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The North Atlantic Oscillation (NAO) is predictable in climate models at near-decadal timescales. Predictive skill derives from ocean
initialization, which can capture variability internal to the climate system, and from external radiative forcing. Herein, we show that
predictive skill for the NAO in a very large uninitialized multi-model ensemble is commensurate with previously reported skill from a
state-of-the-art initialized prediction system. The uninitialized ensemble and initialized prediction system produce similar levels of
skill for northern European precipitation and North Atlantic SSTs. Identifying these predictable components becomes possible in a
very large ensemble, confirming the erroneously low signal-to-noise ratio previously identified in both initialized and uninitialized
climate models. Though the results here imply that external radiative forcing is a major source of predictive skill for the NAO, they
also indicate that ocean initialization may be important for particular NAO events (the mid-1990s strong positive NAO), and, as
previously suggested, in certain ocean regions such as the subpolar North Atlantic ocean. Overall, we suggest that improving
climate models’ response to external radiative forcing may help resolve the known signal-to-noise error in climate models.
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INTRODUCTION

Groundbreaking work over the last several years demonstrates
that climate models can predict the North Atlantic Oscillation
(NAO) out to near-decadal timescales'™. The key insight offered
by Smith et al. (2020; henceforth S20) is that decadal predictive
skill for the NAO only emerges in very large multi-model
ensembles®. Their team, scattered across the most advanced
weather and climate modeling centers in the world, built a
forecast system composed of decade-long runs of 169 ensemble
members across 46 start dates. Even with over 77,000 model-years
of output at their disposal, S20 still required post-processing to
overcome the unrealistically low signal-to-noise ratio in climate
models, tantalizingly termed the “signal-to-noise paradox”>®. In
this paper, we will build on S20 by analyzing and improving our
understanding of the predictable component of the NAO in an
uninitialized very large ensemble.

A successful prediction of the NAO from the ensemble mean of
an initialized forecast system suggests that NAO predictability is
composed of two components in yet unknown proportions: one
from ocean initialization and another from external forcing’. All
climate model runs require both initial conditions and boundary
conditions. Researchers who run initialized forecast systems
prescribe initial conditions that are designed to approximate the
observed state of the climate at the time the forecast is initiated.
Recent literature refers to the act of using an observationally
based initial state as “initialization”. In the initialized hindcasts of
S20, consistent with much of the decadal prediction literature, as
the model integrates it incorporates estimates of observed
external radiative forcing. The uninitialized ensembles used here
eschew the incorporation of data from observations into their
initial conditions but are forced by the same time history of
external forcing. Averaging across a large ensemble effectively
removes the uncorrelated, internally generated variability and
retains the information common to all ensemble members. As
above, the ensemble mean of an initialized prediction system

isolates information from ocean initialization and external forcing.
The ensemble mean of an uninitialized ensemble reflects the
isolated influence of external forcing.

A careful comparison of initialized forecast systems and
uninitialized ensembles can therefore reveal the value of ocean
initialization. Analysis of the best available initialized forecast
systems claims, at a minimum, regional improvements from
initialization in upper ocean temperature, SST, precipitation, and
surface pressure’, In particular, ocean temperature in parts of the
North Atlantic subpolar gyre seems to have more predictive skill
than the surrounding ocean in initialized models and that skill
appears to be tied to the ocean circulation® ', Ocean tempera-
tures may influence the NAO'™ '8 so it is plausible that ocean
initialization could improve skill in predicting the NAO.

There are hints that external forcing can be a source of
predictive skill for the NAO at longer lead times. In both models
and observations, tropical volcanic eruptions instigate the NAO to
move towards its positive phase'®?°. In the mid-20th century,
there is a linear trend in the NAO index and this trend is one
component of predictive skill in the NAO (compare Athanasiadis
et al. 2020s Figs. 2c and 6¢)". In addition, on decadal timescales, in
the Community Earth System Model (CESM), an uninitialized
ensemble produces skill commensurate with an initialized
prediction system for two NAO impacts: North American and
western European summertime precipitation (as estimated via
field significance in Yeager et al. 2018s Fig. 5)5.

