
npj | climate and atmospheric science Article
Published in partnership with CECCR at King Abdulaziz University

https://doi.org/10.1038/s41612-025-01033-9

Developinganensemblemachine learning
framework for enhanced climate
projections using CMIP6 data in the
Middle East

Check for updates

Younes Khosravi1 , Taha B.M.J. Ouarda1 & Saeid Homayouni2

Climate change in the Middle East has intensified with rising temperatures, shifting rainfall patterns,
andmore frequent extremeevents. This study introduces theStacking-EML framework,whichmerges
five machine learning models three meta-learners to predict maximum temperature, minimum
temperature, and precipitation using CMIP6 data under SSP1-2.6, SSP2-4.5, and SSP5-8.5. The
results indicate that Stacking-EML not only significantly improves prediction accuracy compared to
individual models and traditional CMIP6 outputs but also enhances climate projections by integrating
multiple ML models, offering more reliable, regionally refined forecasts. Findings show R²
improvements to 0.99 for maximum temperature, 0.98 for minimum temperature, and 0.82 for
precipitation. Under SSP5-8.5, summer temperatures in southern regions are expected to exceed
45 °C, exacerbating drought conditions due to reduced rainfall. Spatial analysis reveals that Saudi
Arabia, Oman, Yemen, and Iran face the greatest heat and drought impacts, while Turkey and northern
Iran may experience increased precipitation and flood risks.

Climate change has become a paramount concern in the 21st century,
profoundly impacting ecological systems, economic structures, and societal
frameworks1. In this context, temperature and precipitation fluctuations
significantly impact agricultural productivity2,3, oceanic acidification2,3, and
occurrences of severe droughts4–6 or inondations7,8. This challenge is espe-
cially pronounced in areas like theMiddleEast,withdistinctive geographical
and climatic attributes. Recent studies have emphasized that this region’s
rising temperatures and shifting precipitation patterns may engender con-
siderable challenges, including depleted water resources, heightened health
risks, and agricultural instability9–11. However, accurately predicting these
changes and their impacts remains a formidable challenge due to the
complexities of the climate system and the inherent uncertainties of climate
modeling12–14. In this context, initiatives like the sixth phase of the Coupled
Model Intercomparison Project (CMIP6), which explores future climate
scenarios, are critically important, yet they still face limitations in delivering
precise regional forecasts15.

The CMIP6 signifies a noteworthy progression in global climate
simulation, offering a comprehensive array of simulations that have dee-
pened our understanding of climate behavior and forecasts across diverse
socio-economic scenarios. Although previous experiments (i.e., CMIP3 and

CMIP5 data) have been utilized in several studies16–24, recent regional eva-
luations have demonstrated that CMIP6 outputs have significantly
improved compared to the earlier phases25–27. These improvements include
elevated spatial resolution, more intricate physical representations, and an
expanded array of scenarios, notably the Shared Socioeconomic Pathways
(SSPs) that encapsulate various future trajectories of greenhouse gas
emissions28. Additionally, CMIP6 has made significant strides in modeling
complex climate feedback, such as the interactions between the atmosphere,
oceans, and cryosphere, which are crucial for understanding long-term
climate dynamics29. These advancements have enabled more precise
simulations of temperature and precipitation patterns, vital for elucidating
regional climate repercussions30. Nonetheless, substantial obstacles persist,
particularly in the regional application of these models, where inherent
uncertainties in model outputs can result in considerable variability in cli-
mate predictions31,32. These regional uncertainties are often attributed to
structural differences among models and the challenges in accurately
representing localized physical processes, leading to divergent climate
projections for the same region33.

