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Machine learning-guided integration of
fixed and mobile sensors for high
resolution urban PM2.5 mapping
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Urban areas exhibit significant gradients in Fine Particulate Matter (PM2.5) concentration variability.
Understanding the spatiotemporal distribution and formationmechanismsofPM2.5 is crucial for public
health, environmental justice, andair pollutionmitigation strategies.Here,weutilizedmachine learning
and integrated air quality sensor monitoring networks consisting of 200 mobile cruising vehicles and
614 fixed micro–stations to reconstruct PM2.5 pollution maps for Jinan’s urban area with a high
spatiotemporal resolution of 500m and 1 h. Our study demonstrated that pollution mapping can
effectively capture spatiotemporal variations at the urbanmicroscale. By optimizing the spatial design
of monitoring networks, we developed a cost-effective air quality monitoring strategy that reduces
expenses by nearly 70% while maintaining high precision. The results of multi-model coupling
indicated that secondary inorganic aerosols were the primary driving factors for PM2.5 pollution in
Jinan. Our work offers a unique perspective on urban air quality monitoring and pollution attribution.

Urban centers are densely populated areas where fine particulate matter
(PM2.5) pollutionhasbeenoneof theprimary environmental concerns since
the 20th century. Prolonged exposure to severe PM2.5 pollution poses
substantial threats to human health, including increased risks of premature
death1,2. The emission sources in urban areas are diverse and unevenly
distributed. Due to complex physical and chemical processes, PM2.5 con-
centrations exhibit significant local variations over short distances and
periods within urban environments3–5. High spatiotemporal resolution air
qualitymaps are crucial for capturingfine-scale pollutionhotspots, reducing
exposure measurement errors, and mitigating public health risks and
environmental injustices6,7. Moreover, understanding the causes of PM2.5

pollution facilitates effective air quality management.
Traditionally, chemical transport model simulations8–10, land use

regression modeling11, and satellite retrievals12 have been extensively
employed to track the dynamic fluctuations of air quality. However, these
methods have inherent limitations when treated with fine-scale urban air
pollution. Chemical transport models entail high computational costs and
rely on frequent updates of emission inventories. Satellite data, although
globally comprehensive, are hindered by issues such as cloud cover13. Land
use regression models rely on fixed–location monitoring and geographic

information system predictor variables, which are constrained by specific
local administrative boundaries and often lack the precision required at
larger geographic scales14. Additionally, sparse monitoring networks prove
ineffective at capturingfine-scale pollution hotspots, resulting in inadequate
depictions of spatiotemporal heterogeneity of urban air quality15. In recent
years, advancements in low–cost sensor technology have improved the
ability to monitor fine–scale concentration gradients16–19. Nevertheless,
challenges remain in achieving sufficient data frequency and statistical
robustness for temporal representation20,21. To effectively map urban air
quality and comprehensively understand the spatiotemporal dynamics of
air pollution, extensive data collection, and advanced statisticalmethods are
essential.

Generally, intensive emission sources, unfavorable meteorological
conditions, and plume transport are key factors that can lead to urban
PM2.5 pollution events22–25. Thorough attribution analysis, utilizing
advanced statistical methods, is essential for providing scientific support
for regulatory strategies and effective urban air quality management. In
recent years, machine learning (ML) has demonstrated remarkable pro-
mise in air quality modeling due to its exceptional ability to capture
complex and nonlinear relationships between different variables26–28.
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Compared to traditional methods, ML models can effectively integrate
large amounts of multi-source heterogeneous data, such as meteor-
ological, traffic, and geographical information, to make more accurate
and real-time predictions of PM2.5 pollution events. However, these
models often face criticism for their “black–box” nature, which makes it
difficult to understand the underlying factors driving their predictions.
The development and integration of explainable artificial intelligence
(XAI) techniques, such as Shapley additive explanations (SHAP), has
become a crucial tool for providing transparency in ML models and
elucidating the intricacies of air pollution29–33. By quantifying the con-
tributions of individual features, SHAP enables researchers and policy-
makers to identify key drivers of air pollution events, offering critical
insights for crafting targeted mitigation strategies. This interpretability
not only enhances the transparency of predictions but also builds trust
among stakeholders, facilitating more informed decision–making to
improve urban air quality and protect public health.

