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Global disparities in rural and urban
population exposure to compound
drought and heatwave events
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The high occurrence of compound drought and heatwave events (CDHWs), driven by global climate
change, poses a serious threat to humanity. However, their impacts on rural and urban populations
remain unclear. This study analyzed CDHWs exposure in both rural and urban populations and found
that the number of people chronically exposed to CDHWs has shown a clear upward trend over time.
From 1901 to 2021, rural populations experienced 2.5 times the total exposure to CDHWs compared
to urban populations. Over the past three decades, however, urban populations have experienced
significantly higher exposure and a faster rate of increase than rural populations. Regionally, rural
populations in Asia, North America, and Africa accounted for 41.06, 16.51, and 13.69% of the total
global rural population exposure, respectively, while urban populations in Asia, North America, and
Europe accounted for 32.31, 18.70, and 16.85% of global urban exposure, respectively. The climate-
population interactive effects have been the dominant factors driving recent changes in population
exposure. Our findings contribute to the risk assessment of CDHWs at both global and regional levels
and provide reliable information for disaster prevention and mitigation strategies.

Since the Industrial Revolution, global temperatures have risen sig-
nificantly compared to pre-industrial levels, resulting in a high
occurrence of extreme weather events1,2. Heatwave and extreme pre-
cipitation events have been increasingly prominent with droughts
becoming more severe in arid regions and precipitation increasing in
already wet areas, leading to an increase in population deaths, ecolo-
gical damage, reduced agricultural yields, and socio-economic losses3,4.
While a single event can have severe consequences, the simultaneous
occurrence of any two or more extreme events in the same moment
and place greatly increases the risk of extreme compound events
(CEs)5. It has been shown that climate change-induced compound
drought and heatwave events (CDHWs) are one of the most serious
CEs currently causing population deaths and economic losses due to
their long duration, high destructiveness, and wide range of impacts6.
Therefore, studying the spatial and temporal evolution and climatic
drivers of CDHWs over historical periods is crucial for risk assess-
ment, adaptation, and mitigation strategies for such CEs.

The increasing intensity, duration, and frequency of CDHWs pose
significant threats to human health and mortality, particularly during
summer months. These events can have impacts up to twice as severe as
individual heatwaves (HWs) or droughts due to their compounding
effects7,8. Studies of CDHWs based on different metrics have found a sig-
nificant increase in the frequency of such combined events in densely
populated regions, such as China, Australia, India, Europe, and Africa9–11.
Thus, it is crucial to illuminate global population exposure to CDHWs.
However, given the differences in the timescales of droughts and HWs, as
well as the variations in their feedback mechanisms across different regions
and climates, relative threshold definitions may be more appropriate than
absolute thresholds to characterize both HWs and droughts12,13. Tempera-
ture is not only used to quantify HWs, but it also plays a key role in drought
formation mechanisms. Therefore, it is more effective to define drought
using a drought index incorporating temperature when identifying
CDHWs. Additionally, most global-scale analyses employ spatial resolu-
tions coarser than 1° or 2°, which does not accurately capture changes in
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population exposure in different subregions14,15. Studying changes in
population exposure to CDHWs at high resolution is critical for under-
standing how to mitigate the impacts of anthropogenic climate change and
thereby improve regional capacity to adapt to CDHWs.

Although previous studies have provided insights into CDHWs
including identifying CDHWs16, characterizing changes17, and projecting
the future18, they have largely overlooked the health impacts of CDHWs on
rural and urban populations. Although the global population is urbanizing
at an unprecedented rate, rural populations continue to account for half of
the global population. Rural poverty accounts for 79%of global poverty, and
the poverty rate in rural areas ismore than three times that in urban areas19.
Of the two billion people worldwide without access to basic health services,
70% live in rural areas; energy access in rural areas is limited to about 75%.
Only 20% of rural populations have access to basic social security, with
wages that are usually low, paid late, and not subject to regular increases20.
Additionally, more than two-thirds of the rural population resides in low
andmiddle income countries,which are hotspots forCDHWs, exacerbating
the impacts on rural populations. Warm summer periods are the busy
season for agriculture, requiring long hours of outdoor work, which, cou-
pled with poor economic conditions, underdeveloped infrastructure, and
significant gaps inhealthcare services,makes rural areas highly vulnerable to
CDHWs21,22. With the development of urbanization, the urban population
has surpassed that of rural areas, drawing more attention to cities. Studies
have shown that urbanization and the urban heat island effect significantly
exacerbate CDHWs23,24. There is an urgent need for a comparative assess-
ment of the impacts of CDHWs on rural and urban populations, since it yet
thoroughly understood which population is more exposed.

