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Tropical rainfall subseasonal-to-seasonal predictability types

Vincent Moron™?* and Andrew W. Robertson?

Tropical rainfall is mostly convective and its subseasonal-to-seasonal (52S) prediction remains challenging. We show that state-of-
art model forecast skill 3 + 4 weeks ahead is systematically lower over land than ocean, which is matched by a similar land-ocean
contrast in the spatial scales of observed biweekly rainfall anomalies. Regional differences in predictability are then interpreted
using observed characteristics of daily rainfall (wet-patch size, mean intensity as well as the strength of local S2S modes of rainfall
variation), and classified into six S2S predictability types. Both forecast skill and spatial scales are reduced over the continents, either
because daily rainfall patches are small and poorly organized by S2S modes of variation (as over equatorial and northern tropical
Africa), or where the daily mean intensity is very high (as over South and SE Asia). Forecast skill and spatial scales are largest where
daily rainfall is synchronized by intraseasonal (such as the Madden-Julian Oscillation) as well as interannual ocean-atmosphere
modes of variation (such as El Nifo-Southern Oscillation), especially over northern Australia and parts of the Maritime Continent,
and over parts of eastern, southern Africa and northeast South America. The oceans exhibit the highest skill and largest spatial
scales, especially where interannual (central equatorial Pacific) or intraseasonal (central and eastern Tropical Indian Ocean and
Western Pacific) variability is largest. These results provide a relevant regional typology of the potential drivers and controls on S2S
predictability of tropical rainfall, informing intrinsic limits and possible improvements toward useful S2S climate prediction at

regional scale.
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INTRODUCTION

Tropical rainfall variability strongly impacts local societies,
especially through the annual rhythm of the monsoons with
distinct wet and dry seasons, which often undergo pronounced
interannual and intraseasonal fluctuations."* A major goal of
current international research efforts is to improve forecasts and
understanding on the subseasonal to seasonal (S52S) range,
2 weeks to a season ahead, filling the gap between medium
range weather forecasts and seasonal forecasts.> This timescale
includes the meridional seasonal migration of the intertropical
convergence zone (ITCZ) and the monsoons, together with the
primary modes of tropical S2S variability, especially the intrasea-
sonal Madden Julian Oscillation (MJO® '), and El Nifio-Southern
Oscillation (ENSO'"'?) on the seasonal to interannual scales."' ™'
However, S2S prediction of tropical rainfall over land remains a
major challenge, and the geographical distribution of its predict-
ability and the factors that limit it are poorly understood.®”'>'¢ In
particular, the S2S scale encompasses interactions between
intrinsic monsoon dynamics and the MJO leading to monsoon
intraseasonal oscillations typified by active and break phases and
changes in the onset date.'”™'?

The famous Koppen-Geiger classification of local mean climates
was developed over 100 years ago?® and is still in widespread use
in atlases and beyond.?' However, an analogous typology for
rainfall variability and predictability is still lacking. The goal of this
paper is to make a relevant geographical classification of tropical
rainfall predictability and its controlling factors from both S2S
forecast models and observed data, thereby identifying the
countries and regions that could benefit most from S2S prediction
through development of effective weather and climate services.??

Climate prediction is a signal-to-noise (SN) problem where the
signal (noise) is the predictable (unpredictable) fraction of the
climate variation at a given timescale.”**® S2S predictions of
weekly or biweekly average rainfall®® are possible where the

signal lent by predictable modes of climate (especially MJO and
ENSO) exceeds the unpredictable noise, largely associated with
sub-weekly weather,*?° provided that the forecast model can
capture the predictable signals. This competition between signal
and noise can be estimated from S2S forecast model outputs
alone, and by confronting the model output with observations
over a reforecast period (model skill). On the other hand, S2S
signals and noise can also be assessed empirically, purely from
observed rainfall data. Larger spatial scales of biweekly average
observed rainfall anomalies imply larger S2S predictability because
the predictable climate drivers (MJO and ENSO) are large scale and
persistent at this timescale, while the unpredictable weather noise
in tropical convective rainfall is small scale and random in time
and space. In this way, the spatial scales of rainfall time averages
can empirically measure the upper bound of S2S predictability at
local or gridbox scale from observed data alone.>%*'

