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Flood modeling prior to the instrumental
era reveals limited magnitude of 1931
Yangtze flood

Check for updates

Ling Zhang 1,2,3, Zhongshi Zhang 1,2,3,4 , Lu Li3, Xiaoling Chen5, Xijin Wang 1,2,6, Entao Yu7,8,
Pratik Kad 3, Odd Helge Otterå3,9, Chuncheng Guo 3,10, Jianzhong Lu5 & Mingna Wu1,2

The global flood risk urges an improved understanding of flood magnitude and its mechanism, which
needs insights from pre-instrumental flood investigations. Due to data scarcity, reconstructing pre-
instrumental flood magnitudes relies on statistical downscaling, failing to capture nonlinear and
dynamic characteristics. We developed a dynamical approach, NorESM-WRF-SWAT, integrating a
global climate, a regional, and a hydrologic model to investigate the 1931 Yangtze River flood (the
deadliest in the world) and compared it with the 1998’s. Through validation, our method outperforms
the statistical method in simulating precipitations and river discharges. For the first time,we presented
detailed insights into the intensity and duration of the 1931 flood, revealing a smaller magnitude but
associated with an amplified loss, likely due to social vulnerability and reduced societal resilience
compared to the 1998’s. While successful simulation can be interfered with by model variability, our
dynamical method shows promise for simulating pre-instrumental flood and building a long-term pre-
instrumental-hydrology database.

Flooding, one of the most recurrent and devastating natural hazards1,2,
exerts profound damage to human society. From 2000 to 2019, floods
caused a $651 billion loss and killed 0.53million people3. The deadliestflood
happened in China in 1931, causing over 2 million casualties4,5. Another
Chinadevastatingflood in 1998 caused 4150 fatalities and~255billionRMB
in damage6. Unfortunately, ongoing global warming and escalating
anthropogenic activities have globally amplified flood damages in recent
decades7. Such risk will likely intensify in the coming centuries2,7, thus
necessitating abetter comprehensionoffloodmagnitude and itsmechanism
for effective flood management and loss reduction.

Enhancing the comprehension of flood magnitude (encompassing
flood frequency, flood intensity, and flood-affected areas) and mechanism
needs valuable insights from pre-instrumental flood investigations. Most
flood studies8–12 have primarily focused on the instrumental period,
neglecting the exceptional and extreme floods in the pre-instrumental
periods (before extensive continuous and systematic instrumental records).

These pre-instrumental floods offer substantial samples of extreme flood
events, thereby aiding in better constraining uncertainties in flood magni-
tude estimation13–16 and understanding the mechanism behind them.

However, pre-instrumental flood investigations present an inherent
challenge in reconstructing thefloodmagnitude, such as intensity, duration,
and spatial distribution. Paleoflood indicators17, including documental,
geological, and biological records, can indicate pre-instrumental flood
occurrence at a single or a few sites, butmight not reveal spatial information
and details on the duration and intensity of a flood in the pre-instrumental
period. Consequently, the estimation of pre-instrumental floodmagnitudes
heavily relies on model simulations. Previous studies on pre-instrumental
flood simulations primarily employed statistical methods, using statistical
downscaling connecting global and hydrological model simulations16,18–20

(almost exclusively utilizing bias-correction downscaling). These statistical
methods involve establishing relationships between the interpolated global
climate model output and the regional observation at refined specific grids
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(or meteorological stations) during the historical instrument period. The
empirical relationship was assumed to be robust when applied to different
periods (such as the pre-instrumental time or specific years), which, how-
ever, may not be temporally stable or strong due to the nonlinear and
dynamic processes in the climate system21–25. As a result, the statistical
approach introduces uncertainties for flood simulation in the pre-
instrumental past or specific years. As an alternative, the dynamical
method (employing dynamical downscaling to connect global climate and
hydrology modeling) is commonly used in modern flood investigations26–28

but remains absent in pre-instrumental flood studies despite its potential to
improve the simulations. While climate models in the current generation
may have limited skills in simulating specific paleoclimate (the climate prior
to the instrumental period) extreme events in specific years, successfully
simulating such events relies on chance. Nevertheless, dynamically simu-
lating paleoclimate extreme events, such as floods during the pre-
instrumental period, offers valuable case studies to investigate the flood
magnitude and the underlying dynamic, holding the potential to improve
our understanding of these events.

Herein, we present an innovative method supported by dynamical
simulations to investigate the catastrophic Yangtze River flood in 1931 and
compare it with the flood in 1998. To achieve this, we utilize the fast version
of the Norwegian Earth System Model (NorESM1-F) to conduct last mil-
lennium (1001–2000) simulations. From these simulations, we select the
simulations specifically for the years 1931 and 1998, representing an
extremeflood in thepre-instrumental period andaflood in the instrumental
period. Subsequently, we employ the Weather Research and Forecasting
(WRF) model to perform dynamical downscaling in the Yangtze River
watershed along with its surrounding region. Finally, we use the Soil and
Water Assessment Tool (SWAT) model to simulate the floods in the
Yangtze River watershed. These two floods are selected based on data
availability to validate our flood simulations. Despite the inherent uncer-
tainties associated with simulating extreme events, the reasonably well-
simulated representation of precipitation in theYangtzeRiverwatershed for
1931 and 1998 provides a solid foundation for our case study and the
establishment of our modeling method. To depict flood features, we
simulated daily discharges during 1982–2000 and calculated flood intensity
and duration based on them. In the analyses of flood spatial variability, we
divided the Yangtze River watershed (presented by 279 spatial units in the
SWAT model) into eleven sub-catchments (see Methods), with six in the
upstream and five in the mid-downstream areas of the watershed. To
evaluate the dynamical approach, we also conduct an experiment with the
statistical method (NorESM-BC-SWAT), employing a quantile-mapping-
based bias-correction technique (a commonly used statistical downscaling)
to downscaleNorESM-output, and subsequently using the downscaled data
to drive the SWAT.

