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Seasonal predictability of tropical cyclone
frequency over the western North Pacific
by a large-ensemble climate model
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We assessed the seasonal prediction skill of tropical cyclone (TC) frequency over the western North
Pacific by the large-ensemble SINTEX-F dynamical system. Although the prediction skills were limited,
the correlation skill for the June—August prediction issued in early May was statistically significant

around Okinawa and Taiwan. Particularly, the high TC activity

in summer 2018 was well predicted. We

found that the 2018 positive Indian Ocean Dipole (IOD) contributed to the predictability by the
dynamical prediction system: suppressed convection in the eastern tropical Indian Ocean enhanced
divergent wind from the eastern tropical Indian Ocean to the Okinawa and Taiwan areas. This helped to
generate low pressure in the target area, which was favorable to the TC activity. The I0OD contributions
to the predictability were also seen in the correlation analyses in 1982-2022 and some case studies in
1994 and 1998. This could be useful for actionable early warnings.

In Japan, South Korea, Taiwan, the Philippines, and other southeast Asian
coastal regions, tropical cyclones (TCs) are the most costly and deadly of
natural disasters'. A successful prediction of the TC frequency in a season at
least a few months ahead could help reduce the socio-economic losses
through necessary mitigation measures and can benefit a range of industries,
including insurance, agriculture, and tourism. Real-time seasonal forecasts
of TC activity are provided by some agencies’. Such a research stream is
becoming critically important in the low-latitude northwestern Pacific,
where the typhoon intensity is expected to increase due to ongoing global
warming’ and the impacts of the natural year-to-year variability are also
expected to be more serious.

Previous works identified several potential sources of the seasonal
predictability of TC frequency over the western North Pacific. The most
famous phenomenon is El Nifio-Southern Oscillation (ENSO)"*”. In El
Nifo years, TC over the western North Pacific tends to be more intense
and longer-lived than in La Nifia years’. However, TC frequency in the
western North Pacific does not change significantly between El Nifio and
La Nifia years’. On the other hand, El Nifio events display a diverse range
of amplitudes, triggers, spatial patterns, and life cycles’. TC over the
western North Pacific may be sensitive to this event-to-event diversity'’.
Because of the limited events, it is difficult to show high confidence in such
assertion. However, some studies tried to show the possibility. For
example, El Nifio Modoki'' or Central Pacific (CP)-type El Nifio'> can
induce substantial increases in TC duration, intensity, and frequency over
the western North Pacific'"*™. In the positive Pacific Meridional Mode
(PMM)'° phase, although which cannot be interpreted as an independent

phenomenon from CP-type El Nifio'"/, more TCs tend to occur over the
western North Pacific'®*”. Contributions from the Indian Ocean were also
shown. TC activity over the western North Pacific could be suppressed by
the tropical Indian Ocean warming’”*'. The warm/cold eastern Indian
Ocean could suppress/promote the TC genesis over the western North
Pacific””. Also, the warm (cold) northern Indian Ocean could cause fewer
(more) TCs forming north of 10°N and more (fewer) TCs forming south
of 10°N over the western North Pacific in boreal summer™. In the summer
following the spring subtropical Indian Ocean Dipole*, more TCs tend to
form over the western North Pacific’. The TC activity could be remark-
ably enhanced near South China coastal areas during negative IOD
autumns™. The extremely low TC activity during September-October
2018 may be attributed to a positive Indian Ocean Dipole (IOD)”. A
combination of an El Nifio Modoki and a positive IOD*, as in 1994, can
enhance seasonal TC activity over the South China Sea™. A dipole SST
anomaly in the Indo-Pacific warm pool can influence the total TC genesis
number over the western North Pacific”.

Although the current status of the different models used to predict
seasonal TC activity shows good levels of skill before the start of the cli-
matological periods of peak typhoon activity’, there remains room for
improvement. To the best of our knowledge, an exploration of how to
reduce the large uncertainty of seasonal prediction of TC activity by a large-
ensemble climate model has not yet been presented, thus it is the focus of this
study. In this study, we have analyzed the reforecast outputs by the 108-
ensemble-member SINTEX-F2 seasonal prediction system from the nine
initialized dates (1st-9th) May and August of 1982-2022°"" to find
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Fig. 1 | Climatological tropical cyclone frequency. a Climatological tropical
cyclone (TC) frequency in June-August (JJA) from the JRA55 reanalysis data
(numbers in 5°x5° grid.). The target region (120°E-130°E and 20°N-30°N) is shown
by a black box. (b) Same as (a), but for the prediction issued in early May by the
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SINTEX-F2 (108-ensemble mean). ¢ (b) minus (a). (d, e, f) Same as (a, b, f), but for
the standard deviation of year-to-year variations of TC frequency. g-1Same as (a-d),
but for September-November (SON), with the prediction issued in early August.