In this study, we focused on the mapping and attribution of PM2.5

pollution in urban Jinan, the capital of a province located in the heavily
polluted North China Plain. Utilizing a large–scale, low–cost mobile, and
fixed sensornetwork combinedwith advancedmachine learning algorithms
for spatiotemporal modeling, we developed a novel method for generating
high spatiotemporal resolution (500m×500mand 1 h) PM2.5 datasets.We
then explored the optimal arrangement of mobile and fixed sensor mon-
itoring to achieve continuous, high–precisionmonitoringwhileminimizing
costs, providing valuable insights for urban air qualitymanagement. Finally,
we accurately quantified the contributions of various factors to urban PM2.5

pollutionby couplingpositivematrix factorization (PMF), thehybrid single-
particle Lagrangian integrated trajectory (HYSPLIT), and SHAP, providing
a scientific basis for accurately identifying the causes of air pollution and
enabling precise control measures.

Results
High spatiotemporal resolution PM2.5 pollution mapping
Our dataset can effectively capture the hourly variations in PM2.5 con-
centrations, which is valuable for mitigating the health impacts of acute
exposure and facilitating environmental management. Taking a typical
severe PM2.5 pollution event during February 5 and 6, 2019 (the Spring
Festival) in urban Jinan as an example (Fig. 1), our dataset nearly perfectly
captured the entire evolution of air quality from clean conditions to severe
pollution and subsequent dispersion. From 0:00 to 17:00 (local time) on
February 5, data from the atmospheric supersite indicated anhourly average
PM2.5_as concentration of 68 ± 24 μg/m3. Starting at 18:00, PM2.5 pollution
began to encroach upon the urban area from the north, initiallymanifesting
as localized contamination. By 0:00 on February 6, severe pollution had
enveloped most urban areas, with PM2.5 concentrations at the atmospheric
supersite peaking at 198 ± 84 μg/m3. Subsequently, the pollution gradually
dissipated as north and northwest winds persisted. This pattern aligns with
the occurrence of northwest winds after 23:00 on February 5, as reported by
timeanddate (https://www.timeanddate.com/weather/china/jinan/historic?
month=2&year=2019). The six ChinaNational EnvironmentalMonitoring
Center sites within the urban area and Jinan atmospheric supersite also
documented fluctuations in PM2.5 concentrations throughout the pollution
formation and dispersion process between February 5 and 6. These obser-
vations are consistent with the spatiotemporal PM2.5 pollution mapping
results generated by our air quality inference model, as depicted in Sup-
plementary Fig. 1.

Evaluation of mapping before and after reducing fixed micro-
stations
Using the samemethodology described in the fourth part of “Methods” and
integrating data from a reduced number of micro-fixedmonitoring sites as

Fig. 1 | Spatiotemporal distribution and evolution of PM2.5 concentrations during a pollution event. The selected period of February 5 and 6, 2019, highlights the
spatiotemporal dynamics of PM2.5 concentrations in the 900 km2 study area of Jinan, with a 500 m spatial resolution and 1 h temporal resolution.
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outlined in the fifth part of “Methods”, we developed another set of PM2.5

data products. This endeavor aims to explore different layouts for com-
biningmobile andmicro-fixedmonitoring to achieve high-precision urban
air quality monitoring while minimizing costs. Figure 2 compares the effi-
cacy of datasets before and after reducing the number ofmicro-fixed sites on
hourly, daily, andmonthly scales.We selected a severePM2.5pollution event
on December 10, 2019, to evaluate the effectiveness of both datasets in
capturing pollution processes on anhourly scale. Bymidnight onDecember
10, PM2.5 pollution was severe in most areas of urban Jinan, particularly in
the downtown core, with the exception of the southeastern urban area. By
7:00, PM2.5 pollution in the downtown area had been alleviated.