Results
Evaluation of flood simulations
The NorESM effectively captures the extreme precipitation in the Yangtze
Riverwatershed in1931 and1998 (Fig. S1), aligning reasonablywellwith the
20CRv3 reanalysis data29. Within the primary precipitation area (i.e., the
mid-downstream) of the Yangtze River watershed, the simulated pre-
cipitation during themain rainy season (June–July) is 236.3 and 253.5mm/
mon for 1931 and 1998, exceeding one standard deviation range
(169.5 ± 41.6 mm/mon) simulated over the last millennium. In the 20CRv3
data, the precipitation is 314.4 and 317.4mm/mon in 1931 and 1998, sur-
passing the average (246.7 mm/mon) by one standard deviation (43.6mm/
mon) from 1845 to 2000. Note that the precipitation in 1931 is lower
compared to 1998, both in our simulation and the reanalysis.

Furthermore, the evaluation of the simulated discharge in the Yangtze
River during the 1998 flood demonstrates the skillfulness of our dynamical
approach (Fig. 1b, d, f, h). Thanks to the well-simulated precipitation by
NorESM, the refined precipitation from WRF (Fig. S2), and the well-
constrained parameters in SWAT (Table S4), the dynamical approach
(NorESM-WRF-SWAT) exhibits a remarkable improvement in the

discharge simulation, compared to the statistical simulation (NorESM-BC-
SWAT) or the simulation directly forced with global model outputs (Nor-
ESM-SWAT). Although accurately simulating daily precipitation is quite
challenging, with our dynamic method, the simulated daily discharge to
some extent is comparable to observations at Yichang, Hankou, Jiujiang,
and Datong stations (Fig. 1b, d, f, h), generally aligning with the discharge
observations or the precipitation-observation-forced simulation (ClimObs-
SWAT) despite some discrepancies in discharge peaks. The RMSE of daily
discharge at Datong station (reflecting the bias of the whole watershed, Fig.
1h), is reduced by 38% or 51% in the NorESM-WRF-SWAT simulation,
indicating reductions in the model-observation mismatch compared to the
NorESM-BC-SWAT or NorESM-SWAT simulations. The largest peak
(max daily discharge) in the NorESM-WRF-SWAT simulation alignsmore
closely with the observation, showing a smaller model-data bias of 14%,
compared to 19% for NorESM-BC-SWAT and 113% for NorESM-SWAT.

Again, our dynamical approach (NorESM-WRF-SWAT) generally
well simulates the discharge in 1931, particularly on a monthly scale,
matching the observed-like data generated from “river level-time curves”
(Fig. 1a, c, e, g; see details about the data in Methods). Due to the inherent
uncertainties in simulating daily precipitation with climate models, the
simulated daily discharge fluctuations are much larger than the observed-
like data. However, it is important to note that the discharge records for the
1931 flood also include uncertainties when floods break dams and invade
plains (Note S1). Even so, the NorESM-WRF-SWAT simulation exhibits a
substantial improvement compared to the NorESM-SWAT and NorESM-
BC-SWATresults,with thebias (indicatedby theRMSEofdaily discharge at
Datong station; Fig. 1g) reduced by 62% and 11%, respectively. Further-
more, NorESM-WRF-SWAT’s largest peak discharge matches the
observed-like better, with a bias of 25%, compared to 29% forNorESM-BC-
SWAT and 134% for NorESM-SWAT.

Smaller flood magnitude in 1931 compared to 1998
The NorESM-WRF-SWAT simulated annual runoff for the Yangtze River
watershed in 1931 is approximately 981 billionm3, notably smaller than the
amount of 1064billionm3 in1998 (Fig. 2c). In1931, a reduction indischarge
volume appears in six sub-catchments (out of eleven) in the Yangtze River
watershed (Fig. 2c). The discharge decreases pronouncedly in the Jia-
lingjiang (J) andMin-Tuo (M) sub-catchments, with 62 and 82 billionm3 in
1931 compared with 129 and 124 billion m3 in 1998. During the flooding
months (usually April-October)30, multiplying the eleven zones of the
Yangtze River watershed (in total 77months*zones), more than half (40) of
them show smaller runoff in 1931 compared with 1998 (Fig. S3). Particu-
larly, in the peak flooding season (July–August), 16 (in total 22 month-
s*zones) exhibit smaller runoff (Fig. S3).

Consistent with the lower runoff in 1931, the NorESM-WRF-SWAT
flood intensity index (average of the standardized daily discharge exceeding
the 90%quantile, detailed inMethods) is smaller averagedover all the spatial
units of the entire Yangtze River watershed compared to 1998 (Fig. 3). The
averaged flood intensity is 1.62 (unit:1, detailed in the Methods) in 1931,
while it is 1.79 in 1998. Among the eleven sub-catchments, nine exhibited
smaller intensity in 1931. Within these nine sub-catchments, the upper
mainstream (Mu) and Min-Tuo (M) sub-catchments show decreased
intensity pronouncedly (1.44 and 1.57 in 1931 whereas 1.85 and 1.79 in
1998).Meanwhile, the flood in 1931 shows a smaller area (75,265 km2) with
the intensity exceeding the average by one standard deviation (calculated
based on the flood intensity over all the units during 1982–2000), relative to
1998 (205,818 km2). Such area reduction from 1931 to 1998, is more pro-
nounced in the mid-downstream with a reduction of 88.5%, compared to
32.2% in the upstream.