predictable events, explore the origin of the success, and, hopefully, find
potential room for improvement in the seasonal predictions by analyzing
the co-variability of the inter-ensemble member anomalies. Although the
spatial resolution of our system (T106) is relatively coarser than that of the
other operational systems’, the 108-member system has an advantage in
finding a predictable signal against unpredictable atmospheric noise on a
seasonal timescale and possible co-variability patterns influencing predic-
tions of TC frequency. Besides, the reforecast period in this study

(1982-2022) is much longer than the 16-year period 2003-2018 in the
previous work’.

Results

Skill assessment

First, we checked the climatological fields of TC frequency in the prediction
model. We tuned some parameters to detect TC in the model because its
horizontal resolution (T106) was not enough to resolve TC realistically (see
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Skill assessment
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Fig. 2 | Seasonal prediction skill of tropical cyclone frequency. a Correlation skill
for prediction of TC frequency anomalies in JJA issued in early May by the
1982-2022 reforecast experiments by the SINTEX-F2 system (108-ensemble mean).
Areas where the values are statistically significant above the 95% significance level
are shaded. The target region (120°E-130°E and 20°N-30°N) is shown by a red box.
b Same as a, but for signal-to-noise ratio (standard deviation of ensemble mean
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divided by ensemble spread for 1982-2022). ¢ Same as a, but for symmetric extremal
dependence index (SEDI) skill for the extreme positive tail with more than one
standard deviation (approximately 16%). The probability threshold is 20%. Areas
where the values are statistically significant beyond the standard errors above the
95% significance level are dotted. d-f Same as (a-c), but for SON issued in early
August.

TC detection in Methods). We also used the Okubo-Weiss-Zeta (OWZ)
scheme, which is an innovative direct TC detection and tracking scheme (see
TC detection in Methods). The averaged TC frequency in June-August
(JJA) was overestimated in the ensemble mean prediction relative to the
JRASS5 reanalysis data (Fig. 1a—c), although the model underestimated the
TC frequency before the tuning. We also found that the positive bias in the
OZW detection (Supplementary Fig. 1a-c and TC detection in Methods).
To understand the cause of this bias, we have analyzed the Genesis Potential
Index (GPI) defined by Emanuel and Nolan”. The GPI in JJA was also
overestimated in the ensemble mean prediction relative to the JRA55 rea-
nalysis data (Supplementary Fig. 2a—c). We estimated the relative con-
tributions of the four components; the absolute vorticity at 850 hPa, the
relative humidity at 700 hPa, the maximum potential intensity, and the
vertical wind shear between 850 and 200 hPa, to the bias by recalculating the
GPI in the model by replacing the model outputs one by one with the
reanalysis data for the 4 components (Supplementary Fig. 2d-g). We found
that the maximum potential intensity was critical. Murakami et al. ** showed
that maximum potential intensity is a major factor of GPI in the western
North Pacific, and convective available potential energy (CAPE) plays a
major role in the change of maximum potential intensity. Considering that
CAPE is approximately controlled by sea surface temperature (SST), it is
suggested that the positive TC frequency bias is due to SST to some extent.
Since the model has the positive SST bias around Okinawa and Taiwan
(Supplementary Fig. 3), it could cause the positive TC frequency bias there.

The ensemble mean of standard deviations of year-to-year variations of
TC frequency by an individual ensemble member was also larger than the
standard deviation of the reanalysis data in some areas (Fig. le-g and
Supplementary Fig. 1d—f for the OWZ detection), although the standard
deviation of year-to-year variations of ensemble mean TC frequency in the

ensemble mean was much smaller than the standard deviation of the rea-
nalysis data (figure not shown). The standard deviation divided by the
climatological TC frequency showed that the model slightly underestimated
the TC variability relative to the mean (Supplementary Fig. 4a—c).

Next, we assessed the prediction skills for the JJA prediction issued in
early May: the correlation skill of the ensemble-mean prediction, the
signal-to-noise ratio (which indicates potential predictability, see the
definition in Methods), and the Symmetric extremal dependence index”
(SEDI) (see the definition in Methods) skill for probabilistic prediction of
the extreme positive tail with more than one standard deviation
(approximately 16%). The probability threshold is 20%. Although the
skills were limited (Fig. 2a—c), the correlation skill was statistically sig-
nificant above the 95% significance level around Okinawa and Taiwan
(Fig. 2a), which includes the Japanese Exclusive Economic Zone. There-
fore, we would like to focus on that region (120°E-130°E and 20°N-30°N).
The similar feature was also seen even if we used the OWZ detection (see
Supplementary Fig. 5).