Determining the potential for S2S prediction at local to regional
scales requires mapping both signals and noise, as well as their
underlying physical controls. We combine both model-based and
observations-based estimates and focus here on biweekly rainfall
amounts at a 2-4 week forecast lead time (15-28 days ahead, also
referred to as forecast weeks 3 +4). We first assess skill and
ensemble spread from a 20-year ensemble of 11 runs of ECMWF
model reforecasts. These model-based estimates of predictability
are then interpreted geographically by clustering various empirical
estimates of signal and noise, based on observed rainfall data. S2S
predictable signals are defined empirically using three measures:
the fraction of biweekly rainfall variance in the 7-20 day and
20-90 day intraseasonal, and interannual frequency bands. The
noise is expressed empirically using four measures: the average
area or “patch-size” of daily rainfall events, the mean daily rainfall
intensity, spatial autocorrelation of biweekly rainfall anomalies,
and its subweekly variance fraction.
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a ECMWEF skill of week 3 -+ 4 amounts of rainfall. The temporal units receiving <1 mm/day in mean over the 1998-2017 period (across

the whole set of 11 runs) are not considered. The ensemble mean rainfall is computed and then normalized versus the mean annual cycle and
the anomalies are lastly converted into ranks. The skill is computed as the Spearman correlation with the ranks of ECMWF reforecasts vs GPCP-
1DD over the same time units considering the available time periods (and after having linearly interpolated the GPCP-1DD rainfall onto the
1.5° ECMWF grid). b ECMWF model potential predictability of week 3 + 4 amounts of rainfall. The potential predictability is defined as the
Spearman correlation with the ranks of each run of ECMWF reforecasts vs the ensemble mean. The values below the map indicate the pattern
correlations (PC) between the skill and the potential predictability for the whole domain (black), the landmasses only (red) and the oceans
only (blue). In a, b the blank areas never reach a climatological daily mean of 1 mm/day and are thus not considered in the computations.

Spatial scale of 15-day rainfall

i ol A "
180 °W 120 °W

0° 60 °E 120 E 60 °W 0°
PC=0.7 PC (land) = 0.48 PC (sea)=0.68
0.02 0.92 1.4 1.71 2.03 2.42 2.73 2.97 3.39 4.43 9.12

Fig. 2 Spatial scale (in 10° sq. kilometers) of the running 15-day amount of observed rainfall from GPCP.-1DD rainfall. The spatial scales
are defined as the area where the Spearman correlations are over 1/e (=0.3679) with the target grid-point. The 15-day windows when the
climatological mean is below 1 mm/day are not considered. The colors are defined with the deciles of the spatial scales. The values below the
map indicate the pattern correlations between the skill (Fig. 1a) and the spatial scale for the whole domain (black), the landmasses only (red)

and the oceans only (blue).

RESULTS
Model skill and predictability and observed spatial scales both
peak over the equatorial oceans
ECMWF model forecast skill—defined here by the Spearman
correlation between the ensemble mean of the 11 runs and the
observations—and potential predictability®* (PP)—defined here
by the averaged Spearman correlation between each run vs the
ensemble mean—for week 3 + 4 rainfall are both highest over the
equatorial Pacific ENSO core region, and are smaller over land
than over the ocean®® (Fig. 1). The pattern correlation (PC
hereafter) between both maps equals 0.91. Over land, a relatively
large PP is not always associated with high skill, such as over
western India or Southern Africa, which may reflect poor
simulation of predictable regional circulation patterns or a
relatively large amplitude of internal atmospheric variations due
to chaotic dynamics.*3*

There is a striking similarity between the geographical pattern
of model skill (Fig. 1a) and spatial scales (Fig. 2) since the largest
spatial co-variations in skill and spatial scale (PC=0.7) are
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between land (relatively low skill and spatial scale) and ocean
(relatively high skill and spatial scale). Spatial scales are
significantly smaller across the landmasses, especially over north-
ern and equatorial Africa, southern Asia between the Gangetic
plain and Indochina, western South America and most of central
America. Scales are larger over the equatorial Pacific and around
the Maritime Continent. Pockets of larger spatial scales over
eastern South America or eastern Africa (Fig. 2) usually coincide
with higher skill in Fig. 1a. These results demonstrate that
observed spatial scales of biweekly rainfall variability are usually
larger where model forecast skill (and PP) are large and vice versa,
with oceanic rainfall variations being more predictable and larger
scale, than over land.

