between ocean basins that are captured here in the EOFs that
use the entire Atlantic and Pacific domains together.
Though the AMV and PDV indices defined in this research are not the

same as the more traditionally defined AMV and PDV indices, the
respective spatial patterns do resemble features of the traditional AMV and
PDV (Fig. 2 and Supplementary Fig. 4). However, the 21-year running lead-
lag correlations between PDV and AMV show significant differences
between these two indices and those for PDV and AMV defined in more
traditional ways (Supplementary Fig. 5). For example, the PDV almost
always leads the AMV by a few years for the indices defined in this
research, but the relationship is mixed for the more traditionally defined
PDV and AMV. This consistent relationship between PDV and AMV defined
here may indicate that the PDV may have an influence on the AMV when
both ocean basins are used to compute the indices. Potentially this may
give us a clue as to why, when specifying realistic tropical Pacific SST

variability, the work of Kosaka and Xie14 shows that a partially coupled
model was able to simulate the observed GMSAT time evolution.
Previous research77 also shows that anthropogenic aerosols may have

influenced the AMV. From Supplementary Table 1 and Supplementary Fig.
7, the changes of anthropogenic aerosols are small before the 1940s, but
significantly increase after the 1940s until the 1980s, then reduce
dramatically afterwards in the North American and European regions. In
other regions, these aerosols increase all the way to the early 2000s with
varying rates. The correlation between the AMV and the aerosol optical
depth (AOD) in both North America and Europe show a consistently
negative correlation since the 1940s. However, the correlations between
the AMV and East Asian and South Asian climate are not as consistent. For
example, although their correlations are negative after the 1940s, they
become positive after the 1980s. This may suggest that Asian aerosols do
not affect Atlantic SST variability much, but the aerosols in North America
and Europe may have played a role in modulating Atlantic SST variability
only after the 1940s. This would call into question whether the aerosols
really affected the AMV or was it just a coincidence? Is the aerosol forcing
too weak before the 1940s to influence the AMV? These questions require
further study.
On the other hand, the effect of aerosols on the PDV is minimal which

can be clearly seen from Supplementary Table 1. The correlation
coefficient between AOD and PDV is very small for all regions, but
increases significantly after the 1980s due to the rising trend of AOD in
Asia and the decreasing trend of AOD in North America and Europe, which
are coincident with an overall downward trending PDV. Thus it may be safe
to say that there is no significant impact of aerosols on PDV variability.

Individual contributions of CO2_e, AMV, PDV-induced SAT to
global or hemispheric SAT variations
Area-weighted 9-year running means of global or hemispheric surface air
temperature (SAT) anomalies from 1881 to 2017 are regressed onto the
normalized time series of CO2_e, AMV and PDV indices using multiple
linear regression. By using these standardized indices, their regression
coefficients can be interpreted as the strength of individual contributions
of CO2_e, AMV and PDV-induced SAT to global or hemispheric SAT
variations. The percentages of individual contributions to global or
hemispheric SAT variations in Fig. 3 are estimated using ratio values of
each regression coefficient to their sums. The regression equations are
listed below:

GMSAT ¼ 0:229 ´CO2 eþ 0:072 ´AMVþ 0:024 ´ PDV (3)

GMSAT ¼ 0:229 ´CO2 eþ 0:062 ´AMV (4)

GMSAT ¼ 0:229 ´CO2 e� 0:004 ´ PDV (5)

NHSAT ¼ 0:241 ´CO2 eþ 0:099 ´AMVþ 0:037 ´ PDV (6)

NHSAT ¼ 0:241 ´CO2 eþ 0:084 ´AMV (7)

NHSAT ¼ 0:241 ´CO2 e� 0:002 ´ PDV (8)

SHSAT ¼ 0:218 ´CO2 eþ 0:044 ´AMVþ 0:011 ´ PDV (9)

SHSAT ¼ 0:218 ´CO2 eþ 0:040 ´AMV (10)

SHSAT ¼ 0:218 ´CO2 e� 0:006 ´ PDV (11)

Where GMSAT, NHSAT, and SHSAT represent the 9-year running global
mean, Northern Hemisphere mean and Southern Hemisphere mean
surface air temperature, respectively. CO2_e, AMV, and PDV represent the
standardized indices of CO2_e, AMV, and PDV.
The correlations between these indices show that there is no correlation

between CO2_e and AMV, or CO2_e and PDV, but the correlation
coefficient between AMV and PDV is −0.39, suggesting that over the last
century and half, AMV and PDV are in general negatively correlated to each
other. Thus these two modes are not exactly orthogonal to each other. This
could be interpreted as the potential interaction between these two
modes or, as indicated by recent studies,21–23 these could be mode mixing.
Either way, more research is needed to disentangle the relationship
between AMV and PDV.
As shown in the 9 equations above, the contribution of CO2_e to the

global mean, or northern/southern Hemisphere mean SAT, is the largest
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among CO2_e, AMV and PDV. From the changes of the regression
coefficients, it suggests that the contribution of AMV to the SAT changes in
the past century-and-a-half is larger than PDV’s.
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