On the daily scale, we examined the period fromDecember 25, 2019, to
January1, 2020, as a case study.According toourdataset, onDecember 25th,
most areas exhibited pollution. Pollution gradually abated in the subsequent
days, and by December 31st, most parts of the city had achieved clean air
status. On the monthly scale, for instance, PM2.5 concentrations in January
2020 exceeded that of other listedmonths in 2020. Seasonal analysis further
reveals that winter air quality in Jinan is considerably poorer than in spring,
summer, and autumn (Supplementary Fig. 2), likely driven by increased
heating emissions and specific meteorological conditions that facilitate
pollutant accumulation34. Such seasonal disparities highlight winter-specific
pollution challenges, underscoring theunique air qualitymanagementneeds
during this season. Overall, across hourly, daily, monthly, and seasonal
scales, the patterns of PM2.5 concentration variations align with urban area
observations (Supplementary Figs. 3-6). Both sets of PM2.5 data products
effectively capture high-value areas and fine-scale dynamic changes in PM2.5

concentrations within urban settings. These findings underscore the sig-
nificant potential of integrating mobile and micro-fixed monitoring to
develop high spatiotemporal PM2.5 concentration datasets. Moreover, the
dataset built after selectively reducing fixed micro-stations has shown pro-
mising results. This outcome not only significantly reduces government
expenditures but also holds crucial implications for optimizing the spatial
distribution of mobile and fixed micro–station monitoring to enhance the
development of high–resolution spatiotemporal datasets.

Key drivers and interpretability attribution of PM2.5 in Jinan
Figure 3a displays the driving factors influencing PM2.5 concentrations in
Jinan, ranked by mean absolute SHAP values. SIA exhibited the highest
importance, with an absolute SHAP mean value of 15.83, significantly
surpassing other features such as IP (5.70), BB (5.32), Tas (4.57), and Dust
(3.78). These five drivers predominantly influenced PM2.5 concentrations
from January 2019 to September 2021. AOD and BLH made comparable
contributions, with values ranging from 3 to 3.4, while RHas (2.85) and P
(2.52) had slightly weaker impacts. Ox (1.93) played a significant role due to
increased radiation and temperature at noon, enhancing photochemical
processes35. Primary emission sources like CC (1.90) and VE (1.78) con-
tributed less to PM2.5 compared to IP, BB, and Dust. Cluster, SSR, WSas,
TCC, and WDas had relatively minor predictive effects.

Figure 3b illustrates the response betweenmeasured or proxy values of
factors and their corresponding SHAP values with respect to PM2.5 con-
centrations, offering additional insights into each factor’s influence. Factors
such as SIA, IP, BB, and other emission sources showed a pronounced

Fig. 2 | The evaluation of the mapping effects on different temporal scales.
Comparative evaluation of mapping effects on a hourly scale, b daily scale, and
cmonthly scale before and after the reduction ofmicro-fixedmonitoring points. The
panels in the first, third, and fifth rows display the spatiotemporal distributions of

hourly, daily, andmonthly averages of PM2.5 concentration data products developed
from multi-source data before reducing the number of micro-fixed monitoring
points. In contrast, the panels in the second, fourth, and sixth rows depict the
corresponding distributions after the reduction.
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positive contribution to PM2.5, highlighting the substantial impact of both
secondary formation and primary emissions on air quality in Jinan. Similar
positive effects were also observed for AOD, RHas, and OX. Notably, RHas

positively contributed to PM2.5 when exceeded 60%, enhancing its forma-
tion through aqueous–phase chemistry and hygroscopic growth29,36,37.
Conversely, P, Tas, and BLH exhibited a negative relationship with PM2.5

concentrations. Low-pressure systems, usually associated with high
humidity, can synergistically enhance PM2.5 condensation and coagulation,
leading to elevated concentrations38,39. Previous literatures have also
reported negative effects of atmospheric pressure on PM2.5 concentrations
in places like Beijing40 and Hangzhou39. A low BLH restricts horizontal and
vertical transport, increasing near-surface humidity41. High humidity, in
turn, enhances aerosol hygroscopic growth, amplifying the positive feed-
back between aerosols and the boundary layer. This feedbackmay intensify
cross-boundary air pollution transport, exacerbating continuous PM2.5

generation8,42. Our findings show that SHAP values for air masses 1 and 7
were positive, while air masses 2, 3, and 6 negatively impacted PM2.5 con-
centrations (Supplementary Fig. 7). This suggests that pollutants trans-
ported fromborder areas betweennorthern Zibo and southeastern Binzhou
in Shandong, as well as northern Henan and southern Shanxi (Supple-
mentary Fig. 8), increased PM2.5 concentrations in Jinan. Conversely, air
masses fromMongolia andnortheastern InnerMongolia typically exhibited
a cleansing effect. The breakdown in Supplementary Figs. 9 and 10 further
delineates the seasonal and pollution-level-specific contributions of various
factors to PM2.5 concentrations. Seasonal shifts highlight SIA, IP, and BB as
key contributors. As PM2.5 concentrations rise, emissions from pollution
sources and lowered BLHamplify concentrations.Moreover, the impacts of
driving factors on the diurnal and nocturnal mechanisms of PM2.5 forma-
tion are summarized in Fig. 4 and Supplementary Fig. 11.