Using a 269-member uninitialized multi-model large ensemble,
in this paper we show that external forcing is the larger
component of NAO predictability. In the Methods section, we
provide further details of this ensemble and the methods we
employ to study it. We then quantify how much NAO predictive
skill can be extricated from external forcing alone, and extend this
to include NAO impacts and covariates. We conclude by analyzing
how our results fit within the context of previous studies by
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Fig. 1

Predictability from external forcing in a large multimodel uninitialized ensemble. We plot and report metrics of predictability for the

NAO index (a-c), NASST index (d-f), AMO index (g-i), and an index of Northern European precipitation (j-1). We compare the three methods of
calculating the ensemble mean employed by S20. First, we take the naive average across all ensemble members in 8-year subsections and call
it the “raw” ensemble mean (a, d, g, and j). Next, we augment our 8-year subsections with the prior 3 years, which we call our “lagged”
ensemble (b, e, h, and k). Finally, we employ S20’s NAO-matching method (c, f, i, and I). These approaches are described in more detail in the
methods section. In each figure, we report the ACC along with a bootstrapped p value. The years on the x-axis reflect the beginning of each 8-

year period, as in S20.

discussing the implications of a predictable, forced component of
the NAO.

RESULTS
Source of predictive skill in the NAO
In our very large uninitialized ensemble, we find that predictive
skill for the NAO is at least equal to that from S20’s initialized
forecast system. For the years 1962-2015, the raw ensemble mean
has an ACC of 0.62 (p =0.025; Fig. 1a), whereas S20’s initialized
“raw ensemble” ACC is 0.48. As in S20, we find a very large RPC
(11.61), consistent with Scaife and Smith’s” finding that the signal-
to-noise ratio is too low in climate models. We further illustrate
this in Fig. 2a, where we show that the raw ensemble mean of the
uninitialized ensemble is better correlated with observations than
a random ensemble member (compare to Scaife and Smith®
Fig. 1). When we mimic the lagged ensemble method of S20 (see
Methods), we improve the ACC to 0.78 (p <0.01; Fig. 1b); S20's
ACC value is 0.79. A majority of predictive skill for the NAO in the
uninitialized ensemble is derived from the linear trend. When we
remove this trend, ACC values decrease from 0.62 to 0.25 and
from 0.78 to 0.30 for the raw and lagged ensembles, respectively.
Table 1 includes a full comparison of our results to S20's results.
As with S20's initialized ensemble, we find that NAO predictive
skill increases with uninitialized ensemble size’. This is consistent
with Zhang and Kirtman’s results in a multi-model ensemble of
uninitialized CMIP5 runs and a simple statistical model®'. To
examine this, we create ensembles of between one and 500
members by randomly selecting ensemble members (with
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replacement). We find the raw ensemble mean of the NAO
indices from the chosen ensemble members and calculate the
ACC of that ensemble mean with observations. For each ensemble
size, we repeat this process 10,000 times to create a probability
distribution. In Fig. 2a, we report the mean and 95% confidence
interval of this distribution. Only ensembles with more than 56
members produce ACC values that are greater than zero in 95% of
realizations (which we call statistically significant). Average
predictive skill generally increases with ensemble size, but with
decreasing marginal improvement. The ACC we report in Fig. 1a
for the raw ensemble (0.70) is slightly larger than the mean value
for an ensemble of 269 random members (ACC = 0.65) in Fig. 2a,
but this difference is not statistically significantly different
(p=0.66). We note that sampling with replacement is a less
effective noise filter than sampling without replacement since it
allows ensembles with replicated members and thus fewer
different members. S20's raw ensemble ACC of 0.48 is not
statistically significantly different from our mean ACC for a 169-
member ensemble (0.62; p = 0.49).