Multi-Model Ensemble (MME) has gained significant traction in cli-
mate research to address these uncertainties. Ensemble modeling, which
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involves combining outputs from multiple climate models, offers a robust
methodology for reducing the biases inherent in individual models and
capturing a wider range of possible climate outcomes34,35. MMEs have also
proven to be particularly effective in evaluating a range of climate scenarios,
including the SSPs, byprovidingprobabilistic estimates that help to quantify
the uncertainties associated with different future emission trajectories
Tebaldi and Knutti36. By integrating the diverse outputs of CMIP6 models,
ensemble techniques enhance the reliability and robustness of climate
projections, particularly by reducing the impact of outlier results and
identifying consistent trends across different models37–39. This integration is
critical for improving the accuracy and reliability of climate predictions,
thereby supporting more effective adaptation and mitigation strategies in
vulnerable regions. In the classification provided by Wang et al.40, MME is
broadly categorized into two principal types: (1) the Simple EnsembleMean
(SEM), which involves the use of individual models combined through
traditional statistical methods such as averaging and median techniques
with equal weighting (Sillmann et al.41 Wang et al.40); and (2) theWeighted
Ensemble Method (WEM), which employs more sophisticated weighting
strategies like the independence weighted mean and multidimensional
scaling to ensure spatiotemporal consistency42. Each of thesemethods offers
distinct advantages and disadvantages. The SEM, recognized for its
straightforwardness, is awidely used approach that generally yields superior
performance compared to individual model members Lambert and Boer43.
However, this approach has certain limitations. A key concern is that many
models often share similar parameterizations and components, leading to
potential interdependencies among different climate simulations44. If this
interdependence is not properly addressed, it can result in a misleading
consensus amongmodels, diminished accuracy, and inaccurate uncertainty
estimation45. Conversely, WEM provides the benefit of mitigating sys-
tematic biases in the outputs of individual ensemble members, thereby
enhancing the ensemble’s overall predictive accuracy46.

In recent years, machine learning-based approaches have been devel-
oped to enhance and complement traditional ensemble methods, such as
the SEM and WEM in climate modeling47–50. Machine learning (ML) has
emerged as a vital tool in improving the performance of climate model
ensembles by effectively handling the complexities and uncertainties
inherent in climate projections51. Considering these developments,
numerous studies have explored integrating ML algorithms into climate
model ensembles, demonstrating significant advancements in prediction
accuracy anduncertainty reduction. For instance, Bilbao-Barrenetxea et al.29

demonstrated that MME techniques, when combined withML algorithms,
can enhance the accuracy of precipitation projections and improve
hydrological modeling in complex terrains like the Pyrenees. Similarly,
Yılmaz et al.52 utilized CMIP6 ensembles and ML to project significant
temperature increases and precipitation decreases in Türkiye’s Altınkaya
Dam Basin by 2100, highlighting the critical role of ML in refining these
projections. Shao et al.53 further explored enhancing climate projections
using CMIP6 ensembles through Time Variability Correction and
Ensemble Dependence Transformation (EDT), significantly improving
model and ensemble statistics for more accurate predictions. In another
study, Wang et al.54 combined CMIP6 ensemble models with ML algo-
rithms, such as Random Forest and Gradient Boosting, to project future
precipitation changes in the Hanjiang River Basin, outperforming indivi-
dualmethods. The effectiveness ofML-based ensemble predictionswas also
demonstrated in theWestern Ghats of India, where methods like XGBoost
and Random Forest (RF) showed superior performance in simulating
interseasonal variability and predicting future climate changes32. In Aus-
tralia, Grose et al.28 focused on developing a CMIP6-based multi-model
downscaling ensemble for climate change services, indicating the potential
for ML integration to enhance regional climate projections.

Furthermore, Zhang et al.55 applied ML to CMIP6 ensembles to
quantify future climate change under different socio-economic pathways,
showing that globalwarming thresholds could be reachedby2048under the
SSP5-8.5 scenario. Singh et al.56 usedMLmodels, including RandomForest,
to predict increased streamflow in the Sutlej River Basin under various

emission scenarios, further demonstrating the utility of ML in refining
climate projections. Finally, in Iran, Asadollah et al.50 employed a Gradient
Boosting Regression Tree (GBRT) ensemble model with CMIP6 data to
downscale and project climate variables, showing significant improvements
in replicating the region’s climate.