There is not a large bias in the target region in the September—
November (SON) mean TC frequency (Fig. 1g-i) and its variability
(Fig. 1j-1). The SON prediction issued in early August was further chal-
lenging relative to JJA (Fig. 2d-f) and could not find the predictable area.
The seasonality is consistent with Ogata et al.”’, who used a 50-km atmo-
spheric model, and Takaya et al.”**', who used a dynamical seasonal pre-
diction system (a 110-km atmospheric component).

As shown in the time series of TC frequency anomalies in JJA over the
target area (Fig. 3), the TC active (quiescent) summers in 2018 and 1994
(1983 and 1998) were well predicted. As discussed above, there is a positive
bias in the TC frequency (absolute values) and the variability (Supple-
mentary Fig. 6).
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Anomalous TC frequency in JJA at the target region
and its predictions from early May
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Fig. 3 | Time series of anomalous tropical cyclone frequency in the target region.
Time series of TC frequency anomalies in JJA averaged over 120°E-130°E and 20°N-
30°N; shown by a red box in Fig. 2a from the JRA55 reanalysis data (gray bar), the
prediction issued on early May of each year by the SINTEX-F2 system (red cross:
108-ensemble mean; orange dot: each ensemble member). The unit of the y-axis is
tropical cyclone frequency, i.e. counted TCs. We have highlighted the ensemble
mean of 2018, 1994, 1983 and 1998 by blue boxes.

TC active summer in 2018

Eighteen TCs were observed over the western North Pacific in JJA 2018,
which was ranked the second most active summer since 1979”. Although
the model could not capture the landfalling TC frequency anomalies around
Japan in JJA 2018, it successfully predicted the positive anomalies in the
target area (Fig. 4a, b). The model correctly predicted the evolution of a
positive IOD, a CP El Nifio, and a positive PMM at the time (Fig. 4d, e). The
suppressed convection in the eastern tropical Indian Ocean (Fig. 4g) could
excite the northward branch of the meridional circulation and then lead the
low-level cyclonic flow over the target region (Fig. 4j) with the associated
divergent flow from the eastern pole of the positive IOD into the south of the
target region, the exit region of the monsoonal westerly jet around 10°-20°N
(Fig. 4m). This pattern was similar to the Pacific-Japan (P]) teleconnection
pattern™, but the location was a little shifted westward””. The target region
was also located in the exit region of the Trades and showed zonal asym-
metries in the climatological mean field, which could enhance barotropic
energy conversion from the mean flow to the PJ-associated anomalies in the
lower troposphere™. The low-level cyclonic circulation could favor a TC
frequency increase in the target region. Those patterns were mostly

predicted by the ensemble mean prediction, although it showed some errors:
the location of the negative OLR anomalies in the low-latitude northwestern
Pacific was about 10° shifted southward (Fig. 4h), the low-level cyclonic flow
over the target region further extended eastward (Fig. 4k), and the large-
scale low-level convergence in the North Pacific was overestimated (Fig. 4n).

The inter-ensemble correlation between the TC frequency anomalies
in the target region and them in the other areas could indicate the TC
frequency anomalies in the target region had no linear relationship with the
TC frequency anomalies in the other regions (Fig. 4c). Interestingly, the
prediction of the TC frequency anomalies in the target region was sig-
nificantly linked with the prediction of the positive IOD, particularly the
eastern pole (Fig. 4f): ensemble members that predicted stronger positive
IOD tend to predict higher TC frequency in the target region. Although the
differences among ensemble members due to large atmospheric internal
variability have been considered to be unpredictable noise, the inter-
ensemble correlation analyses could support that the teleconnection from
the positive IOD commonly appears in ensemble members to some extent,
as mentioned above for the observed/reanalysis data and the ensemble mean
(Fig. 4i, 1), although the inter-ensemble correlations with the associated
velocity potential anomalies were not statistically significant (Fig. 40). Our
finding of the IOD contribution can add a new insight to the previous work
by Qian et al.”, who showed that the 2018 TC active season in the North
Pacific was primarily caused by warming in the subtropical Pacific (PMM)
and secondarily by warming in the tropical Pacific (CP El Nino).