Ensembles from individual models can produce ensemble mean
NAO indices with positive ACC values. In fact, all of the models we
consider, except CSIRO-Mk3, produce positive ensemble mean ACC
values (Fig. 2b). As exhibited by Fig. 2a, these positive values may
be a matter of good luck, given the low signal-to-noise ratio in the
NAO and the negative ensemble mean ACC in CSIRO-Mk3 may
simply be the result of its small ensemble size (for the purposes of
this problem). There is a low signal-to-noise ratio in each of the
single model ensembles we consider; all models have an RPC with
an absolute value greater than one. From Fig. 2a, an ensemble of
30 members has a 7.4% chance of producing a negative ensemble
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Fig. 2 The effect of ensemble size on NAO predictability. a We
create an ensemble of increasing size (x-axis) by subsampling (with
replacement) from all ensemble members, calculate the filtered
ensemble mean, and finding the ACC with observations (black) and
a random ensemble member (blue). For each ensemble size, we
repeat this process 10,000 times and report the mean (thick dot) and
95% confidence interval (colored cloud). When considering a
random ensemble member, that member is removed from the pool
of potential ensemble members. b ACC of the individual ensemble
members (open markers) and ensemble means (closed markers) for
the individual models in the MMLEA compared to the best ACC for
the NAO we produce (0.78 from Fig. 1b; blue dashed line).

mean ACC with observations. Individual ensemble members from
all ensembles produce both positive and negative ACCs with
observations (Fig. 2b), consistent with the large internal variability
of the NAO in climate models. While a multi-model ensemble
clearly improves predictive skill for the NAO by allowing us to
construct a very large ensemble, it also seems to improve skill
relative to even our largest single model ensemble®?.

The ensemble mean of our large uninitialized ensemble also
has a predictive skill for NAO covariates and impacts. It is well
established that on seasonal timescales the NAO drives a tripole
pattern of SST anomalies across the North Atlantic basin®®. The
subpolar portion of this pattern persists onto decadal and longer
timescales and likely contributes to the multidecadal North
Atlantic SST variability**~2%. We find robust predictability for the
NASST index in our raw ensemble mean. For 1962-2015, we
report ACC values of 0.92 (p < 0.01; Fig. 1d) and 0.97 (p < 0.01) for
HadISST and ERSST, respectively. The lagged ensemble produces
similarly high ACC values (Fig. 1e). High predictability in the
uninitialized ensemble is consistent with many recent studies that
suggest that low-frequency North Atlantic SSTs primarily
responding to external forcing'®* 3% If we remove the
component of the NASST index that covaries with global mean
SST to create the AMV index, we report lower ACC values of 0.62
(p =0.04) and 0.50 (p =0.09) for the raw and lagged ensemble,
respectively (Fig. 1g, h). These values are lower than S20's ACC of
0.82. This is not surprising, as initialized ensembles include
observations about observed SST, including correcting errors in
the mean state. We also find good skill from our raw ensemble
mean for a known impact of the NAO, northern European
precipitation: ACC=0.66 (p <0.01; Fig. 1j). S20's raw ensemble
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Table 1. Comparison of the results presented in this paper to S20’s
results.
MMLEA Initialized Ensemble
ACC (RPC) (S20) ACC (RPQ)

NAO

Raw ensemble 0.62* (11.61) 0.48 (4.2)

Raw ensemble with 0.62* (0.40)
variance adjustment

Raw ensemble with 0.25 (0.18)

variance adjustment,

detrended

Lagged ensemble 0.78* (0.52) 0.79*% (11.0)

Lagged ensemble, 0.30 (0.27)

detrended

NAO matched 0.77* (0.76)

NAO matched, detrended 0.73* (0.72)
NASST

Raw ensemble 0.92% (2.55)

Raw ensemble, detrended  0.52 (1.56)

Lagged ensemble 0.90* (2.83)

Lagged ensemble, 0.57 (1.89)

detrended

NAO matched 0.91* (0.98)

NAO matched, detrended  0.55 (0.80)
AMV

Raw ensemble 0.62 (3.45)

Lagged ensemble 0.50 (3.07) 0.82* (1.50)

NAO matched 0.63 (0.68) 0.88* (1.30)
N. European precipitation

Raw ensemble 0.66* (0.92)

Raw ensemble, detrended —0.28 (—0.53)

Lagged ensemble 0.77* (1.12) 0.44 (1.4)

Lagged ensemble, —0.41 (—0.93)

detrended

NAO matched 0.72% (0.89) 0.72*% (1.1)

NAO matched, detrended 0.58* (0.98)
Each of the averaging approaches included in this table is described in our
Methods section. ACC values are listed with an asterisk if they are
significant at the 95% level.

mean ACC for the same region and time period is 0.44. In our
lagged ensemble the ACC value rises to 0.77 (p = 0.02).