Previous research has mainly focused on evaluating individual ML
methods with a uniform structure, highlighting their unique strengths.
However, considering the diverse range of factors that impact climatic
elements and the various statistical behaviors they exhibit, a single struc-
tured ML model may not be sufficient to fully capture the complex rela-
tionships between these elements and their predictors across different
climatic regions57. In recent years, ensemble learning techniques, which
amalgamate multipleMLmodels, have increasingly demonstrated superior
efficacy58. To build on this progress, three prominent ensemble methods,
Bagging, Boosting, and Stacking have been widely adopted to address the
limitations of individual ML models59. Among these methods, stacking is
particularly favored for its capacity to integrate predictions fromseveral base
models via a meta-learner, enhancing overall model performance60–62.

Building on these ensemble learning advancements, recent studies
highlight the substantial benefits of advanced ML-based frameworks for
climate projections in arid and hyper-arid contexts. For instance, Aldosary
et al.63 integrated multiple ML algorithms such as Random Forest,
LightGBM, and XGBoost to predict specific humidity in Dammam, Saudi
Arabia, achieving near-perfect accuracy and enabling effective early-
warning insights for heat stress hazards. Similarly, Baig et al.64 examined
monthly rainfall prediction in the hyper-arid United Arab Emirates,
revealing that XGBoost, Long Short-TermMemory, and stacked ensembles
can substantially outperform conventional models when additional
meteorological factors (e.g., wind speed) are incorporated.

Meanwhile, Najafi and Kuchak65 developed a monthly-to-seasonal
precipitation forecasting system for Iran using downscaled global model
outputs, reporting notable performance gains across diverse climatic zones.
Expanding on these regional applications, Al-Saeedi et al.66 improved pre-
cipitation estimation in Jordan by integrating machine learning and geos-
tatistical techniques, enhancing accuracy for drought assessment and water
resource management. Similarly, Asadollah et al.50 applied ML-based
downscaling in Iran, demonstrating how GBRT enhances CMIP6-based
temperature and precipitation projections. Their findings indicate sig-
nificant warming (+8 °C in highlands) and major precipitation shifts,
emphasizing the need for localizedMLdownscaling in arid regions. Beyond
these region-specific applications, ensemble learning methods have been
widely adopted in broader climate modeling contexts, demonstrating their
ability to enhance predictive accuracy across diverse environments. For
instance, Tuysuzoglu et al.67 further reinforced the efficacy of ensemble
approaches with their ensemble-based K-stars model for rainfall classifi-
cation in Australia, underscoring how probability-based aggregating (pag-
ging) significantly enhances predictive reliability. Similarly, Jaiswal et al.68

developed a stacking ensemble model that combined RF, XGBoost, and
Support Vector Machine (SVM) to predict rainfall in India, achieving a
notable accuracy of 81.2%. Similarly, Shetty et al.32 also demonstrated the
effectiveness of stacking in improving the reliability of climate predictions.
Additionally, Li et al.69 employed a stacking ensemble technique to integrate
SVM, RF, Elastic Net Regression, and XGBoost for mid-term streamflow
forecasting. Collectively, these studies underscore that ensemble learning
especially stacking can effectivelymitigatemodeling uncertainties, capture a
full range of climate extremes, and offer valuable guidance for adaptation
strategies in data-scarce regions.

Despite the potential of ML stacking techniques, research that has
applied these methods to enhance the accuracy and robustness of climate
model predictions has remained limited. Recognizing that the goal of
stacking is to leverage the strengths of base algorithms to build a more
reliable framework than individual models70, this research aimed on
developing a stacking ensemble model for predicting precipitation and
maximum and minimum temperatures using multiple regressors of ML.
The proposedmethodwas structured in two levels: basemodels and ameta-
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model. At thefirst level,fiveMLmodels, includingRF, XGBoost, LightGBM
(LGBM), SVM, and CatBoost, were employed as base learners tomodel the
climate elements of the Middle East. In the second level, the outputs from
the base models were used to construct a meta-model by comparing three
different models, including Artificial Neural Networks (ANN), Multiple
Linear Regression (MLR), and Lasso (Least Absolute Shrinkage and Selec-
tion Operator) across two scenarios. After determining the most effective
regressor for themeta-model, the Stacking-EMLmodelwas proposedunder
three scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5). The novelty of this study lies
in developing amore reliable stackedmodel for improving the prediction of
precipitation and temperature extremes in the Middle East.