Also, the simulated flood duration (days of daily discharge above the
90% quantile, detailed in Methods) is shorter in 1931, averaged over all the
spatial units of the entire Yangtze River watershed, in comparison to 1998
(Fig. 4). The averaged duration is 25 days in 1931 compared to 39 in 1998.
This shorter duration in 1931 remains in the mid-downstream sector
(31 days in 1931 versus 32 days in 1998), although not significantly.
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Fig. 1 | Daily discharge comparisons between simulations and observations at
four representative hydrological stations at the Yangtze River mainstream. They
are Yichang (a, b), Hankou (c, d), Jiujiang (e, f), andDatong (g, h) stations. The left
and right columns show the results of 1931 and 1998, respectively. The red,
orange, gray, and blue lines display the simulated discharge in the NorESM-WRF-
SWAT, the NorESM-BC-SWAT, the NorESM-SWAT, and the ClimObs-SWAT

experiments, respectively. The solid black line illustrates the observed discharge
and the dashed black line is the discharge digitized from the “river level-time
curve” in the book “The Great Floods in Chinese History.” R2 (determinate
coefficient), NSE (Nash-Sutcliffe efficiency coefficient), and RMSE (root mean
square error, %) are calculated based on the daily simulations against the
observations.
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TheNorESM-WRF-SWAT simulation clearly reveals that the flood
in the Yangtze River watershed in 1931 had a smaller magnitude than in
1998, characterized by smaller intensity and shorter duration. This
conclusion is substantiated by precipitation reanalysis data, which shows
reduced precipitation in 1931 compared to 1998 (see Fig. S1 and the first
paragraph in Section “Evaluation of flood simulations”). Also, it is
supported by discharge observations, exhibiting less discharge volume in

1931 than in 1998. Specifically, the observation data reveals that the
discharge at Datong station during the flooding months reached 851
billion m3 in 1931, but 941 billion m3 in 1998. The smaller flood mag-
nitude in 1931 is further evidenced by the inundated farmlands and
victims. The relative number of inundated farmlands is 4.6% in 1931
compared to 5.9% in 1998, while the relative number of victimswas 7.3%
in 1931 compared to 7.5% in 1998 (Table S1).

Fig. 3 | Comparison in flood intensity in 1931
and 1998. Flood intensity (unit: 1) in a year of each
spatial unit (in total 279, color blocks in a, b) is
calculated as the average of standardized discharges
above 1.28 (90% quantile of daily discharges over
1982–2000). a and b show the spatial distribution of
flood intensity in 1931 and 1998, respectively. The
gray polygons divide the Yangtze River Watershed
into 11 sub-catchments (Mu, Mm, Ml, Jsu, Jsl, M, J,
W, H, D, P), each composed of a subset of the 279
units. The mean (m) and standard deviation (std)
were calculated based on theflood intensity of all 279
units over 1982–2000. c displays the regional flood
intensity in 1931 (the blue) and 1998 (the orange) in
the 11 sub-catchments of the Yangtze River
Watershed. Yup, Ymd, and All indicate the
upstream, mid-downstream, and entire watershed.
The horizontal black lines (whiskers) show flood
intensity start and end. The left and right bounds of
the boxes are thefirst and third quartiles. The red bar
in the middle shows the average.
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Fig. 2 | Comparison in simulated annual runoff in
1931 and 1998. a and b show the spatial distribution
of annual runoff (unit: mm) in 1931 and 1998,
respectively. The red polygons divide the Yangtze
River Watershed into 11 sub-catchments (Mu, Mm,
Ml, Jsu, Jsl, M, J, W, H, D, P), each composed of a
subset of the 279 spatial units (color blocks). The
mean (m) and standard deviation (std) were calcu-
lated based on the annual runoff of all the units over
1982–2000. c displays the regional annual runoff
(unit: 109 m3) averaged over the spatial units within
each of these sub-catchments, blue for 1931 and
orange for 1998. The red number indicates the
change in percentage in 1931 relative to 1998. Yup,
Ymd, and All indicate the upstream, mid-down-
stream, and entire watershed.
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Amplified flood-induced damage in 1931 compared to 1998
Although our simulations suggest a smallermagnitude of the Yangtze River
flood in 1931, the loss of life induced by the floodwasmarkedly higher than
1998 (Table S1). According to “The Great Floods in Chinese History”6, in
the mid-downstream sector alone, the death toll in 1931 reached ~163,500.
In contrast, the reported death toll in the mid-downstream from “China
Meteorological Disaster Dictionary”31 was 1145 in 1998. The relative
number of casualties (see Methods and Table S1) was ~0.5% in 1931, sig-
nificantly larger than the value recorded in 1998 (less than 0.001%).

Furthermore, other socioeconomic damages (direct economic losses
and damaged houses in the mid-downstream area, Table S1) were more
prominent in 1931 than1998.The relative numberof direct economic losses
was ~5.5% in 1931, more extensive than the value of ~1.4% in 1998. The
relative number of damaged houses was 0.75% in 1931 and 0.7% in 1998.
(see details about the damage definition and values in Methods and
Tables S1–3)

The more substantial socioeconomic impacts of the 1931 flood could
be attributed to the enhanced social vulnerability in 1931, which was caused
by civil and ethnic war, foreign exploitation, and domestic corruption and
incompetence32–34. Both flood intensity (a natural factor) and societal resi-
lience (an anthropogenic factor) can influence socioeconomic damage. In a
vulnerable society with weakened societal resilience, anthropogenic factors
could substantially amplify nature-hazard-induced harms, thus contribut-
ing to catastrophic consequences.