We utilized long time series monthly standardized precipitation eva-
potranspiration index (SPEI) and self-calibrating palmer drought severity
index (scPDSI) data at a spatial resolution of 0.5° × 0.5°, combined with
monthlymaximum temperature data fromClimatic ResearchUnit gridded
Time Series Version 4.07 (CRUTS-4.07), to study the evolutionary trend of
global terrestrial CDHWs for rural and urban populations over the past 121
years and analyze the differences in the exposure of rural and urban
populations to CDHWs. We assessed the relative contributions of climate
change and population change to changes in exposure. The specific objec-
tives of this study as follows: a) to assess the spatiotemporal evolution of

global CDHWs based on multiple indicators, b) to compare the exposure
differences between rural and urban populations under CDHWs, and c) to
quantify the role of climate change, population change, and their interac-
tions on exposure changes.

Results
Characterization of changes in CDHWs
Figure 1 illustrates the spatiotemporal variation characteristics of CDHWs
identified based on the SPEI (CDHWs-SPEI) and scPDSI (CDHWs-
scPDSI) over the global land area from 1901 to 2021. In terms of the overall
characteristics of spatio-temporal changes, the CDHWs identified by the
two indices show highly consistent trends. All results show a significant
upward trend in global CDHWs, with an increase rate of about 200% (from
0.01 to 0.03 months) in CDHWs-SPEI, and an increase rate of about 300%
(from 0.005 to 0.02 months) in CDHWs- scPDSI. Arid regions, including
central Asia, central North America, central Australia, and southeastern
South America, exhibit a pronounced rise in CDHWs-SPEI, with annual
increases exceeding 0.05months.While the spatial distribution ofCDHWs-
scPDSI aligns closely with that of CDHWs-SPEI, the magnitude of
CDHWs-scPDSI is slightly lower (Supplementary Figs. 2, 3). Notably,
NorthernAfrica, theAmazonBasin of SouthAmerica, and centralAustralia
are the regions with the highest occurrence of CDHWs, reaching
0.08 months per year. The CDHWs-scPDSI and CDHWs-SPEI are highly
correlated in time and space. The difference is that the occurrence range of
CDHWs-SPEI is significantly larger than CDHWs-scPDSI. In the last three
decades (1991–2021), the occurrence of CDHWs-SPEI was twice as high as
that identifiedbyCDHWs-scPDSI. Froma spatial perspective, the incidence
of CDHWs-SPEI was significantly higher than that of CDHWs-scPDSI in
Central Asia, eastern Europe, northern Africa, central and southern Aus-
tralia, and southwestern China (Supplementary Fig. 4). The average annual
occurrence rate of CDHWs higher than 0.02months is 24.8% for CDHWs-
SPEI and 17.74% for CDHWs-scPDSI. Notably, the annual occurrence rate
of CDHWs higher than 0.06months is 0.68% for CDHWs-SPEI, whereas it
is only 0.07% forCDHWs-scPDSI. This also indicates that the occurrence of
CDHWs-SPEI is much higher than that CDHWs-scPDSI.

Given theheterogeneity ofCDHWs indifferent regionsof the globe,we
explored the variation in their occurrence across 44 terrestrial subregions as

Fig. 1 | Spatial and temporal variations in global mean CDHWs-SPEI and
CDHWs-scPDSI. The red and green dotted lines represent linear trends for
1901–2021 and 1991–2021, respectively, with asterisks indicating statistically