Discussion
In this study, we employed an advanced light gradient boosting machine
(LightGBM), a gradient boosting frameworkdevelopedbya research teamat
Microsoft Research Asia43, to conduct multi-objective model simulations.
LightGBM offers lower memory consumption and faster training speed,
making it especially suitable for large-scale data analysis, and has

demonstrated effective applicability in related studies44–47. To validate the
performance of LightGBM, we compared it with XGBoost and Random
Forest (RF) using 70% and 80% training data splits and various hyper-
parameter settings. Results in Supplementary Tables 1–3 show that
LightGBM consistently outperforms XGBoost and RF, demonstrating
robust performance on large datasets. LightGBM’s histogram-based deci-
sion tree algorithm, which bins continuous features, enables faster node
splitting and lower memory usage. In contrast, XGBoost performs precise
but computationally intensive splits,whileRF requires each tree tobe trained
independently, increasing resource demands. Additionally, leaf-wise growth
and efficient parallelism make LightGBM better suited for data-intensive
tasks. Notably, for large datasets, a 70% training set yielded similar or better
results than 80%, as more data added minimal benefit while increasing
computational costs. The computational efficiency of LightGBM makes it
highly applicable to the vast and growing atmospheric environmental
datasets. Prioritizing LightGBM in future applications will help meet the
demand for high–accuracy, real-time environmentalmodeling and analysis.

Our study demonstrates that combining mobile and micro-fixed
monitoring enables high-resolution air quality monitoring in urban areas,
effectively capturing the spatial heterogeneity of PM2.5 concentrations. This
approach aligns with the needs of policymakers and urban planners who
require detailed pollution mapping to make targeted interventions. For
example, the ability to dynamically monitor pollution hotspots can inform
the timely allocation of resources, such as deploying temporary traffic
restrictions or emission reduction measures in critical areas. Furthermore,
our optimization of micro-fixed monitoring sites has demonstrated that
integrating mobile monitoring maintains coverage while potentially redu-
cingmonitoring costs by nearly 70%, from612 to184micro-fixed sites. This
reduction illustrates a practical path for cities with limited budgets to still
achieve robust air qualitymonitoring.Additionally, with future research, we
aim to evaluate alternative configurations of monitoring networks, such as
exploring the effects of different fleet sizes and variations inmicro-fixed site
density. By assessing these factors, it may be possible to optimize the net-
work further to reduce costs or enhance coverage without sacrificing data
quality. These findings can provide a concrete basis for policy recommen-
dations on network design, resource allocation, and budget optimization in

Fig. 3 | Analysis of key driving factors affecting PM2.5 concentrations and
responses of top predictors in Jinan. The impacts of driving factors on PM2.5

concentration in Jinan from January 2019 to September 2021. (a) Mean absolute
SHAP values of various drivers on PM2.5 concentration. (b) Responses of SHAP
values to the top twelve important predictors for PM2.5. Panels are shown as joint
plots, where colors in the main plot indicate sample density (dark blue represents
high density), with marginal plots showing the distributions of predictor (top) and

response (right). SIA: secondary inorganic aerosol; IP: industrial pollution; BB:
biomass burning; T: Tas, temperature; Dust: dust emission; AOD: aerosol optical
depth; BLH: boundary layer height; RH: RHas, relative humidity; P: pressure; OX:
total gaseous oxidant (NO2+O3); CC: coal combustion; VE: vehicle emissions;
Cluster: air mass trajectory; SSR: surface net solar radiation; WS: WSas, wind speed;
TCC: total cloud cover; WD: WDas, wind direction. For more information, see the
Methods section.
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urban air quality monitoring frameworks. However, the high data volume
and computational intensity of our approach underscore the need for effi-
cient data processing infrastructures that can provide actionable, real-time
insights to urban planners and policymakers. Our results suggest that
strategic reductions in both mobile and micro–fixed monitoring densities
may be feasible, enabling more flexible deployment models that balance
cost, resource allocation, and monitoring effectiveness. This approach
ultimately supports more accessible and economically viable air quality
management solutions for urban areas.