Discussions
Themethod captures a positive precipitation anomaly in 1931 and 1998, as
well as the associated mechanisms, which we cannot deny even though the
successful capture is by chance. Our recent study has demonstrated that to
simulate a single year remains possible, when the model can simulate some
mechanism-related features that once happened in the past. For example,
the lastmillenniumexperiment successfully captured the extremeheat event
in 1743 due to the accurate simulation of cooling in Northeast China and
East Siberia35. Notably, the simulated West Pacific Subtropical High
(WPSH) exhibits awestward extension in both 1931 and 1998 relative to the
climate mean state, despite some weakening (Fig. S4a, b). Such kind of
extensionmakes the study region closer to thenorthwesternperipheryof the

WPSH (Fig. S4a, b), which is typically the location of large-scale quasi-
stationary frontal zones and usually brings large precipitation to its
underlying ground5,36,37. Therefore, the western extension here possibly
causes extremeprecipitation in the study area. Consistently, a similar shift of
the WPSH was also noted in the observation of both 1931 and 1998 (using
20CRv3, Fig. S4c, d). In addition to the two successful cases in 1931 and
1998, NorESM captured five other flood events identified in the reanalysis
during 1845–2000, along with the associatedWPSHwestward shift (see the
calculation in Note S2). Including the successfully simulated seven floods,
the reanalysis totally identified 48floods linked to theWPSHwestward shift.
This provides strong evidence that the climatemodel is capable of capturing
both the extreme event and its underlying mechanism, although the like-
lihood remains low at just 14.6% (7 out of 48 years).

Although the motivation of the study is to establish a method for pre-
instrumental flood simulation, uncertainties in simulating precipitation
with a global climatemodel shouldnot be ignored.The global climatemodel
could reasonably simulate the precipitation to a certain degree. Our simu-
lation demonstrated that the first Empirical Orthogonal Function (EOF1)
mode, of NorESM-simulated annual precipitation (accumulated over the
main rainy season, i.e., June–July) anomaly field during 1001–2000, shows a
similar spatial pattern to the EOF2 of the reanalysis during 1951–2000 (Fig.
S5a, d). However, precipitation simulations for specific years are inevitably
not accurate, especially for spatial distribution (encompassing the spatial
pattern and the related intensity). Consequently, in our study, the simulated
precipitation anomalies show remarkable differences from the reanalysis
data. The simulated precipitation anomaly exhibits a wet patch south
Yangtze River in 1931 (Fig. S6a), and a wide northeast-southwest wet strip
across the Yangtze River in 1998 (Fig. S6b). In contrast, the reanalysis data
displays the typical pattern of tripole or dipole with a narrow east-west wet
strip along the Yangtze River in 1931 (Fig. S6c) or 1998 (Fig. S6d). Our
failure to display precipitation distribution could result in difficulty in
diagnosing flood intensity differences between these two floods. The pre-
cipitation anomaly difference between 1931 and 1998 from the NorESM
simulation is 17.2 mm/mon, nearly half of its standard deviation (41.6mm/
mon calculated over 1001–2000), while the difference from the reanalysis is
3mm/mon, far less than half of its standard deviation (43.6mm/mon cal-
culated over 1845–2000) (Fig. S1). Consequently, the discharge results from

Fig. 4 | Comparison in flood duration in 1931
and 1998. Flood duration (unit: days) in a year of
each spatial unit (color blocks in a, b) is identified as
the number of days with the standardized discharge
index (Sdi) above 1.28 (90% quantile of daily dis-
charges over 1982–2000). a and b show the spatial
distribution of flood duration in 1931 and 1998,
respectively. The red polygons divide the Yangtze
River Watershed into 11 sub-catchments (Mu, Mm,
Ml, Jsu, Jsl, M, J, W, H, D, P), each composed of a
subset of the 279 units. The mean (m) and standard
deviation (std) were calculated based on the flood
duration of all 279 units over 1982–2000. c displays
the flood duration in 1931 (the blue) and 1998 (the
orange) in the 11 sub-catchments of the Yangtze
River Watershed. Yup, Ymd, and All indicate the
upstream, mid-downstream, and entire watershed.
The horizontal black lines (whiskers) show the flood
duration start and end. The left and right bounds of
the boxes are thefirst and third quartiles. The red bar
in the middle shows the average.
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the hydrological model driven by theNorESM for the 1931 flood, evenwith
theWRF downscaling, poorly reproduce the peak flows and their timing of
multiple peaks during the hydrograph (Fig. 1a). The above failures are
largely attributed to the internal variability (e.g., ENSO and PDO) in the
simulated or real climate system.While the reanalysis data (Fig. S7c, d) and
the previous studies5,38 show that the higher precipitation in 1998 is driven
by a strong El Niño and suggests a similar situation in 1931, there is no
significant El Niño in our simulation of 1931 (Fig. S7a) or 1998 (Fig. S7b).
Our simulation failed to capture such internal variability of El Niño in both
1931 and 1998. Additionally, uncertainties could also arise from the para-
meterization schemes in the regional climate model, which may not accu-
rately simulate the actual physical processes, as well as the limited spatial
resolution, which leads to difficulties in representing fine-scale terrain and
features.