We also investigated the TC active (quiescent) summers in 1994 (1983
and 1998). The 1994 (1998) summer could suggest the positive (negative)
IOD contribution, although the inter-ensemble correlations were too small
to support it. The 1983 summer could suggest the negative PMM con-
tribution. The details are shown in Supplementary Figs. 7-9a-o.

Statistical analysis

The correlation between the eastern pole of the DMI and the TC frequency
anomalies around Okinawa and Taiwan for JJA of 1982-2022 was positive
in the observational and reanalysis datasets, which was statistically sig-
nificant above the 90% significance level (Fig. 5a). This is in agreement with a
previous work™. The relationships were also well captured by the seasonal
prediction system (Fig. 5b). The feature was also seen when we used the
OWZ detection (Supplementary Fig. 10a, b). The correlations between the
eastern pole of the DMI and the circulation anomalies also support the IOD
teleconnection patterns discussed in the 2018 case study (Fig. 6): suppressed
convection in the eastern tropical Indian Ocean enhanced divergent wind
from the eastern tropical Indian Ocean to the Okinawa and Taiwan areas.
That helped to generate low pressure in the target area, which was favorable
for the TC frequency. This is also consistent with the previous study”’, which
showed that the positive IOD composite analysis also exhibits a low-level
cyclonic circulation anomaly in the target region, although it is not statis-
tically significant.

Discussions

We found that a positive IOD played a key role in the seasonal predictability
of the 2018 summer TC frequency around Okinawa and Taiwan by the
dynamical prediction system. The 108-member system had an advantage in
finding the predictable signal against the large unpredictable noise and the
possible IOD teleconnection via the inter-member co-variability analyses.
By reducing the uncertainty of the IOD prediction, we could reduce the
uncertainty of the TC frequency prediction around Okinawa and Taiwan
and increase the signal. The IOD contributions to the predictability were
also seen in the correlation analyses in 1982-2022 and some case studies in
1994 and 1998.

Interestingly, the signals, the ensemble-mean predictions, were rela-
tively strong for the four well-predicted summers in 1983, 1994, 1998, and
2018. When the signal is relatively strong for the coming TC season, we
could add information that the prediction is relatively reliable*' although the
sample size was limited to discuss the statistical skill scores. For the four
summers, the IOD and/or PMM could provide a window of opportunity to
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issue a much more confident forecast than average skill estimates would
suggest. Further careful assessments of extreme climate events and their
drivers are necessary to utilize windows of opportunity for stakeholders to
issue a range of plausible predictions, trustworthy and actionable early
warnings with real-time forecasts®.

The PJ pattern was clear for the summer of 1994 and 1983 (Supple-
mentary Figs. 7 and 8), so we have calculated inter-ensemble member
correlation in the 108-member prediction between the sea level pressure at
Hengchun of Taiwan and the OLR anomalies (Supplementary Fig. 11a, c).
The sea level pressure at Hengchun of Taiwan was used to the PJ index*.
Supplementary Fig. 6a and ¢ suggested the PJ pattern in 1994 and 1983.
However, we could not find the co-variability between the PJ pattern and the
tropical climate variations such as ENSO and IOD (Supplementary Fig.
11b, d). For the summer of 1983, we could find the co-variability between the
PJ pattern and the local SST over the western North Pacific (Supplementary
Fig. 11d). This is partly consistent with the previous study*, which showed
that the PJ pattern can self-aggregate over the Taiwan region, which could be
less related to IOD or ENSO. Note that the correlation between the sea level
pressure at Hengchun of Taiwan and the SST anomalies for JJA of
1982-2022 in the observations suggested that the weak contribution of the

eastern pole of IOD to the PJ pattern (Supplementary Fig. 11e), although the
correlation with the OLD anomalies did not suggest it (Supplementary Fig.
11g). The ensemble mean predictions overestimated the statistical rela-
tionship with ENSO and IOD (Supplementary Fig. 11f, h), which may be
due to the fact that the ensemble mean did not include the noise. Further
studies are needed to investigate possible contributions of the self-sustained
PJ pattern to the seasonal predictability of the TC frequency anomalies over
the western North Pacific.

The presented results are based only on a single system. In the next step,
the robustness should be investigated further by including the results of
multi-model systems. Particularly, further studies with high-resolution
models”** are necessary because the horizontal resolution of the SINTEX-F
(T106) was not enough to realistically resolve TC. Such research streams are
underway”.