significant trends (95% confidence level). The spatial map shows the multi-year
average distribution of CDHWs (in months) from 1901 to 2021.
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proposed by the IPCC-AR6 (Supplementary Fig. 1). As shown in Fig. 2,
the spatial trend of CDHWs-SPEI is consistent with that of CDHWs-
scPDSI, but in almost all regions of the globe, the occurrence of CDHWs
identified by SPEI is significantly higher than those identified by scPDSI.
The NZ region in Oceania, the CAR region in North America, and the
GIC region have almost no CDHWs. The CDHWs in the three sub-
regions of Europe are more evenly distributed. In Asia, the ESB, EAS,
SAS, and Russian-Arctic (RAR) regions have significantly higher
occurrences of CDHWs, with the largest difference in the Sahara (SAH)
region in Africa, consistent with the scPDSI data masking effects in this
region. The NSA and SES regions of South America have the highest
occurrence of CDHWs, exceeding 300 months. Among the six con-
tinents, Asia has the highest occurrence of CDHWs (CDHWs-SPEI:
4492.19 months, CDHWs-scPDSI: 2664.12 months), followed by North
America (CDHWs-SPEI: 2671.32 months, CDHWs-scPDSI:
1645.64 months), with the smallest occurrence in the GIC region, which
has almost no CDHWs. The CDHWs in Asia are mainly concentrated in
arid regions, while in North America they are concentrated in the central
United States and northern regions. Notably, the occurrence of CDHWs
identified by SPEI is almost twice that identified by scPDSI. This indi-
cates significant spatial heterogeneity in the occurrence of CDHWs
globally, particularly in arid regions, highlighting the need for in-depth
analysis targeting small regions with high occurrence rates.

Changes in rural and urban population
The global population has exhibited a significant upward trend, although its
spatial distribution remainsnotablyuneven.Asia, inparticular, standsout as
themost populous continent, with its population primarily concentrated in
three countries: India, China, and Japan, which together account for over
50% of the continent’s total (Fig. 3). Africa, on the other hand, contributes
17%of the global population. In bothAsia andAfrica, rural populations still
constitute more than 60% of the respective regional totals. In India, rural
areas dominate demographically, with 71% of the population residing in
these regions, compared to 29% inurban areas. China, too, displayed similar
rural dominance during the 20th century, where rural residents accounted
for over 60% of the population, and urban residents comprised only 30%.
Conversely, Europe is characterized by a predominantly urban population,
with ≈75% of the population residing in urban areas and only 25% in rural
areas. This high degree of urbanization contrasts with the rural dominance
observed in Asia and Africa. In North America, the majority of the popu-
lation is concentrated in the east-central United States, with urban residents
comprising 80% and rural residents 20% of the total. While both rural and
urban global populations are increasing, urban population growth is out-
pacing rural growth at a remarkable rate. Over the past two decades, the
urban population has grown ≈six times faster than the rural population. By
2020, global population projections indicated ≈3.5 billion rural residents
and 4.5 billion urban residents. This trend is underscored by a milestone

Fig. 2 | Changes in the global multi-year average of CDHWs-scPDSI (red) and
CDHWs-SPEI (blue) for 44 subregions (inmonths).The radarmaps represent the
mean CDHWs for each region over the 121-year period (1901–2021). These

averages were calculated by aggregating annual CDHWs occurrences across grid
cells within each subregion and taking multi-year means.
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reported by the United Nations in 2008, when the global urban population
surpassed the rural population for thefirst time in recordedhistory. Looking
beyond 2020, while rural population growth is expected to slow sig-
nificantly, urban population growth is projected to continue its exponential
trajectory, driven by increasing urbanization and demographic shifts.

Population exposure to CDHWs
The analysis reveals significant temporal trends in global rural and urban
populations exposed to CDHWs-SPEI from 1901 to 2021, with a

pronounced increase over time (Fig. 4). Both rural and urban populations
experienced relatively stable exposure levels before the 1970s, but a marked
upward trend emerged thereafter. This growth accelerated in the 1990s,with
urban populations showing a significantly faster rate of increase compared
to rural populations. Between 1991 and 2021, urban exposure to CDHWs-
SPEI grew at an average rate of ≈7.9 × 10⁷ person-months per decade,
surpassing the rural exposure growth rate of 3 × 10⁷ person-months per
decade. Spatially, India and China, being large agricultural countries, have a
consistently higher percentage of agricultural population compared to

Fig. 3 | Spatial and temporal characteristics of the global urban and rural populations, 1901–2021. With trend lines in line graphs fitted on the basis of polynomial
regressions, and spatial graphs showing the spatial distribution of urban and rural populations averaged over 121 years, in units of (×105 persons).