To be more cautious, we further need paleoclimate data assimilation39

and ensemble simulations to constrain the uncertainties associated with
internal variability. Using the ensemble method, we can select the model
with a similar precipitation distribution in 1931 (or 1998) to the observation
from the large ensemble. Additionally, paleoclimate data assimilation,
combining paleoclimate simulations with empirical precipitation infor-
mation from proxy indicators, is designed with the endeavor to capture real
internal climate variability. Using paleoclimate assimilated outputs from
multiple models or ensembles to drive dynamical downscaling models and
hydrological models can further constrain the uncertainty in reproducing
precipitation patterns and intensity, thereby producing more reliable flood
simulations during the pre-instrumental period.

Despite the uncertainties in precipitation simulation, our method
still shows better skills in simulating precipitation and discharge com-
pared to the statistical method, which could be attributed to the dyna-
mical downscaling. Dynamical downscaling, with a refined topography,
has been demonstrated to allow for a reasonable representation of the
nonlinear dynamic precipitation process40–43. In our WRF simulations,
the topography field exhibits a refinement in the upstream area of the
Yangtze River watershed compared to the NorESM (the red box in Fig.
S8a, b). The refined topography tends to enhance the representation of
fine-scale convections and nonlinear interactions between local (or
micro/mesoscale) and large-scale processes driven by the refined
topography40–42, thus potentially contributing to added value in pre-
cipitation simulation (Fig. S2). In contrast, the performance of statistical
downscaling usually depends on a strong correlation between the global
model output and regional climate observation, which, however, seems
typically weak23,24. Accordingly, in our results, the correlations at specific
grids between the simulated daily precipitations during 1982–2000 from
the interpolated NorESM output and the observation appear not strong,
with the correlation coefficient (R) ranging from zero to 0.29. Based on
such weak correlations, statistical downscaling often struggles to capture
the patterns or trends from the observations, probably resulting in
limited added value to the global downscaled data. Therefore, our WRF
simulation appears to be more effective in capturing the precipitation
spatial pattern of the first leading Empirical Orthogonal Function
(EOF1) mode, extracted over daily precipitation fields during the main
rainy season from 1982 to 2000 compared to the quantile-mapping-
based bias-correction downscaling (BC, a commonly used statistical
downscaling). The spatial R of this precipitation mode between the
simulation and observation is 0.89 from WRF simulation, contrasting
with 0.81 and 0.68 from BC and NorESM. Also, the WRF simulation is
more skillful at presenting the temporal fluctuation of the 366-day daily
precipitations (averaged spatially over the Yangtze River watershed and
then temporally over daily precipitation during 1982–2000), compared
to BC and NorESM. The temporal R between the simulated 366-day
daily precipitations from WRF simulation and the observation is 0.87,
compared to 0.80 and 0.85 from BC and NorESM results. Such better
performance of precipitation simulation with dynamical downscaling
compared to the statistical method was also indicated in previous
studies44,45. Due to the better skill in precipitation simulation, our

dynamical method (NorESM-WRF-SWAT) exhibits better proficiency
in discharge simulation, compared to both NorESM-BC-SWAT and
NorESM-SWAT (Fig. 1).

In the article, we presented a first case study using an innovative and
dynamical method to simulate the pre-instrumental flood, despite the
uncertainty of internal variability from climate simulations. The results
demonstrated that our dynamical method outperformed the statistical
method in simulating precipitation and discharge, and decreased the
simulation error to a certain degree. The dynamical method, integrating
dynamical downscaling with global climate and hydrological models,
demonstrates the potential to simulate floods during the pre-instrumental
period, enabling the investigation into flood magnitudes and the driving
dynamics related to atmospheric circulations. The further development of
this method seems to open a window for the opportunity to establish a
comprehensive long-term paleo-hydrological database, which may help to
promote innovative insights into flood variabilities and the potential
mechanisms behind them.

Methods
For pre-instrumental flood simulation with the dynamical method (Nor-
ESM-WRF-SWAT) in the Yangtze River watershed, we developed a prac-
tical frame involves five steps: data collection and processing, global climate
simulation, regional climate simulation, hydrological simulation, and flood
index calculation.

Besides the NorESM-WRF-SWAT experiment, we conducted three
others for model evaluation, including NorESM-BC-SWAT, NorESM-
SWAT, and ClimObs-SWAT, using statistical downscaled NorESM-out-
put, NorESM outputs, and climate observations to force SWAT, respec-
tively. To evaluate flood simulation skills respectively in the instrumental
and non-instrumental period, we extracted daily discharges in 1998 (from
the four experiments) and 1931 (from the four, excluding ClimObs-SWAT
due to lacking climate observations). Daily precipitations during 1982–2000
were also acquired from the four experiments to assess the performance of
precipitation simulation with the dynamical downscaling. The ClimObs-
SWAT simulation covering 1982–2018 was also conducted for the SWAT
calibration. To calculate flood (usually exceeding a threshold calculated
based on a baseline) intensity and duration in 1998 and 1931 from the
NorESM-WRF-SWAT experiment, we also obtained the daily discharges
during 1982–2000 as the baseline.

Models
The Norwegian Earth System Model (NorESM) is built under the struc-
ture of the Community Earth SystemModel (CESM; see the CESMwebsite
at http://www2.cesm.ucar.edu/). A fast version of the model, NorESM1-F46

(Guo et al. 2019), was used to simulate the global climate. Compared to
earlier versions of the model47, the NorESM1-F suits particularly well for
long simulations with moderately high resolution and contains improved
process representations and climate performance. The atmospheric com-
ponent of the NorESM1-F uses a resolution of 1.9° (latitude) by 2.5°
(longitude) in the horizontal and 26 levels in the vertical. The ocean com-
ponent employs a tripolar grid, with a horizontal resolution of nominal 1°
and a vertical resolution of 53 layers.