There could be differences between the detected TC from the reanalysis
data and the observed TC. We have calculated the correlation between the
detected TC frequency anomalies and the Japan Meteorological Agency
(JMA) Best Track Data for JJA and SON of 1982-2022 (Supplementary Fig.
12). Since the correlations were statistically significant above the 95% sig-
nificance level in the target area (Supplementary Fig. 12a, c), we did the
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Fig. 5 | Correlation map between the eastern pole of DMI and TC frequency in
JJA of 1982-2022. a Correlation map between the eastern pole of DMI from the

observation and the TC frequency anomalies in JJA of 1982-2022 from the JRA55
reanalysis data in 5°x5° grid. b Same as (a), but for the prediction issued in early May
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by the SINTEX-F2 system (108-ensemble mean). In all panels, the target area is
shown by a black box. Values above 0.25, which are statistically significant above the
90% significance level, are shaded.

comparison with the detected tropical cyclones from the JRA55 reanalysis
data. Note that the correlations in JJA are slightly higher in the target area
relatively to the OWZ detection (Supplementary Fig. 12a, b), while the
correlations in SON by the OWZ detection are slightly higher in the target
area (Supplementary Fig. 12¢, d). Although the results might be sensitive to
the TC detection methods, the robustness of the IOD contribution to the
predictability of the summer TC frequency around Okinawa and Taiwan
could be ensured to some extent. Further fine-tuning of the TC detection
method might be helpful to improve the prediction skill of the SINTEX-F.
However, manually tuning is typically a time-consuming. Machine learning
techniques may help addressing it. We would like to challenge it as a future
research topic.

The 5°grid interpolation in this study might be weak for constructing
relationship between TC frequency and tropical climate modes. Some
previous studies™’ induced some new interpolation methods, which could
enhance the stability of the statistical analysis. We would like to study the
sensitivity of the interpolation methods as a future research topic.

Methods

Reforecast experiments

The SINTEX-F2 seasonal prediction system is based on a global ocean-
atmosphere-land-sea ice coupled model™* with a surface and subsurface
oceanic initialization scheme®*”” developed under the EU-Japan collabora-
tive framework. This system adopts a relatively simple initialization scheme
based only on the nudging of the SST data™ and a three-dimensional var-
iational ocean data assimilation (3DVAR) method by taking three-
dimensional observed ocean temperature and salinity data into account™.
The atmospheric component of the SINTEX-F2 has a horizontal resolution
of 1.125° (T106) with 31 vertical levels, while the oceanic component has a
horizontal resolution of about 0.5° x 0.5° with 31 vertical levels. To deter-
mine the anomalies, we have removed the model monthly climatology for
the period 1991-2020 at each lead time.

Observational and reanalysis datasets

To evaluate the prediction results, we used the JRA55 reanalysis data
for TC detection, the NOAA OISSTv2 high-resolution version” for SST,
the NOAA Interpolated Outgoing Longwave Radiation (OLR)" for
OLR, and the NCEP/NCAR reanalysis data® for other atmospheric
fields. The monthly anomalies were derived through deviations from the

58,59

monthly climatology calculated by averaging the monthly data from
1991 to 2020.

TC detection

We used TempestExtremes®™ to detect TC from the six hourly rea-
nalysis data: 1) search for candidates as minima in the sea level pressure
field; 2) eliminate if a more intense minimum exists within a great-
circle-distance of 10.0° 3) enforce a closed contour, requiring an
increase at least 50 Pa within 5° of the candidate node, and a decrease in
300 hPa air temperature of 0.1 K within 5° of the node within 1.0° of the
candidate with maximum air temperature; 4) candidates are then
stitched in time to form paths, 4a) with a maximum distance between
candidates of 6.0° (great-circle-distance), 4b) consisting of at least 8
candidates per path (48 hours), 4c) with a maximum gap size of 2
(12 hours, most consecutive timesteps with no associated candidate),
and 4 d) with a minimum distance between endpoints of 20 degrees.
Once the complete set of TC paths has been computed, total TC is
counted over each 5° grid cell in JJA and SON for each year. We tuned
some parameters to detect TC in the model because the horizontal
resolution ( ~ T106) was not enough to resolve it realistically (too weak
and too short lifespan) in the procedures 3) and 4 d) as follows: 3)
enforce a closed contour requiring an increase of 50 Pa within 10
degrees of the candidate and a decrease of 0.1 K within 10° of the node
within 2.0° of the candidate with maximum air temperature; in 4 d)
with a minimum distance between endpoints of 10 degrees. To ensure
the robustness of the results, we also used the OWZ detection®
by adapting DetectNodes code and StitchNodes code” into
TempestExtremes* . The OWZ scheme is an innovative direct TC
detection and tracking scheme that utilizes only tropospheric variables.
It is based on evaluating the OWZ, defined as