Results
Performances of the individual ML models
The performance of five ML models in predicting maximum temperature,
minimum temperature, and precipitation was evaluated using RMSE, R²,
MAE, NSE, and MBE metrics (Table 1). The results indicate that the dif-
ferences between models are statistically significant (p < 0.05), highlighting
that certain models provide superior predictive accuracy. According to the
results, the LGBM and RF models consistently outperform the others.
LGBM demonstrates the best overall performance, achieving the lowest
RMSE and the highest R² values and favorable MAE, NSE, and near-zero
MBE across all variables. RF followed closely, particularly excelling in
temperature predictions.

In contrast, SVM, XGBoost, and CatBoost displayed comparatively
lower accuracy, with CatBoost yielding the least favorable outcomes. Due to
their superior performance, LGBMandRFare selected as the topmodels for
integration into themeta-model, designed to enhance predictive capabilities
by leveraging their strengths. The other models, including SVM, XGBoost,
and CatBoost, showed lower accuracy, with CatBoost performing the worst
overall. The decision to select LGBMand RF formeta-modeling is based on
their proven ability tominimize errors and effectively capture the variability
in climate data, making them suitable for developing robust climate pro-
jections for the study area. Consistent with our findings71, reported that the
RF model demonstrates strong potential in precipitation prediction. Our
experience here was also similar to the conclusions achieved by ref. 72, who
emphasize that RF outperformed traditional ensemble methods, suggesting
that ML techniques like RF and LGBM can significantly enhance the
accuracy of climate predictions compared to conventional models. The

LGBMmodel is also noted for its efficiency and accuracy in handling large
datasets, which is essential for climate modeling73.

Performances of the Stacking Ensemble Models
The selection of themeta-model plays a crucial role in determining the final
fit when stacking models. In this study, two scenarios were considered for
the meta-modeling process. As outlined in Table 1, the RF and LGBM
models were chosen as the base ML algorithms for the stacking approach.
Three regressors, including ANN, MLR, and LASSO, were used to develop
the final meta-model under two scenarios. The results indicate that ANN is
the most effective regressor for both scenarios, particularly when additional
geographic and topographic variables are included, as in SC2 (Table 2). This
performance justifies the selection of ANN for constructing the final meta-
model, whileMLR and LASSO could serve as supplementarymodels, given
their competitive performance. A review of previous studies reveals that, so
far, geographical variables have not been utilized to enhance the accuracy of
meta-models. However, current findings show that incorporating these
variables significantly improves the performance of all models, under-
scoring the importance of using diverse data sources for robust climate
modeling in the study area. Therefore, it is recommended that future
research consider including geographical variables to advance the accuracy
and reliability of meta-model construction.

To further assess the performance of the models and the influence of
geographic variables on prediction accuracy, a Taylor diagram analysis was
conducted for three climatic elements: maximum temperature, minimum
temperature, andprecipitation (Fig. 1). The analysis demonstrated thatML-
based stacking models, particularly the stacking model incorporating an
ANN in the SC2, outperformed other models, including traditional CMIP6
models such as AWI-CM-1-1-MR, MIROC6, and MRI-ESM2-0. These
stacking models exhibited high correlation coefficients (above 0.95 for all
variables) and standard deviations closely aligned with the observed data
(ERA5 reanalysis dataset), indicating a superior ability to capture complex
climatic patterns. Specifically, the stacking model with ANN in SC2
achieved the best performance among all models, with correlation coeffi-
cients of 0.99 for maximum temperature, 0.98 for minimum temperature,
and 0.82 for precipitation. In contrast, the CMIP6 models, particularly
MIROC6, displayed higher standard deviations (15 for maximum tem-
perature, 10 for minimum temperature, and 1.25 for precipitation) and
lower correlation coefficients, highlighting their limitations in reproducing
climate variability.