Fig. 4 | Spatial and temporal variations in rural and urban population exposure
to globally averaged CDHWs-SPEI from 1901 to 2021. The red and green dotted
lines represent linear trends for 1901–2021 and 1991–2021, respectively, with

asterisks indicating statistically significant trends (95% confidence level). The spatial
map depicts the multi-year average distribution of rural and urban population
exposure to CDHWs-SPEI (in ×104 person-months) from 1901 to 2021.
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urban population. Consequently, the rural population in these coun-
tries is significantly more exposed to CDHWs compared to the urban
population, with exposures the highest in the southern and northern
regions of India, and the northern region of China. These regions, being
the main food-producing bases, face more intense CDHWs, which may
threaten future food security. By 1990s, urban population exposure
exceeded rural population exposure by about 3 × 108 person-months,
and by 2020, this difference grew to about 4 × 108 person-months. The
proportion of the rural population with exposures of 0.4 × 104 person-
months and above is significantly higher at 7.89% compared to the
urban population at 5.93%. Similarly, the proportions of the rural and
urban populations with exposures of 1.6 × 104 person-months and
above are 1.78% and 1.43%, respectively. Despite the urban population’s
exposure gradually surpassing the rural population’s exposure over the
last 30 years, the rural population still requires attention due to its high
vulnerability. Under the CDHWs-SPEI, exposure for rural populations
is mainly concentrated in developing countries, while urban population
exposure is primarily found in developed countries, such as those in
Europe and the United States (Supplementary Fig. 5). This distribution
correlates with the spatial distribution of rural and urban populations.
With the development of global urbanization, it is expected that the

surge of urban population in the future will lead to higher exposure of
urban populations.

Globally, the exposure of rural and urban populations to CDHWs-
SPEI is highly correlated with the occurrence of CDHWs-SPEI in 44 sub-
regions. In terms of total exposure, the global exposure of the rural popu-
lation is about 2.47 times higher than that of the urban population.
Regionally, the highest population exposure remains in Asia at
4012.42 × 104 person-months, accounting for 38.66% of the global total
rural population exposure. This is followed by North America with 16.07%
of the total global rural exposure,Africa with 15.75%of the total global rural
exposure, and the lowest, again in the GIC region (Fig. 5). In Asia and
Oceania, there is a significant disparity in exposure between rural and urban
populations. In Asia, the exposure of the rural population is about three
timeshigher than that of theurbanpopulation, and inOceania, the exposure
of the rural population is about 4.5 times higher than that of the urban
population (Supplementary Table. 1). This disparity may be related to the
wider distribution of the rural population in these regions and the relative
concentration of the urban population. In Europe, the difference in expo-
surebetween rural andurbanpopulations isminimal. InNorthAmerica, the
difference in exposure between rural and urban populations is also not too
great, except in the W. North-America, N.W. North-America, and N.E.

Fig. 5 | Characterization of global changes in rural and urban population
exposure to CDHWs-SPEI for 44 subregions. The radar plots display the mean
annual exposure (in units of 104 person-months) for rural and urban populations
under CDHWs-SPEI across the studied regions. Exposure values are calculated by
overlaying CDHWs-SPEI occurrence data with population distributions for each
region. Each radar plot shows the combined exposure from rural and urban

populations, with red colors representing rural population exposure and green
colors representing urban population exposure to CDHWs-SPEI. The exposure
trends are derived as the average of regional exposure values computed for the period
1901–2021. Differences between rural and urban exposures reflect spatial variations
in population density and regional susceptibility to CDHWs-SPEI.
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North-America regions, where rural population exposure is significantly
higher. This higher exposure in northern regions may be related to the
predominantly northern distribution of rural populations in North Amer-
ica. InAfrica, the lowest exposed region isMadagascar, and the difference in
exposure between the rural and urban populations in the SAH region is
significant, with the rural population exposed ≈six times more (448 × 104

person-months) than the urban population (74 × 104 person-months).
Similar to CDHWs-SPEI, the exposure of rural and urban popu-

lations to CDHWs-scPDSI exhibited a clear increasing trend over time,
with a highly similar spatial distribution. High-exposure regions were
primarily concentrated in Asia, North America, and Europe (Fig. 6).
Prior to the 1970s, there was little discernible trend in rural and urban
population exposure to CDHWs-scPDSI. However, starting in the
1970s, exposure began to rise significantly. From the 1970s to the 1990s,
rural populations experienced greater exposure to CDHWs-scPDSI
compared to urban populations. After the 1990s, the urban population
exposure rate increased sharply, averaging 6.3 × 10⁷ person-months
per decade, far exceeding the rural population exposure rate of
1.3 × 10⁷ person-months per decade. Unlike the patterns observed for
CDHWs-SPEI, the disparity between rural and urban population
exposures under CDHWs-scPDSI was relatively smaller. The propor-
tion of rural populations experiencing exposures of 0.4 × 10⁴
person-months and above was 5.82%, compared to 4.43% for urban
populations. For exposures exceeding 1.6 × 10⁴ person-months, these
proportions were 1.17% for rural populations and 1.01% for urban
populations. Despite these differences, the global correlation between
urban and rural populations exposed to CDHWs-scPDSI and
CDHWs-SPEI is high, with similar temporal and spatial change
characteristics. High-exposure areas for urban populations were
mainly in East Asia, parts of South Asia, most of Europe, and the
eastern part of North America (Supplementary Fig. 6). Overall, expo-
sure levels under CDHWs-scPDSI were lower than those under
CDHWs-SPEI for both rural and urban populations. These findings
highlight consistent trends in population exposure to compound
drought-heatwave events across metrics, while also revealing subtle