S20 find that focusing on those ensemble members that are
most like the ensemble mean, via NAO matching, enhances their
predictive skill for NAO impacts and covariates. When we repeat
their methodology in the uninitialized ensemble we find
improvement in our forecast of northern European precipitation
but not for North Atlantic SSTs. As described in more detail in
“Methods”, for each eight-year period we identify the 20 ensemble
members with the smallest absolute difference from the ratio of
predictable signals (RPS)-adjusted raw ensemble mean. We
calculate the ensemble mean NAO index, NASST index, AMV
index, and the index of northern European precipitation rate from
this new 20-member ensemble. As expected, the ACC for the NAO
index itself increases from 0.62 (Fig. 1a) to 0.77 (Fig. 1c). NAO
matching improves predictive skill for northern European
precipitation from an ACC of 0.66 (p<0.01) to 0.72 (p=0.02;
Fig. 1j, ). By chance, S20's NAO-matched ACC for northern
European precipitation is an identical 0.72 (their Fig. 2f).
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Fig. 3 Maps of predictability in the Atlantic region. We map ACC
values for a sea-level pressure, b SST, and ¢ precipitation. We display
only the raw ensemble mean. We only color those pixels with ACC
values that are statistically significant at the 95% level. In panel b,
highlight the location of the warming hole by contouring the —1 °C/
54-year trend in SST in observations (black) and our ensemble (gray).
In panel ¢, we highlight the location used to calculate Northern
European precipitation reported in the text.

Nonetheless, our forecast fails to capture the full extent of the
mid-1990s peak in European rainfall as in S20, which suggests a
role for ocean initialization in predicting that extreme event.

We do not find an advantage to NAO matching in terms of
predictive skill in either the NASST index or the AMV index. We find
essentially the same ACC for the raw ensemble (0.92; p <0.01) and
the NAO matched ensemble (0.91; p<0.01) in the NASST index
from HadISST. In ERSST, for both ensembles ACC=0.97;
(p <0.01). We find similar results for the AMV index (Fig. 1g, i).
This is consistent with $20's finding (compare their Fig. 2¢, d). The
reader may have expected the reduced ensemble size associated
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with NAO matching to degrade our ability to predict multidecadal
North Atlantic SSTs. However, Murphy et al. (in review) show that
for the similar AMV index an ensemble of only ten members is large
enough to produce good correlations with SST observations™>.

Of course, not all climate variability is explained by the indices
we have discussed thus far. To generalize our results, we report
maps of ACC values for the three fields we have considered: SLP,
SST, and precipitation. At near-decadal timescales, both SLP and
SST have high predictive skill across most of the Atlantic region in
our uninitialized ensemble (Fig. 3). Following S20, we do not
detrend in these maps. Therefore, the linear component of the
anthropogenic warming trend contributes to high ACC values in
SST. The warming trend has a less direct influence on SLP and
precipitation. For SLP, there is a potential discrepancy across
northern North America and Europe; however, the difference is
not statistically significant in the raw ensemble to mean. For SST,
there is a notable area of negative ACC values in the central North
Atlantic subpolar gyre (Fig. 3b). These negative values seem to
arise from the eastward displacement of the warming hole in our
ensemble relative to observations. In Fig. 3b, we have contoured
the negative SST trend from both the ensemble mean and
observations. Ocean initialization would rectify this bias®'? via
some combination of correcting SST biases and encouraging a
more realistic ocean circulation. Precipitation, an exceedingly
noisy field, has regions of ACC values greater than 0.5 across
northern Europe (Fig. 3c), parts of northern North America, and
across the Sahel and Sahara. Positive predictive skill across the
northern United States and Europe is consistent with the level of
predictive skill we have shown for the NAO. Positive ACC values
for equatorial African precipitation is potentially related to
externally forced variations in North Atlantic SSTs and associated
shifts in the ITCZ?**, although these signals may be more
prominent during the boreal summer. A lack of skill in DJFM
precipitation across the southern United States is potentially
related to the absence of internal variations of the El Nifio
Southern Oscillation in the ensemble mean.