What explains these skill/scale geographical contrasts?

The basic unit of instantaneous convective rainfall is the
convective cell O(10km), often embedded in meso-scale con-
vective clusters, tropical depressions and/or cyclones' #3737,
These are sometimes accompanied or followed by more extensive
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Fig. 3 Spatial variations of factors driving partly the skill/scales of rainfall amounts. The colors are defined with the 10th-90th percentiles
of each variable. a 90th percentile of the area (in 10° sq. kilometers) of the daily wet patches receiving at least 10 mm. Wet patches are defined
from the contiguous (by gridbox edge or corner) grid-points. The areas are attributed to the grid-points belonging to them. b Mean daily
intensity in 1/10" mm/day. The mean intensity is computed as the total amount of rainfall (over 1996-2017) divided by the total number of
wet days = 1 mm. c—f Percentage of the total variance of rainfall anomalies in 4 frequency bands. The daily rainfall amounts are firstly square-
rooted to reduce the skewness. The daily anomalies are then computed as the difference between the square-rooted daily rainfall and the
climatological daily mean of the square-rooted amounts giving more weight to the anomalies during the wettest periods of the year. The low-
pass variations >365 days define the interannual variance in c¢. The band-pass variations between 20 and 90 days and between 7 and 20 days
are shown in d, e respectively and the high-pass variations <7 days are shown in f. The same mask is used as in Fig. 2.

stratiform rains.3®3° A useful diagnostic of biweekly rainfall scales
may thus be the size of daily wet patches (WP), given by the
contiguous area receiving at least N mm of rain. Daily aggregates
of rainfall will increase the patch-size somewhat through the
integration and movement of rainfall within a day, and a threshold
of N=10mm (WP10) was chosen empirically from the daily
rainfall data (Supplementary Fig. 1). A larger daily WP10 may be
expected to lead to larger spatial scales of aggregated rainfall
amounts and vice versa. A second factor relevant to biweekly
rainfall anomaly spatial scale and predictability is the mean rainfall
intensity. Since heavy convective rainfall events tend to be highly
localized, a large mean intensity associated with such events will
tend to be associated with smaller spatial scales of S2S rainfall
anomalies, and potentially lower prediction skill 3'4%*' Finally, the
essential source of S2S rainfall predictability is the impact of S2S
phenomena, that modulate or “synchronize” small-scale instanta-
neous rainfall in space and time, such as the MJO'%*? and other
convectively coupled equatorial waves,**™** as well as the impact
of slowly evolving surface boundary conditions including soil
moisture and sea surface temperature (SST) anomalies, most
prominently driven by ENSO.'#%°

Figure 3 shows the geographical distributions of these
interrelated controls on S2S rainfall predictability, estimated from
observed data (see Supplementary Table 1 for their PCs). The 90th
percentile of daily WP10 shows a large maximum across the
western and central equatorial Pacific, with very small values over
Africa and the mean subsidence regions in the subtropics and
eastern Pacific, linked to descending branches of the Hadley and
Walker circulations (Fig. 3a). The spatial pattern of mean intensity
(Fig. 3b) is similar to that of mean rainfall amount (not shown) but
with an important difference: the mean intensity tends to peak
over the landmasses, especially South and southeast Asia,
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northern Australia and the Maritime Continent as well as most
of South and Central America, while Tropical Africa is largely the
exception, even if rather large values are observed over
Madagascar and Mozambique, partly due to cyclonic events
there. The synchronizing impact of S2S phenomena is broken
down by timescale into interannual, and the 20-90 day and
7-20 day intraseasonal bands in Fig. 3c—e, in terms of the fraction
of rainfall variance in each frequency band. Interannual variations
(Fig. 3c) peak over the core ENSO region, and are generally larger
over the oceans; smallest values occur over equatorial and
northern Africa and western South America as well as the regions
of mean subsidence. The intraseasonal variances (Fig. 3d, e) both
exhibit large values over the subtropical oceans, likely associated
with equatorial Rossby waves, ™ while the 20-90 band also
peaks over the equatorial Indian Ocean and western tropical
Pacific MJO core region.®'%? Over land, the intraseasonal bands
have moderate to strong impacts on South Asia, northern
Australia, eastern and southern Africa, central America and eastern
Brazil (Fig. 3d). Lastly, the <7 days variance provides a measure of
weather noise which includes the impact of synoptic transient
perturbations as well as the fastest CCEWs,**** and clearly shows a
sea-land contrast with highest values over the landmasses (Fig. 3f).
This is especially clear over Africa, South and SE Asia, the Maritime
Continent and Australia. The values peak above 50 % of the total
variance over equatorial and northern equatorial Africa and
central and western South America.