Our proposed PMF-HYSPLIT-LightGBM-SHAP coupled model
provides a tool for quantifying the contributions of sources, meteorology,
and regional transport to PM2.5 concentrations, and holds significant
potential and value in analyzing the causes of PM2.5 pollution.However, due
to data limitations, certain constraints still exist. The formation of PM2.5 is
also influenced by other factors, such as “doming effect” of black carbon48

and chemical interactions among volatile organic compounds, Ozone (O3),
and PM2.5. Further evaluation of their impacts on PM2.5 is necessary.

In summary, we propose an innovative method for developing
high–resolution spatiotemporal maps of urban PM2.5 using mobile and
micro-fixed monitoring networks, which can capture fine-scale PM2.5

spatial heterogeneity within the urban area. This method not only advances
the precision of air quality assessments but also provides valuable insights
for optimizing the deployment of mobile and micro-sensor networks,
offering significant economic benefits and reference value for deploying
monitoringnetworks inother cities acrossChina andpotentiallyworldwide.
Furthermore, by integrating XAI with existing atmospheric models, our
research introduces a novel framework for understanding and attributing
PM2.5 sources, enhancing the depth of analysis and supporting more
informed air quality management strategies. Incorporating real-time data
into our PMF-HYSPLIT-LightGBM-SHAP coupled model could enhance

its dynamic, real-world monitoring capabilities. Integrating continuous
measurements from urban monitoring stations, GPS-based traffic data,
meteorological inputs, and other diverse data sources through API-based
data transfer could enable real-time predictions and model adjustments,
providing immediate insights into PM2.5 levels. Techniques such as
scheduled updates or incremental learning could maintain model stability
and accuracy amid continuous data flow. Although real-time monitoring
presents challenges, including data latency, quality variability, and proces-
sing demands, addressing these could significantly enhance the model’s
practical utility for quick source identification and adaptive responses to
pollution events. Future research will address these technical challenges to
further optimize the model for dynamic monitoring scenarios. Looking
ahead, we will also focus on refining these models to improve predictive
capabilities, expanding the application of our approach to diverse urban
environments, and integrating real-time data to dynamically inform and
adapt air quality interventions.

Methods
The methodological framework of the study
Figure 5 presents a schematic of the entire build process for this study,
illustrating the data sources, machine learning model construction pro-
cesses, and statistical methods utilized in the analysis. Three models were
evaluated: LightGBM, XGBoost, and RF, considering different training data
sizes and hyperparameter combinations. The coefficient of determination
(R2), rootmean square error (RMSE), andmean absolute error (MAE)were
used as criteria to assess model performance. A description of three per-
formancemetrics can be found in SupplementaryText 1.More information
about the threemodel settings can be found in Supplementary Text 2. Based
on the comparative results (SupplementaryTables 1–3), a 70% training data
splitwas selected, and the highest-performingLightGBMmodelwas chosen

Fig. 4 | Conceptualmodel depicting daytime and nighttimemechanisms of PM2.5

pollution formation in Jinan. Pink and blue arrows denote variations in measured
values for each driver and their respective impacts on PM2.5 concentrations. The

diurnal influences of P and BLH influencing PM2.5 concentrations are not observed,
and hence, they are depicted in the light orange shaded area centrally in the figure.
Relevant calculations are derived from Supplementary Fig. 11.
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to conduct high spatiotemporal resolution PM2.5 mapping and pollution
attribution analysis.

Study area
Jinan, the provincial capital of Shandong Province, with a population
exceeding 8 million and over 3.4 million registered vehicles49, exemplifies a
city with a high level of motorization. Considering the operational scope of
our pilot vehicles, this study primarily focuses on the urban districts of Jinan
(Supplementary Fig. 12). This area spans 900 km2, is characterized by high
population density, and serves as the core region for transportation,
administration, commerce, and residential activities in Jinan. This work
utilizes nearly three years of continuous air quality data collected from
January 1, 2019, to September13, 2021, throughmobile cruisingmonitoring
with vehicle-based sensors and fixed–location monitoring with
micro–stations in the study area.