differences in the magnitude of impacts between CDHWs-scPDSI and
CDHWs-SPEI.

On a global scale, across 44 small regions, the total rural population
exposure under CDHWs-scPDSIwas about 2.51 times higher than the total
urban population exposure. Rural and urban exposures under CDHWs-
scPDSI were also highly consistent with CDHWs-SPEI at small regional
scales (Fig. 7). Differences were notable only in Africa, where rural popu-
lation exposure was highest in the SAH region under CDHWs-SPEI
(448 × 104 person-months), while ESAF had the highest exposure under
CDHWs-scPDSI (120.17 × 104 person-months). Population exposures in
other regions under CDHWs-scPDSI were almost the same as those under
CDHWs-SPEI, though the magnitudes were lower than those of CDHWs-
SPEI. In terms of total population exposures across the six continents, Asia
had the highest exposure under CDHWs-scPDSI (2239.2 × 104 person-
months), accounting for 43.46% of the global rural population exposure,
followed by North America with 932.68 × 104 person-months, accounting
for 16.95%of the global rural population exposure. The lowest exposurewas
inGIC, consistent withCDHWs-SPEI, but themagnitude ofCDHWs-SPEI
was 1.68 times that of CDHWs-scPDSI (Supplementary Table. 2). The gap
between rural and urban population exposure under CDHWs-scPDSI was
significantly higher in Asia, Oceania, North America, and Africa than in
South America and Europe. For small regions, the same was true for the
South-American-monsoon region, the N.Eastern-Africa and SAH regions,
the C.Australia (CAU) region, and the RAR region. In almost every region
where rural population exposure is high, urban population exposure is also
high, showing a consistent trend. Therefore, when choosing different
drought indicators to identify CDHWs, although there is no significant
difference in trend and spatial differentiation, there is a significant difference
in the magnitude of population exposure in small regions. Ignoring the
influence of drought indicators on identified CDHWs could lead to over-
estimations and underestimations conclusions.

Relative contributions of population exposure changes
Globally, changes in rural population exposure to CDHWs were initially
dominatedby climate effects,with its contribution exceeding 80%before the

Fig. 6 | Spatial and temporal variations in rural and urban population exposure
to globally averaged CDHWs-scPDSI from 1901 to 2021. The red and green
dotted lines represent linear trends for 1901–2021 and 1991–2021, respectively, with

asterisks indicating statistically significant trends (95% confidence level). The spatial
map depicts the multi-year average distribution of rural and urban population
exposure to CDHWs-scPDSI (in ×104 person-months) from 1901 to 2021.
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1970s. However, this dominance has declined steadily over time, dropping
to ≈30% by the 2020s. From the 1970s to the 1980s, population effects and
climate-population interaction effects began to play increasingly significant
roles. By the late 20th century, climate-population interaction effects had
become the dominant factor, with their contribution rising from 5% in the
1970s to 50% by 2021. Population effects alone contributed between 10%
and20% throughout the study period, showing relativelyminorfluctuations
(Fig. 8). For urbanpopulations, the trends arehighly consistentwith those of
rural populations, with some notable differences. Climate effects dominated
urban exposure trends until the 1940s, after which climate-population
interaction effects began to dominate, shifting earlier than in rural contexts.
The contribution of urban population effects showed greater variability,
fluctuating between 10% and 50%, and was the dominant factor during the
1960s and 1970s. This suggests that urban areas experiencedmore dynamic
demographic shifts during these decades, likelydrivenby rapidurbanization
and economic growth. The dominant factor for changes in rural population
exposure was climate effects, while for urban populations, the climate-
population interaction effects played amore significant role. The increasing
influence of climate-population interactions effects the compounding
effects of demographic shifts and climatic extremes, which have become the
primary drivers of exposure in themid- to late-20th century. These findings

emphasize the need for integrated climate and population models to better
understand and predict exposure trends, particularly as climate-population
interactions continue to grow in significance.