A geographical classification of rainfall predictability
characteristics

We next classify each land or ocean gridpoint into six
geographical “S2S predictability types” according to the values
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Fig. 4 a Clustering of land points according to the potential drivers of S2S rainfall predictability. The standardized anomalies of the variables
shown in Figs. 2, 3 are clustered using a fuzzy k-means algorithm. Each grid-point is assigned to the cluster for which its membership is the
highest. The lower panels b-h show the weighted average (filled circle) with £ 1 weighted standard deviation (vertical bar) of the variables
shown in Figs. 2, 3, while the i, j show the associated ECMWF model potential predictability and skill shown in Fig. 1 for each cluster. In b-j the
weights of the spatial average are membership and the cosine of the latitude of each %rid—point belonging to a cluster, and the horizontal
dashed black line is the weighted spatial average across all land points. The units are 10° km?2 in b, h, mm/day in ¢, percent of total temporal
variations in d-g and dimensionless in i, j.

gridpoints on Fig. 4a and Supplementary Fig. 2), derived only
using observed rainfall characteristics, are ordered by the ECMWF
model forecast skill at those gridpoints (Fig. 1a) which was not
used in the cluster analysis. It is striking that a classification of
locations based on observed quantities only, without any explicit

of its seven observed rainfall characteristics mapped in Figs. 2, 3.
This classification was done using a fuzzy k-means cluster®’*8
analysis, carried out for 2100 land and 6387 ocean points
separately (Fig. 4 and Supplementary Fig. 2); no spatial location
data was used. The six resulting predictability types (clusters of
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regression on various sources of skill (e.g., MJO time sequence or
ENSO states) leads to a relevant geography of the model’s skill
(Fig. 1a). Note also that the clustering is rather robust versus the
choice the included variables (Supplementary Figs. 3, 4). Remov-
ing either the fraction of interannual variance, or that of the
fraction of subweekly variance, or considering only the three
bands of interannual and both intra-seasonal bandwidths lead to a
similar geography of the S2S predictability types.

Highest predictability over land (Type 6; red/pink) occurs over
northern Australia, the Maritime Continent, areas of eastern and
NE Brazil and few grid-points over coastal Ecuador and Galapagos.
Interannual and 20-90 day ISO synchronization are largest for this
type, highlighting the role of ENSO and the MJO, and spatial scales
and daily wet-patch areas are both very large. Perhaps surpris-
ingly, mean daily intensity is above the continental average,
(horizontal dashed line), but this is counteracted by the larger
spatial scales and S2S synchronization.

Land areas with moderate S2S skill are split into three clusters
(Types 3-5). These extend over large parts of southern and eastern
Africa, South and Central America, and subtropical Australia. The
skill in Type 3 may be increased through relatively large WP10
while Types 4 and 5 exhibit relatively large synchronization at
interannual and intraseasonal time scales.

Predictability types 1 and 2 have the lowest skill, located over
large parts of west and central Africa, except coastal areas (Type
1), and most of South and SE Asia (except NW and southern India),
SE Brazil and Uruguay and parts of central America, SE Africa and
Madagascar (Type 2) These low predictability types are quite
distinct: Type 2 has high I1SO synchronization (especially 7-20 day),
as well as slightly larger WP10 than the land average, all of which
may increase predictability—but the mean intensity is very large,
tending to decrease it. On the other hand, Type 1 (over Africa)
lacks interannual or intraseasonal synchronization, and rainfall
scales are very small. The impact of <7-day variance clearly peaks
for this cluster.