Historical simulation assessment and bias analysis of climate
variables
Figure 2a–i illustrates the spatial distribution of annual maximum tem-
perature, minimum temperature, and precipitation for both observed and
simulateddata and the localR2maps that evaluatemodel accuracy across the
Middle East. According to Fig. 2a, southern regions, such as the Arabian
Peninsula and North Africa, experience higher temperatures, a phenom-
enon attributable to their proximity to desert areas and the influence of hot,
dry winds74. These areas are depicted in darker red shades on the map. In
contrast, northern regions like Turkey and parts of Iran, characterized by
higher elevations or proximity to the Mediterranean and Caspian Seas,
exhibit lower temperatures. This variation is primarily due to differences in

Table 1 | Assessment of ML models’ performance

Model Tmax Tmin Pre

RMSE R2 MAE NSE MBE RMSE R2 MAE NSE MBE RMSE R2 MAE NSE MBE

RF 2.446 0.944 1.837 0.945 0.01 2.462 0.926 1.822 0.926 −0.01 0.849 0.645 0.419 0.445 0.001

SMV 2.458 0.943 1.864 0.943 0.008 2.467 0.926 1.839 0.925 −0.01 0.853 0.640 0.420 0.443 0.001

LGBM 2.428 0.945 1.861 0.944 0.007 2.458 0.926 1.835 0.926 −0.01 0.847 0.647 0.419 0.446 0.001

XGB 2.458 0.943 1.872 0.943 0.008 2.470 0.926 1.845 0.926 −0.01 0.850 0.644 0.42 0.444 0.001

CB 2.471 0.943 1.889 0.943 0.008 2.481 0.925 1.857 0.925 −0.01 0.854 0.639 0.423 0.439 0.002

Table 2 | Performance metrics of meta-model regressors
under two different scenarios

Model Tmax Tmin Precipitation

RMSE R2 RMSE R2 RMSE R2

SC1 ANN 2.368 0.972 2.7 0.966 0.823 0.705

MLR 2.364 0.97 2.702 0.964 0.844 0.704

LASSO 2.364 0.971 2.701 0.965 0.826 0.704

SC2 ANN 1.830 0.99 1.5 0.988 0.689 0.821

MLR 1.838 0.988 1.506 0.987 0.691 0.817

LASSO 1.832 0.989 1.503 0.971 0.689 0.819
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Fig. 1 | Taylor diagrams comparing the predictive performance of CMIP6models
and stacking-based machine learning models for three key climatic variables.
Model skill is assessed for a maximum temperature, b minimum temperature, and
c precipitation based on correlation coefficient, standard deviation, and centered

root mean square error. The diagrams contrast traditional CMIP6 models (AWI-
CM-1-1-MR, MIROC6, MRI-ESM2-0) with stacking ensemble models using ANN,
MLR, and LASSO meta-learners under two scenarios (SC1 and SC2), with ERA5
reanalysis data serving as the observational benchmark.

Fig. 2 | Spatial patterns of observed and simulated climatic variables and model
performance across the Middle East. a–c Annual average maximum temperature:
a observed, b simulated, c local R² values. Annual average minimum temperature:

d observed, e simulated, f local R² values. Annual average precipitation: g observed,
h simulated, i local R² values.
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latitude, elevation, and environmental influences, such as the proximity to
water bodies and local climatic conditions, especially the effects of deserts
and prevailing wind directions in the region75. The climatemodel employed
in this study has successfully reproduced these observed patterns, showing a
high correlation between simulated and observed temperatures (Fig. 2b).
Figure 2d illustrates the spatial distribution of minimum temperatures
across the region. Lower temperatures are noted in the northern areas, such
as Turkey and the mountainous regions of Iran, while higher temperatures
prevail in the southern areas, including the Arabian Peninsula and North
Africa. This spatial distribution reflects the influence of geographical and
climatic factors like elevation, latitude, and proximity to deserts. The
simulated model closely reproduces the general pattern of observed mini-
mum temperatures, capturing the key features of the region’s minimum
climate (Fig. 2e). The observed precipitation map (Fig. 2g) provides a clear
depiction of rainfall distribution in the Middle East, highlighting higher
precipitation levels in the northern and mountainous areas, particularly in
northern Turkey, western Iran, and the mountainous regions of Lebanon
and Syria. These areas experience elevated rainfall due to specific topo-
graphical conditions and the influence ofmoist air currents. Conversely, the
southern and central parts of the Arabian Peninsula and parts of North
Africa display the lowest precipitation levels, marked by orange and red
shades on themap. The simulated precipitationmap (Fig. 2h) aligns closely
with the observed distribution, with the discrepancies largely minor and
within the acceptable uncertainties of climate models.