DISCUSSION

In agreement with S20, we find that climate models can predict
the NAO on decadal and longer timescales in a sufficiently large
ensemble. Further, we echo their claim that the NAO's signal-to-
noise ratio in climate models is too small via our estimates of the
RPC®. This is in agreement with Zhang and Kirtman who also show
the existence of the signal-to-noise paradox in uninitialized CMIP5
models?'. We show that the ensemble means NAO in a 14,526
model-year multi-model uninitialized ensemble offers the com-
mensurate predictive skill to the NAO from S20’s 77,740 model-
year multi-model initialized ensemble.

Predictive skill for the NAO index over the second half of the
20th century is primarily derived from the linear trend. Unlike the
global temperature signal, predicting a trend in SLP is not trivial.
There is no a priori expectation that global warming should
preferentially rearrange air masses into a positive and increasing
NAO pattern. The newly discovered ability for models to
reproduce this linear trend shows promise for models’ ability to
predict NAO impacts, like northern European precipitation.
Likewise, it is quite useful that models can reproduce the NASST
index, even if they struggle with the AMV index (as defined by
Trenberth and Shea 2006), as climate impacts likely respond to
total Atlantic SST in addition to excess warming in the Atlantic
compared to the rest of the globe, as well as, of course, more
regional features.

Paired with S20, this work also highlights the potential
importance of ocean initialization in predicting particular time
periods, such as the extreme mid-1990s positive phase of the
NAO, which is missed in uninitialized models. Smith et al. sum up
the current view of the effectiveness of initialization for decadal
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prediction: “Previous studies have found fairly limited improve-
ments from initialization, mainly in the North Atlantic, with little
impact over land””. Our results here reinforce this message,
generally showing little difference between the uninitialized large
ensemble analyzed here and the state-of-the-art initialized
forecasts presented by S20. Consistent with prior work, our results
indicate that the North Atlantic subpolar gyre is a region where
initialization is clearly helpful®.

The response of the NAO to external forcing is complicated and
guided by a balance between competing factors including, but not
limited to the pole-to-equator temperature gradient, horizontal eddy
fluxes in the atmosphere, coupling with the stratosphere, and
interactions with the ocean boundary currents®®, Each of these
mechanisms has been suggested as a possible explanation for the
signal-to-noise paradox, which is a consequence of our models’
tendency to dampen signals more than noise. O'Reilly et al. find that
stratospheric initialization improves NAO forecasts and that
artificially amplifying the Quasi-Biennial Oscillation—NAO winter-
time teleconnection increases the signal-to-noise ratio in climate
models®. Scaife et al. find that increasing atmospheric horizontal
resolution from 0.8 to 0.4 degrees does not solve the signal-to-noise
paradox but provides some evidence that higher resolutions that
resolve high-frequency eddy feedback may amplify the signal in the
NAO*. Kirtman et al. show that mesoscale ocean features can
increase predictability in atmospheric circulation, particularly in
eddy-rich regions, like along the Gulf Stream front and in the
subpolar North Atlantic*®. Each of these mechanisms also ought to
respond to changes in radiative external forcing. Given that forcing
impacts the predictable component of the decadal NAO and given
that the predictable component is too weak in climate models, we
suggest that some of the mechanisms listed above are not
responding strongly enough to external forcing.

Even if all of the theoretical predictability inherent to the real-
world NAO could be attributable to external forcing, ocean
initialization can still improve climate model forecasts of the NAO
and NAO impacts by correcting for any biases in the model’s
response to external forcing. For example, in both the NAO index
and the time series of northern European precipitation, our
uninitialized ensemble fails to predict the magnitude of the
extreme positive phase (or wet phase) in the mid-1990s. 520’s
initialized ensemble seems to rectify this error. However,
uninitialized climate projections cannot have this correction.
Therefore, the influence of the NAO on climate around the North
Atlantic basin is likely too weak in these projections. Given the
predictive value that we find for the NAO in external forcing, we
expect that devoting effort to the difficult and uncertain task of
improving the response of climate models to external forcing will
improve the signal-to-noise ratio in climate models and therefore
projections and predictions of future climate.