The ocean rainfall predictability types (Supplementary Fig. 2) are
organized around the central Pacific, where the skill is the highest,
in almost concentric areas. Note the strong impact of 20-90-day
band on cluster 3. The skill is lower across the Atlantic basin, but
also over subtropical northern Pacific and western and southern
Indian Ocean (Types 1 and 2), mostly in association with small
WP10 and a poor synchronization at interannual time scale
(Supplementary Fig. 2).

DISCUSSION

The empirically derived S2S rainfall predictability types over land
demonstrate a one-to-one agreement between the spatial scales of
observed biweekly rainfall anomalies and ECMWF model week 3 + 4
forecast skill. This is a remarkable agreement of empirical and model
results. While models can be expected to improve in the future, this
result underlines the expectation that S2S rainfall skill is fundamen-
tally limited in several regions of the tropics, which either lack the
predictable climate signals in the S2S band, or in which the inherent
scales of rainfall are too small, or rainfall intensities are too large, to
make biweekly averages usefully predictable. Most prominently,
large parts of West and Central Africa and the Sahel (Type 1) lack S2S
rainfall predictability, on average, due to the absence of strong
intraseasonal and interannual dynamical controls, coupled with the
small spatial scales of daily rainfall; the latter is consistent with the
short duration of the convective (or MCS) events across this area™
and the large amplitude of the diurnal cycle.*® Note that the decadal
time scale, which may be related with significant SST forcing across
West Africa®' is not sampled enough by the period analyzed here
from 1996.

In contrast, the other broad region of low S2S rainfall
predictability (Type 2) over South and SE Asia does experience
temporal synchronization of rainfall from both intraseasonal
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bands, but the mean intensity (and thus noise) is very large.3'*°

Note also that WP size and mean rainfall intensity are positively
related (viz. Figs. 4b, c), consistent with the scaling properties of
tropical rainfall, at least over the ocean.> The impact of WP10 area
on the signal-to-noise ratio thus represents a trade-off between
the spatial integration (increasing the signal) and the maximum
rainfall received near the center (increasing the noise). Improved
and higher resolution models may improve skill here since
dynamical sources of predictability and skill are present, as may
the consideration of rainfall frequency as the predictand variable.
The role of the mean intensity suggests that S2S predictability
may decrease due to global warming where a general increase of
rainfall intensity in wet areas/seasons is expected.’*>*

Regions of higher continental skill over SE Asia and Australia
(Type 6), eastern and southern Africa (Types 4 and 5) and South
America (Types 3 and 6) are mostly related to an increased
amplitude of the temporal synchronization due to inteaseasonal
and interannual bands, and where the relative influence of
synoptic time scales <7 days is strongly reduced (over southern
Africa). The locations of Types 5 and 6 across the landmasses (Fig.
4a) coincide rather well with areas where either seasonal
predictions or impact of MJO have been established.”'3232%536

One caveat to the above classification is that the situation over
the continents is complex and that the contribution of the
analyzed drivers is only partial, as suggested by the intra-cluster
spread in Fig. 4j. Our results pertain to the entire calendar year and
predictability may be higher in specific parts of the calendar year,
and especially during the early and late phases of the monsoon
seasons including the onset and/or demise dates.>’*®

Over the oceans, the skill is larger and the contribution of the
S2S climate drivers is stronger than over land. The predictability
types are organized broadly in a symmetric way, around the
tropical Indian and Pacific Ocean where the skill/scale peak. The
large and strong dynamical control of interannual (central Pacific)
and mostly 20-90-day (western Pacific and Indian ocean) increase
the skill/scales there. As for Type 1 over the landmasses, Types 1
and 2 over the oceans (well extended over the tropical Atlantic
and subtropical margins elsewhere) are penalized by the small
size of the wet patches while the synchronization provided by
interannual and 20-90-days is weak to neutral.

DATA AND METHODS
Daily rainfall data

Rainfall amount was extracted from the GPCP-1DD product
(resolution 1°x 1°, daily, version 1.3) from 1 October 1996 to 31
December 2017. The GPCP dataset blends various satellite
estimates and the daily amounts are calibrated with rain-
gauges.’®® The horizontal resolution already filters some of the
noise since the minimal size of wet patches or observed spatial
scales is roughly 11000 km?, which is far larger than the basic unit
of convection (~10-100km?) and corresponds broadly to the
lower bound of the meso-scale convective systems (MCS). Thus,
we are unable to say if a wet cell is related to a single localized
thunderstorm or an amalgamation provided by an MCS. The daily
resolution is a limit of the analysis, but wet events usually last for
more than one day.?**~° The calibration using rain-gauges, mostly
located across the landmasses, may be a source of heterogeneity
in the spatial variations of the characteristics defined using
observed rainfall. But spatial variations of either WP10, spatial
scales of biweekly rainfall anomalies, and fraction of bandwidth
variations are very similar in uncalibrated Outgoing Longwave
Radiation with the same resolution (not shown).