63-65

C-(EB+P)
(2
where fis the Coriolis parameter, 1) is the absolute vorticity, { is relative
vorticity, E =0u/dx + dv/dy is the stretching deformation, and F = dv/
0x + du/dy is the shearing deformation. We first identified local maxima

of OWZ at 850hPa. Candidates for which a stronger OWZ maximum
exists within 5° great-circle-distance are eliminated. Next, only those

OWZ = max{ 1

,0} X7 % sign(f),
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boxes, respectively.

candidates that satisfy the following six conditions within a distance of 2°
great-circle-distance of that maximum are retained (OWZ at 850 hPa >
5x107°s™'; OWZ at 500 hPa > 4 x10™° s '; relative humidity at 950 hPa >
70%; relative humidity at 700 hPa > 50%; specific humidity at 950 hPa >
10 gkg'; vws (vertical wind shear between 200 and 850 hPa) <25 ms™").
Consecutive TC points are stitched together when they lie within a
maximum distance of 5° great-circle-distance from one another,
allowing for a maximum 24-hour gap. Additional core thresholds must
be reached for at least 48 hours (OWZ at 850 hPa > 6 x107> s™'; OWZ at
500 hPa > 5 x107° s7'; relative humidity at 950 hPa > 85%; relative
humidity at 700 hPa > 70%; specific humidity at 950 hPa > 14 g kg™'; vws
< 12.5ms™"). Finally, tracks that do not reach tropical storm intensity
(10-m zonal wind speed = 16 m s~ ") for at least one time step are filtered
out (see the details in Bourdin et al.”’).

Inter-ensemble correlation analysis

The inter-ensemble correlation (i.e., correlation in the ensemble phase
space) can measure how two predictions co-vary over the ensemble phase
space and indicate the linear relationship as a number between -1 and 1. It

provides useful insights into possible precursors and teleconnection patterns
related to a climate event’**~"2. Here, we calculate inter-ensemble correla-
tion coefficients between the target anomalies and horizontal maps of
anomalous fields for each grid point among the 108 ensemble members with
the SINTEX-F2 system for the target season as

1

— D (X = X)(Y(x.y,0) ~ Y(x.)

\/ D CE \/ LN (Vo) — V)

R(x,y) =

Here ne is the ensemble size: 108, X(e) is predictions of the target index
as a function of ensemble member (e), X is the ensemble mean of X(e),
Y(x,y,e) is predictions of the other variables and a function of two-
dimensional horizontal (x, y), and ensemble member (e), Y(x, y) is the
ensemble mean of Y(x, y, e), respectively. In this analysis, the large ensemble
size has an advantage in finding significant co-variability patterns when the
signal-to-noise ratio of the target is generally low””.
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Signal-to-noise ratio

We assessed the potential predictability by dividing the predicted variability
into signal (S) and unpredictable noise (N) components. Here, S is estimated
as the ensemble mean of the 108 members. N is estimated as the ensemble
spread, which provides a measure of the uncertainties among the predic-
tions. By calculating the signal-to-noise (SN) ratio, we measured robustness
of the prediction of the signal as well as the potential predictability in a given
month™,

Symmetric extremal dependence index

Symmetric extremal dependence index™ (SEDI) is a skill score suitable for
extreme events. It provides meaningful results for rare events where the hit
rate and false alarm rate approach zero. It is defined for a binary event and
therefore requires a threshold to be set. In this study, the extreme positive tail
was set by one standard deviation and the probability threshold is 20%.

Data availability

The detected TC frequency data and the GPI analysis data were available
from https://zenodo.org/records/14676083. The NOAA OISSTv2, the
NOAA OLR, and the NCEP/NCAR reanalysis were provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web sites at
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html, https://
psl.noaa.gov/data/gridded/data.olrcdr.interp.html, and, respectively. The
JRAS55 reanalysis datasets were available from https://jra.kishou.go.jp/JRA-
55/index_en.html. The Japan Meteorological Agency (JMA) Best Track
Data were available from https://www.jma.go.jp/jma/jma-eng/jma-center/
rsmc-hp-pub-eg/besttrack.html. The SINTEX-F2 reforecast outputs were
available from https://www.jamstec.go.jp/sintex-f/catalog/catalog.html and
the corresponding author upon request.
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