The local R2 maps comprehensively evaluate the model’s accuracy in
simulating the climatic variables across the Middle East. For maximum
temperature, the R2 values range from 0.62 to 0.98 (Fig. 2c). The highest R2

values (close to 0.98) are found in the northern parts of the Middle East,
including Turkey, western Iran, and parts of northern Iraq. This indicates
that the model has a strong performance in capturing the maximum tem-
perature patterns in these areas. In contrast, lower R2 values (around 0.62)
aremainly observed in the central regions of theArabian Peninsula, parts of
Egypt, and central Iran. These spatial differences may result from complex
local geographical features, such as deserts, variations in elevation, and
diverse climatic conditions that pose challenges to accurate model
simulations.

Similarly, the R2 map for minimum temperature displays a spatial
distribution akin to that of maximum temperature, with values ranging
from 0.62 to 0.99 (Fig. 2f). However, more regions with lower R2 values are
observed, suggesting that the model encounters greater challenges in
simulating minimum temperatures. The model performs better in pre-
dicting minimum temperatures in northern areas of the Middle East,
including Turkey, northern Iran, and northern Iraq. In contrast, regions in
the south, particularly the central parts of theArabian Peninsula, sections of
Egypt, and Yemen, exhibit lower R2 values. This discrepancy may be due to
the complex interactions of geographical and climatic factors in these areas,
such as daily and seasonal temperature fluctuations, desert influences, and
regional atmospheric dynamics. The R2 map for precipitation reveals a
broader range of values, from 0.23 to 0.98, highlighting the intrinsic com-
plexities of precipitation modeling in the Middle East (Fig. 2i). Higher R2

values (close to 0.98) are primarily observed in the northern parts of the
Middle East, including Turkey and northwestern Iran. Notably, these
regions correspond with areas that experience higher precipitation, indi-
cating that the model effectively captures precipitation patterns where
rainfall is more abundant. On the other hand, lower R2 values are evident in
the central and southern parts of the Arabian Peninsula, sections of Egypt,
and other drier regions. This is likely due to the significant variability in
precipitation and the influence of localized geographical and atmospheric
conditions, which complicate accurate model simulations.

Spatial analysis of climate hotspots and cold spots in base
year (2015)
The following analysis focuses on identifying significant hotspots and cold
spots formaximum temperature, minimum temperature, and precipitation
in the base year (2015) across the Middle East (Fig. 3). These hotspot maps

utilize theGetis-OrdGi* statistic inArcGISProV3.3.0 to identify areaswith
clusters of high or low values, highlighting significant spatial patterns of
climate variability. By understanding the spatial distribution of these hot-
spots,we canbetter assess baseline climate risks and identify regions likely to
experience the most significant impacts of climate change in future sce-
narios. The spatial distribution of maximum temperatures (Tmax) exhibits
clear regional disparities (Fig. 3a). Hotspots characterized by higher max-
imum temperatures aremost prominent in southern Iran, Saudi Arabia, the
east of Egypt, and most of Oman. These areas display confidence levels
between 90% and 99%, signifying a high degree of statistical confidence that
these regions experienced significantly elevated Tmax values in 2015. In
contrast, northern Turkey and northwestern Iran present cold spots with
confidence levels of 95% and 99%, suggesting significantly lower maximum
temperatures in these regions compared to the surrounding areas. These
findings underscore the region’s thermal heterogeneity, with extreme heat
and cooler zones coexisting within relatively close geographic proximity.
Theminimum temperature (Tmin)map (Fig. 3b) reflects a pattern broadly
consistent with the Tmax results.