Daily ECMWF rainfall

Daily ECMWF model rainfall was obtained from an 11-member
ensemble of S2S reforecasts for the 1998-2017 period (105 starting
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dates each year). The ECMWF forecasting system is a merged 47-day
ensemble system updated two times a week that has been run since
2002."* The ECMWF runs are performed “on the fly”, with a 20-year
reforecast set of runs made every time that a real-time forecast is
issued. We use the model configuration, which was operational in
2018 (version CY43R3 for the forecast-issue dates from 1 January to
6 June and version CY45R1 for the starting dates from June 6 to
December 31). The differences between both configurations are
minor and are assumed to be negligible for the analyses performed
in this study. Both versions use an atmospheric model at Tco639
(about 16 km) up to day 15 and Tco319 (about 32 km) horizontal
resolution after day 15 with 91 vertical levels. The atmospheric
model includes land surface interactions and is fully coupled to
ocean and sea-ice models. The sea surface temperatures and
continental surface characteristics are realistic at the starting dates.
Daily rainfall accumulations are available on a 1.5° grid and the week
3 + 4 rainfall is computed from days 15 to 28. The skill is computed
considering the same dates between the ensemble mean and
GPCP-1DD rainfall after having linearly interpolated the GPCP-1DD
rainfall onto the 1.5° grid. The potential predictability (PP) is defined
as the mean Spearman correlation between anomalies of each run
vs the ensemble mean. As for the GPCP-1DD rainfall, ranks are used
instead of amount themselves and slots when the climatological
mean is lower than 1mm/day (from the climatology of the
ensemble) are excluded from the computations.

Defining the spatial scales and wet patches areas

The daily rainfall data from GPCP-1DD are used to compute the
spatial scales of 15-day rainfall anomalies (Fig. 2) and various
characteristics of the rainfall variability (Fig. 3). The spatial scales
are computed as the area where the correlations are above 1/e
(~0.3679) around each grid-point.** The rainfall anomalies are
computed as the differences between the running 15-day
amounts and the climatological 15-day average. The periods
when the climatological daily average (daily mean smoothed by a
1/90 c-p-d low-pass recursive filter) are not considered and the
anomalies are converted into ranks to cancel the effect of very
large positive anomalies. So, the spatial scales are estimated using
Spearman’s instead of Pearson’s correlations. The wet patches are
also defined from the GPCP-1DD fields. Wet patches (WP) are
defined as the contiguous area (either by gridbox edge or corner)
receiving at least 10 mm (WP10). A buffer zone of 10° is used to
define the WPs on the 30°N-30°S domain. Considering a lower
threshold of 1 or 5 mm leads to patchy, but very large, structures
while higher thresholds usually limit the size of most of WP to few
grid-points. A higher threshold tends to give very small samples
for some areas. There are a total of ~730000 WP10 and more than
30% cover only a single grid-point. To compute the 90th
percentiles of WP10, each WP10 area is attributed to each of the
grid-points belonging to it, and the percentile is computed locally.
In that context, a given WP10 is counted more than once as soon
as it covers at least two contiguous grid-points.

Daily mean intensity

The mean daily intensity is simply computed as the total amount of
rainfall across the whole set of days divided by the total frequency of
wet days =1 mm. This characteristics mixes the instantaneous rain
rate, that may depend mostly on the intrinsic nature (i.e. convective
vs stratiform) of the rain-bearing clouds, and the intra-day duration
of the wet event that may be mostly driven by the dynamical
control of the rainy system (a longer duration is expected for MCS-
TD system vs purely local thunderstorm).