Discussion
In this study, we employed two widely used drought indices, the SPEI
and the scPDSI, to identify CDHWs. Our findings reveal a significant
upward trend in global terrestrial CDHWs, accompanied by consistent
spatiotemporal patterns. However, the occurrence of CDHWs identified
using SPEI is notably higher than that identified using scPDSI, high-
lighting differences arising from the indices’ formulations and sensi-
tivities to climatic variables. The SPEI incorporates both precipitation
and potential evapotranspiration (PET), rendering it more responsive to
temperature fluctuations, especially in warmer climates25. In contrast,
the scPDSI emphasizes soil moisture dynamics, leading to a slower and
more attenuated response to temperature-driven changes in
evapotranspiration26. Consequently, events characterized by extreme
heat are more readily identified by SPEI, particularly in arid and tran-
sitional regions (Supplementary Fig. 3). These differences underscore
the importance of selecting appropriate indices for specific research
objectives and climate regimes.

Fig. 7 | Characterization of global changes in rural and urban population
exposure to CDHWs-scPDSI for 44 subregions. The radar plots display the mean
annual exposure (in units of 104 person-months) for rural and urban populations
under CDHWs-scPDSI across the studied regions. Exposure values are calculated by
overlaying CDHWs-scPDSI occurrence data with population distributions for each
region. Each radar plot shows the combined exposure from rural and urban

populations, with red colors representing rural population exposure and green
colors representing urban population exposure to CDHWs-scPDSI. The exposure
trends are derived as the average of regional exposure values computed for the period
1901–2021. Differences between rural and urban exposures reflect spatial variations
in population density and regional susceptibility to CDHWs-scPDSI.
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The temporal evolution of CDHWs aligns closely with global mean
temperature trends over the past century. The occurrence of CDHWs
increased significantly between1901 and1940, stabilized from1941 to 1980,
and rose sharply from 1981 to 2021. This pattern mirrors historical global
temperature trajectories, reflecting the dominant role of temperature in
driving CDHW occurrences26,27. The mid-century stabilization likely cor-
responds to aerosol-induced cooling, while the post-1980 surge aligns with
accelerated greenhouse gas-induced warming28. These results reaffirm the
critical role of anthropogenicwarming in amplifyingCEsandemphasize the
urgency of implementing effective mitigation and adaptation strategies29.

Spatially, the regionswith the highest historical occurrence of CDHWs
include northern South America, southern and northern Africa, Central
Asia, and CAU. These findings are consistent with previous studies30–32,
reinforcing the role of arid and semi-arid zones as hotspots for CDHWs.
However, the regions with the highest rates of CDHWs do not necessarily
exhibit the highest levels of population exposure, which is also influenced by
demographic distribution33,34. The most affected rural populations are
concentrated in northern and southern India, as well as eastern and
southern China, while urban populations most exposed to CDHWs are
located in the eastern United States, European countries, and urban
agglomerations in the Pearl RiverDelta and Yangtze River Delta in China35.
These densely populated areas are particularly vulnerable to the cascading
impacts of CDHWs, emphasizing the need for targeted disaster prevention
and mitigation policies tailored to regional contexts.

Another noteworthy finding of this study is the shifting exposure of
rural and urban populations to CDHWs over time. Starting in the 1970s, a
clear increase in exposure to CDHWs began for both rural and urban
populations, driven by the growing influence of population effects and
climate–population interaction effects. Before the 1990s, rural populations
experienced greater exposure to CDHWs. However, the rapid urbanization
observed over the past three decades has led to a marked increase in urban
exposure, which now surpasses that of rural populations. This transition is
closely linked to the expansion of urban areas and population migration
driven by global economic development. Furthermore, the primary drivers
of population exposure have evolved. Climate effects were dominant before

the 1980s, while the climate–population interaction effects has become
increasingly significant in recent decades. These findings highlight the
importance of integrating climate projections with demographic changes to
improve future exposure assessments.