Source of the data
In the context of urban air quality inference and pollution attribution ana-
lysis, PM2.5 concentrations within a given gridmay be influenced by various
local factors such as landuse characteristics and traffic roadnetworks, aswell
as external factors, including meteorological information. These factors
collectively impact the emission and diffusion of local pollutants and the
transport of regional pollutants. Therefore, the collected data comprises
seven distinct components: mobile monitoring data (PM2.5_mobile), fixed
micro-station monitoring data (PM2.5_micro-fixed, Wind speedmicro-fixed,
Wind directionmicro-fixed, Relative humiditymicro-fixed, Temperaturemicro-

fixed), atmospheric supersite (36.67° N, 117.17°E) data (PM2.5_as, SO2,
NO–NO2–NOX, O3, Wind speedas (WSas), Wind directionas (WDas),
Relative humidityas (RHas), Temperatureas (Tas), Pressure (P), Aerosol
Optical Depth (AOD), Boundary Layer Height (BLH), SO4

2−, NH4
+, NO3

−,
K, Ca, Mn, Zn, Fe, Pb), China National Environmental Monitoring Center

(CNEMC) data (PM2.5_cnemc), land use data, road network data, air mass
trajectory data, andEuropeanCenter forMedium-RangeWeather Forecasts
Reanalysis v5 (ERA5) data (Total cloud cover (TCC), Surface net solar
radiation (SSR)).Themobile andfixedmicro–stationmonitoringdevices are
equipped with four independent particle monitoring sensors that operate
synchronously, cross-verify data with each other. In the event of a sensor
malfunction, the other sensors continue to function normally, ensuring
maximum data reliability. All data were either measured in the field or are
publicly available.Detailed informationabout thesemulti-sourcedata canbe
found in Supplementary Table 4.

PM2.5 concentration inference model construction
A total of 612 fixed micro-station monitoring are unevenly distributed
across 3600 grids in the study area, resulting in many grids lacking con-
tinuous monitoring. To address this challenge, we combined multi-source
data (mobile monitoring, fixed micro-station monitoring, meteorological,
road network, and land use data) to build two-stage LightGBM models to
achieve full–coverage continuous monitoring with 500m× 500m spatial
resolution and 1 h temporal resolution. First, we estimated hourly PM2.5

concentrations basedonmulti-sourcedata for gridswithmobilemonitoring
data but no fixed micro-station data. These estimates served as proxies for
the true ground-based fixedmonitoring values in these grids.We then used
these proxy values to estimate hourly PM2.5 concentrations for grids lacking
both mobile and fixed micro–station data, enabling high spatiotemporal
resolution mapping of PM2.5 concentrations across the entire study area.

Specifically, meteorological, road network, land use, mobile monitor-
ing, and fixed micro-station monitoring data were allocated to grids. We
used meteorological, land use, andmobile monitoring data from grids with
both mobile and fixed micro-station monitoring data as input variables,
while fixed micro-station data served as labels for constructing
LightGBMreconstruct-Stage1. Subsequently, this model estimated hourly

Fig. 5 | Framework diagram of the research development. The methodological framework includes three main components: high spatiotemporal resolution PM2.5

pollution mapping, evaluation of mapping before and after reducing fixed micro-stations, and key drivers and interpretability attribution of PM2.5 in Jinan.
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PM2.5 concentrations in grids with mobile monitoring data but without
fixedmicro-station data, with these estimates serving as proxies for ground-
basedfixedmonitoring values. LightGBMreconstruct-Stage2was trainedusing
thenearest spatially adjacent datapoints, including eightfixedmicro-station
observations, eight mobile observations, and meteorological, land use, and
road network data from the same hour. These variables, along with PM2.5

concentrations from grids equipped with fixed micro-station monitoring
data, were used to predict hourly PM2.5 concentrations in grids lacking both
mobile and fixed micro-station monitoring data. Figure 5 and Supple-
mentary Fig. 13 show schematic diagrams of the construction processes,
while Supplementary Text 3 presents a more detailed description.

Both LightGBMreconstruct models performed well on the testing set
(Supplementary Fig. 14a, b), with R2 of 0.91 for the first stage model
(LightGBMreconstruct-Stage1) and R2 of 0.97 for the second stage model
(LightGBMreconstruct-Stage2), indicating that constructed models effectively
infer PM2.5 concentrations.