Temporal decomposition of the rainfall variance

The fraction of variance belonging to four different frequency
bands (Fig. 3) is computed from square-rooted daily rainfall.
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Anomalies are computed from the climatological daily mean from
these square-rooted daily rainfalls, and a recursive filter is used to
extract the low-pass (>365 day), band-pass (20-90 day and
7-20 day) and high-pass (<7 days) variations. The 4 bands are
expressed as their variance divided by the unfiltered variance. The
sum of the 4 bands is usually close to 1.

Clustering of the rainfall drivers of the skill

Both a hard and fuzzy k-means cluster analysis are applied to the
standardized anomalies of the 7 observed variables shown in Figs. 2,
3, separately for the 2100 (land) and 6387 (sea) grid-points. Dry areas
which never reach a climatological daily mean of 1 mm/day are not
considered in the computations. A pre-processing is done with a
principal components analysis, retaining 90% of the variance in the
four leading PCs. The goal of this clustering is to give a sound and
interpretable regionalization (Fig. 4a and Supplementary Fig. 2a),
explaining at least some of the spatial variation of the skill of Fig. 1a,
4j and Supplementary Fig. 2j). The hard k-means algorithm partitions
the data into k clusters by iteratively maximizing the ratio of the sum
of the between-group variance vs total variance, with the entire
process repeated 1000 times from random initial seeds. The 2100
land grid points (and 6387 over ocean) are divided into k distinct
clusters, where each gridpoint point can only belong to one cluster.
A relatively large increase of this ratio occurs for k=3 (land), k=6
(land and ocean), and then for k=13 (land) and k=9 (ocean) (not
shown). The latter solutions leads to far more complicated maps (not
shown) than Fig. 4a and Supplementary Fig. 2a. A fuzzy k-means
with k=6 is then applied to the four principal components
explaining 90% of the variance for land and ocean separately. When
the value of the fuzzifier is >2, all memberships tend to 1/6, and thus
a meaningless clustering, while when it is <1.5, it tends progressively
to hard clusters, with all memberships tending to 1. The subjectively
chosen value of 1.75 is thus relevant to distinguish core and
marginal areas belonging to the six clusters.

The 7 variables included in the clustering are not independent
to each other, e.g. the fraction of variability conveyed by the four
complementary frequency bands are related by construction.
However the pattern correlations between them (Supplementary
Table 1) are mostly moderate, suggesting that they may thus
contribute differently to the building of scales and skill of time-
averaged rainfall anomalies. Nevertheless, the sensitivity of the
clustering to the included variables should be tested. We present
three alternative clusterings in Supplementary Fig. 3b-d for land
and in Supplementary Fig. 4b—d for ocean grid points. The two
first sensitivity tests omit the fraction of the variance conveyed by
the interannual (Supplementary Figs. 3b, 4b) and high frequency
<7 days (Supplementary Figs. 3c, 4c) components respectively.
Both resulting clusterings are very similar to those obtained with
all seven variables (Supplementary Figs. 3a, 4a): without inter-
annual variations (Supplementary Figs. 3b, 4b), 92% of grid-points
over land and sea belong to the same cluster; without high
frequency variations, 90% (79%) of grid-points over land (sea)
(Supplementary Figs. 3¢, 4c) belong to the same cluster. The order
of the clusters from the point of view of spatially averaged skill
used to rank the six types on Fig. 4a and Supplementary Fig. 2a
sometimes switches between contiguous clusters (for example
between clusters #1 and #2 or between clusters #3 and #4). The
third sensitivity test is more stringent by considering only the
3 slower bands of variations in the clustering (Supplementary Figs.
3d, 4d). Even in this case, where the explicit measures of noise
(high frequency <7 days and mean intensity) are excluded, the
geographical pattern as well as the relative skill rankings (revealed
by the colors from blue/purple for low skill to orange/red for high
skill), are broadly similar. In fact, 58% (land) and 55% (sea) of the
grid-points are in the same clusters as Fig. 4a and Supplementary
Fig. 2a. Nevertheless, the map is slightly noisier and small pockets
of different clusters within the regionally consistent ones appears,
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such as over SE Asia and Central Amazonia. Overall, the sensitivity
analysis results confirm that the clustering is rather robust and
support including the seven variables as different facets of noise
and signal (Supplementary Table 1). It is also possible that other
relevant variables may be included, but is beyond the scope of
this study.
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