This study also tested the sensitivity of our results to threshold defi-
nitions for CDHWs. By applying alternative thresholds (20th percentile for
drought indices and 80th percentile for temperature), we demonstrated that
the spatial patterns and temporal trends of CDHWs remained robust
(Supplementary Figs. 7–9). This robustness strengthens confidence in the
conclusions and provides a solid foundation for developing evidence-based
risk management strategies. However, it is critical to acknowledge that the
impacts of CDHWs are not determined solely by exposure. Vulnerability
and adaptive capacity are equally important factors that were not explicitly
estimated in this study36,37. For instance, urban heat islands (UHIs) can
amplify heatwave intensity, exacerbating risks for urban populations.While
this study identifiedkeyurbanareas affectedbyCDHWs, thedirect effects of
UHIs were not quantified37,38. Future studies should incorporate urban
surfacemodels and high-resolution climate projections to explicitly account
for UHI effects and refine urban risk assessments

In addition to climatic drivers, socioeconomic factors, such as age
structures, income levels, and access to healthcare or cooling infrastructure
significantly influence vulnerability and resilience to CDHWs39, These
factors were not explicitly analyzed but warrant attention in future research.
Recent studies have highlighted that urban populations may benefit from
stronger economies, better healthcare systems, and more resilient infra-
structure, potentially offsetting some of the risks posed by CDHWs40–42.
However, rural populations, particularly those reliant onagriculture, remain
highly vulnerable due to their dual exposure to drought and heat, which
directly threaten health and food security43. Given the critical role of rural
populations in global food production, greater attention must be directed
toward enhancing their resilience to climate change impacts.

This study advances theunderstandingofhistoricalCDHWtrends and
their implications for global rural and urban populations by providing a
high-resolution analysis of spatial and temporal patterns of exposure43.
However, the findings also underscore the need for integrating vulnerability

Fig. 8 | Effects of the changes of population, climate, and their interaction on the CDHWs exposure. Blue bars represent climate effects, red bars represent population
effects, and yellow bars represent climate–population interaction effects.
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and adaptive capacity into future assessments to comprehensively evaluate
CDHWrisks44,45. Additionally, regions such asWestAfrica, Central Europe,
South America, East Asia and South Asia, which experience significant
impacts from CDHWs, merit further investigation with higher-resolution
datasets46,47. Incorporating socioeconomic and infrastructural data will be
essential for developing targeted adaptation strategies that address the needs
of both rural and urban populations.

In conclusion, while this study provides critical insights into the spa-
tiotemporal dynamics of CDHWs and their impacts on rural and urban
populations, it also highlights key areas for future research. Addressing the
limitations identified, such as the incorporation ofUHI effects, vulnerability
assessments, and socioeconomic factors, will be crucial for improving risk
assessments and informing effective mitigation and adaptation strategies.
These efforts are vital for enhancing resilience to the escalating risks posed
by CDHWs in a rapidly changing climate.

Methods
Data
Climate data. This study used one-month SPEI and scPDSI data to
identify drought events. SPEI data were obtained from the most recent
version of the global SPEI database (SPEIbase v2.9), which was generated
based on the Climate Research Unit Time Series version 4.07 (CRU TS-
4.07) dataset and providesmonthly values from1901 to 2021. SPEI values
are available on a time scale from1901 to 202148. In addition, scPDSI data,
also from the CRUTS-4.07, are available at a spatial resolution of
0.5° × 0.5°. The scPDSI is calculated on amonthly scale and uses dynamic
computation of constants to automatically calibrate the exponential
behavior at any location, making it widely used for drought event
identification26,49. To ensure consistency in temperature data sources
during HWs and droughts and to avoid CDHW errors from data
inconsistencies, monthly temperature data from CRU TS-4.07 were
selected for heat wave event identification. Furthermore, this study
classified global regions into drought, transition, and humid zones based
on the aridity index (AI)50. The AI was calculated as the ratio of mean
annual PET (Ep) to precipitation (P) using data from CRU TS-4.07,
effectively capturing the aridity and desertification characteristics of each
region51. Using data for the 1981–2021 climatological period, a global
zoning map delineating drought (AI > 2.25), transition (0.9 < AI ≤ 2.25),
and humid (AI ≤ 0.9) areas was produced, as shown in Supplementary
Fig. 10. All datasets in this study were obtained at a spatial resolution of
0.5° × 0.5° and a monthly temporal scale, avoiding errors associated with
downscaling and ensuring the robustness of the results.

Population data. The rural and urban population data come from the
third round of the Intersectoral Model Intercomparison Project, which
provides yearly global population data from 1901 to 2021 at a spatial
resolution of 0.5°. This data has been widely used in the study of the
impact of climate change on humans because of its high data quality,
precision, and extensive time series52,53.