METHODS
Metrics

In this section, we identify the core metrics that we will use to quantify
predictive skill in the NAO. We then describe the very large multi-model
ensemble from the multi-model large ensemble archive (MMLEA) and the
post-processing techniques we will employ to understand it and compare
our results to S20. The MMLEA ensemble is not a precise comparison to
S20’s prediction system, but it is a state-of-the-art uninitialized ensemble.
We conclude this section with a brief description of our data sources and
definitions.

Metrics
We assess skill in the phasing of climate indices and at individual grid
points via the anomaly correlation coefficient (ACC) defined as

ACC — (m—m)(o—0)

m

(m—m)?*\/(0—0)?
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where m is the index in a model and o is the index in observations and
overbars denote time-mean values. In each index, we compare the
predictable portion of the variability in models and observations via the
ratio of predictable components (RPC), defined as

0 0
05/ Otr _ ACC

f f = f
Gsig / Otot Gsig/ Otot

where oy is the standard deviation of the signal in the observed (“0") and
forecast (“f”) and oy, is the total standard deviation of the signal plus the
noise’. As in 520, we estimate the signal in the forecasts as the ensemble
mean and the total as the average standard deviation of all of the
individual ensemble members. The observed total is the standard
deviation of the observed time series, but, again following S20, we
estimate the signal in the observed from the variance accounted for by the
forecast. As they note, due to model error this is likely an underestimate of
the true signal in the North Atlantic. The RPC, therefore, requires
knowledge of both the observed phasing and magnitude of the NAO
index. A perfect model ought to have an RPC of 1. 520 found values greater
than one nearly everywhere in the North Atlantic, consistent with the
signal-to-noise paradox. Finally, we will consider the RPS, defined as

RPC = (2)

0
o-'(Ot
f

RPS = RPC

3)

tot

where all variables are defined as above.

Multi-model large ensemble archive

The signal-to-noise paradox in climate models is a problem in two parts: (1)
models agree with observations more than would be expected given the
small signal-to-noise ratios in models and (2) model ensembles are more
capable of simulating observations than they are of reproducing a single
member of the ensemble®. Here, the “signal” is the predictable component
of the NAO and the “noise” is the unpredictable component. Our “Results
and discussion” will be aimed at advancing our understanding of the
second part of the signal-to-noise paradox.

The first part of this problem can be overcome with sufficiently large
ensembles of climate models to average over unpredictable noise, and
some creative statistical post-processing®.

We take advantage of a new, publicly available archive of existing
climate model large ensembles. We consider all six ensembles from the
MMLEA*" for which the required output was available at the time of
writing. In total, the ensemble has 269 members. To allow for direct
comparison with 520, we limit our analysis to the years 1962-2015 (a total
of 14,526 model-years, 19% of S20's 77,740 model-years). All ensemble
members experience CMIP5 boundary conditions, consistent with the best
estimates of historical external forcing through 2005, After 2005, each
ensemble member experiences scenario-based trajectories of external
forcing, following either representative concentration pathway (RCP) 2.6,
4.5, or 85. For the time period 2006-2015, there are only minor
discrepancies between these three RCPs and observed forcing™®.
Differences in internal variability between ensemble members are induced
by varying the initial conditions once at the beginning of each run**, in all
cases more than a decade earlier than the forecast start date. This contrasts
with “ocean initialization”, where an estimate of the observed ocean state
is prescribed at the beginning of the forecast period (as in S20). More
details about each ensemble, including their size, resolution, start date, and
method of initialization are included in Table 2.

Post-processing

Following S20, we apply three methods for calculating the ensemble mean
of our multi-model ensemble. We often call this ensemble mean a
“forecast” or “prediction”. Of course, it is neither. This jargon, adopted from
the decadal forecast community, is inculcated with the hope that what we
learn from hindcasts or historically-forced models will help us predict the
future. In a practical sense, this word choice allows for a straight-forward
qualitative comparison with S20. We also devise post-processing
techniques that are conducive to direct quantitative comparison with
S20, although we are somewhat limited by the differing structures of our
ensembles. In each of our approaches, we subsection our ensemble into 8-
year segments, thereby mimicking the year 2-9 forecasts S20 studied in
their initialized forecast system.