TheWeather Research andForecasting (WRF)Model is amesoscale
numericalmodel, consisting of amodel solver of fully compressible Eulerian
and non-hydrostatic equations with a run-time hydrostatic option48. This
model employs a terrain-following coordinate, using the third-orderRunge-
Kutta time integration scheme and the Arakawa-C grid. The WRF model
has been extensively utilized in regional climate simulations over China and
has demonstrated its capability to capture key regional climate features49–51.
Here, we apply version 3.9.1.1 of theWRFmodel to dynamically downscale
the global climate (NorESM-output) to a high horizontal resolution.

The Soil andWaterAssessmentTool (SWAT)52 is a semi-distributed,
physically-based, and time-continuous hydrological modal designed for
basin-scale assessments. In SWAT, the watershed is discretized into sub-
basins (spatial units) based on river nets and DEM. The model governs the
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hydrological cycle through the water balance, encompassing two main
components: runoff generation over the land and flow routing through
channels. SWAT incorporates essential hydrological processes, such as
surface runoff, evapotranspiration, soil moisture, lateral flow, base flow, and
flow routing. Widely recognized for its effectiveness, SWAT has been suc-
cessfully applied in watersheds globally, demonstrating its proficiency in
simulating discharge dynamics53. Here, we use SWAT2012-rev.627 (see the
SWATwebsite at https://swat.tamu.edu) to simulate daily discharges in the
Yangtze River watershed.

Experimental design for NorESM-WRF-SWAT
We conducted the global climate simulation over the past millenniumwith
the NorESM1-F model. This experiment starts from the last hundred years
of the pre-industrial experiment, and integrates consecutively from 1001 to
2000, including both the pre-industrial (1001–1850) and historical
(1851–2000) periods. In our experiment, the solar radiative forcing data
fromVieira54, volcanic forcing data fromGao55, and the greenhouse gas data
from Ammann56 are incorporated. The boundary conditions, such as land
cover, are consistent with the pre-industrial experiments. The model has
exhibited commendable skill in reproducing precipitation variability in
China, successfully capturing extreme wet (such as 1931) and dry (such as
1485 and 1875–1876) conditions in the historical period in China57. The
NorESMoutputs, including precipitation andminimum/maximumsurface
air temperature at a 6-hour time frequency, were used to drive the regional
climate model WRF.

WRF(WeatherResearch&ForecastingModel) conducted the regional
climate simulation over 1931 and 1982–2000, with spin-up times of at least
one year and 0.5 year, respectively. Six-hourly NorESM outputs drove the
WRF simulation, covering theYangtzeRiver watershed and its surrounding
regions with a spatial grid spacing of 24 km (Fig. S8a). In the WRF simu-
lations, the microphysics scheme used is Single-Moment 6-class Micro-
physics (WSM6)58,which includes graupel, ice, and the associatedprocesses.
The radiation scheme was set as RRTMG long-wave and shortwave
radiation transfer59 which can process a number of trace gases and interact
with resolved clouds and cloud fractions. The surface layer is depicted by the
revised Fifth-Generation Penn State/NCAR Mesoscale Model (MM5)
Monin-Obukhov scheme48. The land surface process is modeled by the
Noah land surface model with multi-parameterization options (Noah-
MP)60,61. The cumulus convective precipitation is parameterized by the
Kain-Fritsch scheme62, and the planetary boundary layer is depicted by the
Yonsei University scheme (YSU)63. Additional configuration details can be
referred toYuet al.64 Six climate outputs fromWRF, includingprecipitation,
downward shortwave radiation, surface wind speed, relative humidity, and
minimum andmaximum surface air temperature at a daily scale, were used
to drive the hydrological model. WRF demonstrated its capability to
reproduce spatial patterns and inner-annual features of precipitation in the
Yangtze River watershed (Fig. S2c–e).

The SWAT model was used to conduct the hydrological simulation,
and it simulated the daily discharges of 1931 and 1982-200. SCS (Soil
Conservation Service method)65 and Penman–Monteith method66 were
used to calculate surface runoff and evapotranspiration, respectively. Flow
routing through the channel was calculated by the variable storage coeffi-
cient method67. Using ArcSWAT (an ArcGIS-ArcView extension and
interface for SWAT, see the tool at https://swat.tamu.edu/software/arcswat/
), 279 river segments and their corresponding sub-basins were generated.

Each of the six climate variables at a daily scale from the WRF,
underwent pre-processing before being used to drive the SWAT. The
processing involves interpolating the climate to pre-definedfiner grids (with
a resolution of 0.25° by 0.25°, the size of the smallest sub-basin) and sub-
sequently averaging the interpolated value of grids within each given sub-
basin. Conservative and bilinear interpolation were used for precipitation
and the other five, respectively. Compared to the traditional method, which
sets the climate of a given sub-basin as the climate of only one station (or
grid) within or near this sub-basin, our pre-processing makes better use of
climate data.

In the ClimObs-SWAT experiment covering 1982–2018 (refer to
“Experimental designs for NorESM-BC-SWAT, NorESM-BC-SWAT and
ClimObs-SWAT” section), we conduct SWAT calibration using the SUFI-2
algorithm by the SWAT-CUP software package68. In the calibration, 29
parameters (7 global and 22 distributed ones, Table S5)were selected and 31
discharge stations (Fig. S8c and Table S6) were utilized.