Definition of CDHWs
The definition of CDHWs has generally been based on thresholds derived
from drought index and temperature data54,55. In this study, because two
drought indices (SPEI and scPDSI) were chosen, to avoid errors associated
with the use of equal absolute thresholds, we defined the occurrences of
CDHW as the monthly drought index falling below the 10th percentile
calculated over the entire study period and the monthly temperature
exceeding the 90th percentile calculated over the entire study period8,56,57.
The 10th percentile of the drought indices and the 90th percentile of the
temperaturewere calculated from the drought indices and temperature data
for each grid during the extended summer season (May throughOctober in
the Northern Hemisphere and November through April in the southern
hemisphere) for the entire studyperiod (1901–2021).Next, a binary variable
was generated to indicate whether a CDHW occurs (1 for occurrence, 0 for
non-occurrence) when a drought event (Di) and a heatwave event (HWi)

occur simultaneously, i.e., HWi ¼ 1 \ Di ¼ 1
� �

, as shown in Eq. 17. The
annual occurrence (in months) of CDHWs per grid per period was calcu-
lated by accumulating the binary variables and dividing by the total number
of years in the calculation period53.

CDHWsi ¼
1; ðHWi ¼ 1 \ Di ¼ 1Þ

0; otherwise

�
ð1Þ

Population exposure to CDHWs
The exposure of rural and urban population was defined as the product of
the occurrence ofCDHWsand thenumberof people exposed toCDHWs in
each grid58,59. Population exposure to CDHWs was calculated on a year-by-
year basis using the following equation:

Epopj ¼ CDHWsj × POPj ð2Þ

Where Epop represents rural and urban population exposure (person-
months), j denotes the year, CDHWsj represents the annual number of
CDHWs (month), POP represents rural and urban population.

Relative contributions of population exposure changes
Exposure changes associated with climate, population, and their interac-
tions (4Epop) are decomposed into threemain components: climate effects,
population effects, and interaction effects. This approach has been widely
used in attribution analysis of changes in exposure to extreme climate
events60,61. Thus, to assess the effects of climate change, demographic
change, and climate-demographic interactions on the exposure of rural and
urban populations, climate effects were detected by holding rural and urban
populations constant at the baseline level (i.e., 1900s) but allowing CDHWs
to vary over time. Population effects were detected by holding CDHWs
constant at the baseline level (i.e., 1900s) but allowingpopulation size to vary
over time.The interaction effect,which represents simultaneous climate and
population changes, is defined as the difference between the change in total
exposure and the sum of the climate and population effects. To better
estimate the contribution, we used the change in exposure from 1901–2020
by averaging the results for each decade. The calculations are as follows:

4Epop ¼ CDHWs1 ×4P þ P1 ×4CDHWsþ4P ×4CDHWs ð3Þ

Where P1 represents the population from 1901 to 1910 (1900s); and
CDHWs1 is the number of CDHWs from 1901 to 1910 (1900s); The terms
4P and4CDHWs denote population change and the number of CDHWs
occurrences, respectively. The contribution rate of each factor can be
computed as follows:

CRpop ¼
CDHWs1 ×4P

4Epop
× 100% ð4Þ

CRcli ¼
P1 ×4CDHWs

4Epop
× 100% ð5Þ

CRint ¼
4P ×4CDHWs

4Epop
× 100% ð6Þ

whereCRcli CRpop and represent the contribution rates of climate effects and
population effects, respectively.CRint shows the contribution rate of
climate-population interaction effects.

Statistical analysis
In this study, trends in CDHWs characteristics were calculated based on
Kendall’s tau and the Sen slope estimator, while the statistical significance of
the trendswas testedusing theMann–Kendall trend test at a 95%confidence
level62.
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Data availability
The data supporting the results of this study are publicly available from the
following sources: The rural and urban population data can be downloaded
from the Inter-Sectoral Impact Model Intercomparison Project (https://
data.isimip.org/10.48364/ISIMIP.822480.2). The SPEI data are available at
https://digital.csic.es/handle/10261/332007. The scPDSI data can be acces-
sed at https://crudata.uea.ac.uk/cru/data/drought/#global. Monthly tem-
perature, precipitation and evapotranspiration data from CRU Ts-4.07 are
available at https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/cruts.
2304141047.v4.07/.

Code availability
The codes used in this study are available on request from the corresponding
author (baoam@ms.xjb.ac.cn).
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