First, we take the ensemble at face-value and calculate the “raw”
ensemble mean, wherein we weigh each individual ensemble member
equally. Combined with the 8-year subsections, this approach is equivalent
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to applying an 8-year wide boxcar filter and assigning the value to the first
year. That is, our “forecast” in the raw ensemble for 1970 is the arithmetic
mean of the years 1970-1977.

Our second method of calculating the ensemble mean follows S20's
“lagged ensemble” approach. For a given year two to nine forecast, S20
augments their ensemble with the previous 3 years two to nine forecasts.
Effectively, they quadruple the number of ensemble members and include
unique information from three previous years. In their paper, S20 acquires
significant additional skills via this approach (compare their Fig. 2a, b). Our
uninitialized ensemble does not have independent model runs for each
year's 8-year “forecast”. So, we simply bring the prior three years into our
average. That is, the forecasted NAO index for 1970 is the arithmetic mean
from 1967 to 1977, with no change in the number of ensemble members.
For consistency, we also call this a “lagged ensemble”.

For these first two averaging schemes, we follow S20 in inflating the
variance of the ensemble mean NAO index. For simplicity, we multiply our
ensemble mean by the ratio of the standard deviation of the observed
over the standard deviation of the ensemble mean NAO index, as in S20.
We note in our figures when this method is applied.

Our third and final method of calculating the ensemble mean is a
translation of S20’s “NAO matching”. To briefly summarize their approach,
S20 first linearly amplified the ensemble mean NAO by the RPS. The RPS
increases as the signal-to-noise ratio decreases (when the signal-to-noise
ratio is too small), thereby allowing S20 to bring the ensemble mean NAO
closer to observations. S20 then selected those 20 members with the
smallest absolute differences from the RPS inflated ensemble mean NAO.
We apply the same approach for each eight-year subsection to create an
“NAO-matched” ensemble mean.

As an aside, we weighted each model in our multi-model ensemble
equally, regardless of the number of members. The results of this approach
are qualitatively similar to our raw ensemble mean. To avoid clutter, we
choose not to display these results in-text.

Observations and observational products

For gridded sea-level pressure (SLP), we use the NCEP/NCAR reanalysis45.
For the NAO index, we also use HadSLP2, to allow for direct comparison to
$20%. For SST we use subsections of two datasets covering the years
1962-2015: The Extended Reconstructed Sea Surface Temperature version
5.1 dataset at about 2°x 2° resolution (ERSSTv5)*” and the Hadley Centre
Sea Ice and Sea Surface Temperature dataset at about 1°x 1° resolution
(HadISST)*8. Our figures show results for HadISST, but we report results in-
text from both datasets. For precipitation, we use a 1° x 1° configuration of
the Global Precipitation Climatology Center version 2018 (GPCC) gridded
monthly precipitation product, also for the years 1962-2015*. For each of
these fields, we use the output from DJFM, when the NAQO's influence is the
largest, to enable comparison to S20.

Indices

Following S20, in both observations and models, we define the NAO index
as the difference in mean sea level pressure between a box around the
Azores (36°-40°N, 28°-20°W) and a box around Iceland (63°-70°N, 25°-16°
W). The North Atlantic SST (NASST) index is calculated as the area-
weighted average of SST anomalies (the seasonal cycle computed over the
1962-2015 period is removed) in the Atlantic (0°-60°N, 80°-0°W). The
Atlantic Multidecadal Variability (AMV) index averages SST over the same
area but then removes global average SST (60°N - 60°S)*°. S20 considers
the AMV index, but not the NASST index. We include both for
completeness. As in S20, we define an index of northern European
precipitation as the spatially weighted average precipitation rate in the box
(55°-70°N, 10°W-25°E), which is outlined in Fig. 3c. We also linearly detrend
each of these indices and report the results. Presumably, due to the
structure of their ensemble, 520 does not include detrended results, so a
direct comparison is not possible at this time.

Significance

We test for significance in the statistics discussed above via block
bootstrap in which we subsample individual decades from each of the
time series (with replacement) and recalculate the relevant statistic 10,000
times to create a probability distribution. We report the p value of the
reported statistic relative to this distribution. This method tests the same
null hypothesis as S20, that the statistic (e.g., ACC) is equal to zero. This
statistical test does not establish any minimum threshold for considering a
prediction system to have “useful skill”.
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