Inference model development based on new strategy
In an effort to optimize the budget while maintaining effective air quality
monitoring,wedivided the studyarea into17 target regions as shown inFig. 6.
Following the algorithm outlined below, we selected the six nearest fixed
micro-stations to the center point of each target region, ranging from target
region 1 to target region 17. The specific algorithm formulas are as follows:

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lngi � center lng
� �2 þ Lati � center lat

� �2
q

ð1Þ

X ¼ Lngi; Lati;Di

� �

; j; i ¼ 1; 2; . . . ; n
� � ð2Þ

H ¼ H6 S D;Xð Þð Þ ð3Þ

Lngi and Lati denote the longitude and latitude of fixed micro-
stations in the target regions, respectively. Center_lon and Center_lat

refer to the longitude and latitude of each target region’s center point.
Di represents the distance from each fixedmicro-station to the center.X
represents the set of distances from each fixed micro-station to the
center point, and N signifies the number of the fixed micro-station in
the target areas. Here, we defined the sorting operation function S and
selection function H. Therefore, H6 select the 6 fixed micro–stations
closest to the center of each target region based on the smallest sorted
distances.

Based on the above process, we selected 184 out of 612 fixed micro-
stations and replicated the steps above-mentioned in the fourth part of
“Methods” to train the LightGBMstrategy model for inferring PM2.5 con-
centrations. Surprisingly, the two–stage LightGBMstrategy model still per-
formed strongly, achieving R2 values of 0.87 and 0.97, respectively
(Supplementary Fig. 14c,d).

Development of PM2.5 pollution attribution model
To identify key factors influencing PM2.5 concentrations, we integrated the
PMF model, HYSPLIT model, LightGBM model, and SHAP algorithm to
establish an interpretable predictive model and elucidate each feature’s
contribution. The main equation for SHAP is:

f xi
� � ¼ φq f ; x

� �þ
X

K

p¼1

φp f ; xi
� �

ð4Þ

Here, f xi
� �

represents the predicted value for each sample xi
� �

with K
features and φq f ; x

� �

is the output expectation of themodel for all samples,
and φp f ; xi

� �

denotes the Shapley value of feature p on the predicted out-
come of the sample xi

� �

. Detailed calculations are provided in Supple-
mentary Text 4.

Initially, three species of water-soluble ions (NH4
+, NO3

−, SO4
2−),

metal elements (K, Ca, Mn, Fe, Zn, Pb), and atmospheric pollutants (NO,
SO2)were selected for PMF analysis usingUS EPAPMFv5.0.We identified
six sources: Coal Combustion (CC), Dust Emissions (Dust), Industrial

Fig. 6 |Distribution ofmobilemonitoring driving routes andmicro-fixedmonitoring sites. aThe heatmap ofmobilemonitoring driving routes. bOriginal distribution of
612 micro-fixed monitoring sites. c The distribution of 184 micro-fixed monitoring sites retained using the new strategy.
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Pollution (IP), Vehicular Emissions (VE), Biomass Burning (BB), and
Secondary Inorganic Aerosol (SIA). Further details about PMF analysis can
be found in Supplementary Text 5 and Supplementary Fig. 15. Subse-
quently, the HYSPLIT model was applied to calculate air clusters and
characterize the air mass transport. For each hourly measurement, 48 h
backward air mass trajectories at 100m above ground level were calculated
and clustered into seven groups (Supplementary Fig. 8). Total gaseous
oxidant (OX =NO2+O3) served as a proxy for atmospheric photochemical
oxidation conditions. We then input multiple variables including six
emission sources (SIA, CC, BB, IP, Dust, VE), regional transport char-
acteristics (Clusters), atmospheric oxidation condition (OX), and meteor-
ological parameters (BLH,WSas, Tas, RHas, AOD, TCC, SSR, P,WDas) into
the LightGBMcause model to analyze PM2.5 attribution. The LightGBMcause

model achieved strong performance with an R2 of 0.89, RMSE of 14.18, and
MAE of 8.93 (Supplementary Fig. 16), demonstrating an effective expla-
nation of PM2.5 concentration changes. Finally, we employed the SHAP
algorithm as an XAI tool to quantify each feature’s contribution, thereby
elucidating the factors contributing to PM2.5 pollution in Jinan.

Code availability
Codes generated during this study are available from the corresponding
author upon request. Our high spatiotemporal resolution PM2.5 dataset for
Jinan is openly accessible at https://zenodo.org/records/14961689 for pub-
lic use.
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