We first calibrated the global parameters one by one, and then the
distributed ones. For a given global parameter, parameter optimization is
guided by maximizing the alignment between the simulated and observed
discharge at the Datong station (Fig. S8c), using Nash-Sutcliffe efficiency
(NSE) as the optimization index. To calibrate the distributed parameters, we
grouped the 279 sub-basins based on the corresponding nearest down-
stream stations. For a given discharge station, we collected all the sub-basins
within its upstream area, excluding those draining to the upstream stations;
the remaining sub-basins were then allocated into the same group and
underwent parameter calibration based on this station. Subsequently, we
sequentially optimized the distributed parameters group by group from
upstream to downstream. For each optimizer, at least 200 simulations are
expected to be conducted before a good skill (NSE > 0.5)was obtainedor the
skill didn’t increase. For each simulation run, the calibration (or validation)
time is listed in Table S6, with a spin-up time of at least one year. Given the
limited availability of observations, we maximize the inclusion of all avail-
able data to achieve awell-constrained SWATmodel. Therefore, calibration
(or validation) data may involve different time ranges between stations,
despite the theoretical expectation that the time ranges should be identical.

The calibration result demonstrates that the SWATgenerally exhibited
good skill in simulatingdischarge in theYangtzeRiverwatershed (Table S4).
Among the 31 stations, 29 show a satisfactory performance, with NSE,
absolute-PBIAS (percent bias), andR2 (coefficient of determination) of daily
discharges in the range of 0.61–0.88, 22–31%, and 0.64–0.93, respectively.

Experimental designs for NorESM-BC-SWAT, NorESM-BC-
SWAT and ClimObs-SWAT
In the NorESM-BC-SWAT experiment (statistical simulation), we
employed quantile-mapping-based69 bias-correction (a commonly used
statistical downscaling technique), to downscale the NorESM precipitation,
and used the downscaled data to drive the SWAT. The NorESM pre-
cipitation and the observation were up-sampled to a resolution of 0.25° by
0.25° grids, and then quantile mapping was used to adjust the cumulative
distribution function of interpolatedNorESMprecipitation to alignwith the
observed grid by grid. For the SWAT simulation, the bias-corrected pre-
cipitation, along with WRF outputs of temperature, radiation, wind, and
humidity, was utilized as climate forcings. The simulation covers 1931 and
1982–2000, with at least 1 year and 0.5 year as spin-up times of the SWAT
(or WRF), respectively.

In the NorESM-SWAT experiment, precipitation and minimum/
maximum surface air temperature from NorESM with a resolution of 2.5°
by 1.9°, along with radiation, wind, and humidity fromWRF, were utilized
to drive SWAT in 1998 and 1931 with spin-up times of at least one year,
respectively.

Lastly, the ClimObs-SWAT experiment incorporated climate obser-
vations, including precipitation and temperature data at a resolution of 0.5°,
downward shortwave radiation with a resolution of 0.25° by 0.25°, and
surfacewind speed and relative humidity at the station scale. The simulation
covers 1931 and 1982–2018 (for SWATcalibration)with spin-up timesof at
least 1 year, respectively. For these three experiments, each climate variable
underwent pre-processing (mentioned above) before being used to drive
the SWAT.

Flood indexes
To depict the flood characteristics in 1931 and 1998, we standardized the
daily discharges from theNorESM-WRF-SWAT experiment, and based on
these we calculated flood intensity and duration.

To facilitate a better comparison of discharges across different scales,
we calculate Standardized Discharge Index (Sdi) for each of the 279 sub-
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basins based on the daily discharge from 1982–2000. For discharges of each
sub-basin, the standardization involves two steps: 1) constructing a specific
density function that best fits the daily discharge sequences during
1982–2000 from the NorESM-WRF-SWAT experiment; 2) translating the
density function into a standard normal distribution (a mean of zero and
standard deviation of unity). The transformed discharge from the second
stepwas the StandardizedDischarge Index (Sdi). In the processing offitting,
a total of 14 types of probability distributionswere separately used tofit daily
discharge sequences, including gamma, exponential, pareto, tri-gamma,
inverse gamma, norm, log-norm, beta, log-logistic, uniform, logistic, cau-
chy, inverted weibull, and burr. Parameters of the function were optimized
by maximum likelihood estimation in the R-package VineCopula (using
function fitdist)70. From the 14 fits, gamma was chosen with the minimum
Bayesian information criterion (BIC)71.

Compared to other standardized indices widely used formeasuring
wet conditions, exampled by Standardized Runoff Index (SRI)72, the
algorithm idea of the above standardization keeps the inner-annual
variability signal of the discharge. This standardization is performed
once over the entire period and thus can be used for analyzing inner-
annual variability and extracting extreme daily discharge. In contrast,
the standardization of SRI is performed separately by seasons (or
months), which removes the inner-annual variability signal of the
discharge, thus difficult to detect extreme daily discharge.

To evaluate flood magnitude in different years, flood intensity and
duration are calculated on a yearly scale and are used to depict the average
amount and the frequency of the largeflow. Flood intensity of a specific year
is defined as the average of Sdi values exceeding 1.28 (corresponding to 90%
quantile of daily discharge during 1982–2000) in this year. Flood duration is
identified as the number of daily discharges with Sdi above 1.28. The index
(intensity orduration)was calculated individually for each sub-basin in each
year. We also calculated flood50 intensity (Fig. S10 and Note S3) and
duration (Fig. S11 andNote S3), where the Sdi is above zero (50% quantile).

Flood-induced socioeconomic damages
We use the relative numbers of socioeconomic damages to measure flood-
induced socioeconomic impact. A relative number of the socioeconomic
damagewas calculated as the absolute number of the damage divided by the
total. The damages of five elements were calculated, including inundated
farmland, damaged houses, victims, direct economic losses, and death tolls,
forwhich the absolute numbers and the corresponding totals were available.
For inundated farmland, victims, and direct economic losses, the total losses
are the total farmland area, population, and GDP of China, respectively,
while for death tolls, the total is the victim. In the case of damaged houses,
the total houseswere substituted by the total population, as statistics on total
houses in 1931 are difficult to obtain and the number of houses is highly
correlated with population.

We calculated the relative number of damages in themid-downstream
of the Yangtze River watershed (Table S1), an area with a dense population,
developed economy, and susceptibility to flooding, where data on damages
(Tables S2, 3) is accessible. The area mainly covers four provinces (Fig. S8),
includingHubei,Hunan, Jiangxi, andAnhui. For eachof the four provinces,
we obtained the damage-related data and calculated the absolute and rela-
tive numbers of damages based on the data.

Data collection and processing
Data to build the SWAT model includes soil data, land use, DEM, river
network, and hydrological observations. The soil data originates from
the Harmonized World Soil Database73 (FAO, 1998). Land use data
from the 1990swas provided byNational Tibetan PlateauData Center74.
DEM (digital-elevation model) was derived from Shuttle Radar Topo-
graphy Mission (SRTM) in 2000 with 90 m spatial resolution and
sampled to 600 m. Hydrological observations, derived from Bureau of
Hydrology, are daily discharge over 1987–2002 (calibration) and
2008–2018 (validation) from 31 stations (Fig. S8c and Table S6). The
river network used for SWAT modeling was derived from National

Basic Geographic Databases at a scale of 1:4 million and includes five
levels of Class I, II, III, IV, and V.Water level (of Yichang, Hankou, and
Jiujiang), used for extracting discharge observations in 1931, was
digitized from “river level-time curve” in “The Great Floods in Chinese
History”6 (Hu et al., 1992).

Climate data during 1982–2018 to force SWAT in the ClimObs-
SWAT experiment, include precipitation (from Zhao75) and tempera-
ture (from National Meteorological Information Centre; see http://
data.cma.cn) with a spatial resolution of 0.5° by 0.5°, mean wind and
relative humidity at surface meteorological station scale (699 stations,
from National Meteorological Information Centre), and surface solar
radiation downwards with a 0.25°×0.25° resolution (from ERA576). The
precipitation reanalysis, used to evaluate the extreme precipitation
simulation skill of NorESM, was obtained from the newest version of
the Twentieth Century Reanalysis at 1.0° × 1.0° horizontal resolution
and 28 vertical levels provided by the National Oceanic and Atmo-
spheric Administration (20CRv3)29. The surface solar radiation obser-
vation of 130 stations over China from 1990 to 2014 was also obtained
from National Meteorological Information Centre, to bias-correct the
solar radiation data from ERA5.

The DEMs to drive the NorESM and WRF are Global 30 Arc-
Second Elevation (GTOPO30)77 and Global Multi-resolution Terrain
Elevation Data (GMTED2010)78, respectively. The data on socio-
economic damages (inundated farmland, damaged houses, victims,
direct economic losses, and death tolls) were obtained from “The Great
Flood of Chinese History”6 and “China Meteorological Disaster
Dictionary”31, shown in Tables S1–3.

Daily discharges in 1931 were calculated based on the water level.
For discharges at Yichang, Hankou, and Jiujiang, we first construct a
relationship (presented as a transformation model) between the water
level and discharge during 2009–2018, 1987–2001, and 1988–2001 (Fig.
S9a–c). Secondly, we calculate the discharges in 1931 by substituting the
water level into the relationshipmodel. For discharges at Datong, which
had no water level observations in 1931, we construct a relationship
between the discharges of Datong and Jiujiang (the nearest station to
Datong) over 1987–2001 (Fig. S9d). By substituting the estimated dis-
charges of Jiujiang in 1931 into the best relationship model, discharges
at Datong were calculated. Given the limited availability of observa-
tions, we maximize the inclusion of all available data to establish a
robust relationship, despite potentially differing time ranges between
stations. Solar radiation from ERA5 was bias-corrected based on the
observed solar radiation through a linear model79. It involves inter-
polating both data into 0.25° by 0.25° grids, subsequently fitting the
linear models with the two interpolated data from 1990–2014 for the
specific grids, and then employing the fitted model to adjust inter-
polated data from ERA5 during 1982–2018 grid by grid.

Data availability
Temperature, mean wind, and relative humidity (as climate observations)
are available from the National Meteorological Information Centre (http://
data.cma.cn). Precipitation (fromZhao, as climate observations) is obtained
from the National Tibetan Plateau Data Center at https://data.tpdc.ac.cn/.
ERA5 is obtained from https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels?tab=overview. 20CRv3 is available at https://
psl.noaa.gov/data/gridded/data.20thC_ReanV3.html. Land use data from
the National Tibetan Plateau Data Center can be obtained at https://data.
tpdc.ac.cn/. HarmonizedWorld Soil Database is available at https://iiasa.ac.
at/models-tools-data/hwsd. SRTM is downloaded from https://csidotinfo.
wordpress.com/data/srtm-90m-digital-elevation-database-v4-1/.
GTOPO30 is available at https://www.usgs.gov/centers/eros/science/usgs-
eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30.
GMTED2010 is obtained from https://www.usgs.gov/coastal-changes-and-
impacts/gmted2010. Flood simulation results (e.g., flood intensity and
duration) are available at Zhang80. More model outputs can be provided
upon request at lingzhang@cug.edu.cn.
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Code availability
NorESM is available from https://github.com/NorESMhub/NorESM/.
WRF is available from https://github.com/wrf-model/WRF. The bias-
correction code is fromhttps://github.com/btschwertfeger/BiasAdjustCXX.
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