Hotspots are observed in southwestern Saudi Arabia and along the
southern coastline of Iran,where regions exhibit confidence levels from90%
to99%, indicating areas of significantlyhigherminimumtemperatures.This
suggests that these areas experienced relatively higher minimum tempera-
tures in 2015. Conversely, northern Turkey again emerges as a cold spot,
showing 95% and 99% confidence levels for lower Tmin values. The con-
sistency of cold spot identification in both Tmax and Tmin data suggests
that northern Turkey may have been a region of notable thermal anomaly
during this period. The spatial distribution of precipitation in 2015 presents
a clear divide between the northern and southern parts of the Middle East
(Fig. 3c). Northern Turkey, parts of northern Iraq, and areas along the
Zagros Mountains in western Iran appear as prominent hotspots, with
confidence levels of 95%. These regions received significantly higher pre-
cipitation levels than their surroundings, marking them as key zones of
concentrated rainfall. The concentration of hotspots in these northern
regions indicates that these areas experienced an unusuallywet year in 2015,
with precipitation levels significantly above the regional average.

On the other hand, southern Egypt, much of Saudi Arabia, and
southwestern Yemen emerge as notable cold spots, reflecting areas of very
low precipitation. These regions, particularly in southwestern Saudi Arabia,
display confidence levels between 95% and 99%, highlighting a significant
reduction in rainfall compared to other parts of theMiddle East. The spatial
clustering of cold spots in these southern areas emphasizes the persistently
dry conditions that characterized these regions in 2015, with extremely low
precipitation exacerbating the arid climate. The central regions, including
much of Iraq, Syria, and central Iran, are classified as “Not Significant,”
indicating that precipitation levels did not deviate significantly from the
regional norm in 2015. However, the sharp contrast between the wet con-
ditions in the northern hotspots and the dry, cold spots in the south
underscores the regional precipitation pattern imbalance.

Projected climate variability and future trends using
Stacking-EML
Under various climate scenarios, two analytical methods were employed to
assess the projected changes in maximum temperature, minimum tem-
perature, and precipitation in the Middle East from 2015 to 2099. First, we
utilized monthly pixel-based data averaged across the entire region to
provide a comprehensive overview of temporal patterns in these climatic
variables. This approach facilitated the illustration of overall trends over
time. Figure 4 presents the variation patterns of maximum temperature,
minimumtemperature, andprecipitationunder theSSP1-2.6, SSP2-4.5, and
SSP5-8.5 scenarios. Analysis indicates a significant upward trend in max-
imumtemperatures across all scenarios, particularly during summer.Under
the SSP1-2.6 scenario, representing a relatively optimistic pathway, summer
maximum temperatures gradually rise to ~35–40 °C, while winter tem-
peratures remain relatively cool between 15 and 20 °C, suggesting a stable
seasonal temperature pattern. In the SSP2-4.5 scenario, the increase is more
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pronounced, with summer temperatures frequently exceeding 40 °C and
winter temperatures rising to about 20–25 °C. This scenario exhibits greater
warming during spring and autumn, indicating more noticeable tempera-
ture fluctuations. The SSP5-8.5 scenario, representing high greenhouse gas
emissions, projects extreme temperature increases, with summermaximum
temperatures surpassing 45°C and winter temperatures exceeding 25 °C.
This scenario indicates a substantial loss of seasonal temperature balance,
with intense and persistent heat throughout the year. Projections for
minimum temperatures indicate a pronounced upward trend, particularly
under the more pessimistic climate scenarios. Under SSP1-2.6, minimum
temperatures during summer months gradually increase to around 20 °C,
while winter months maintain their relative coolness.

In contrast, the SSP2-4.5 scenario shows minimum temperatures
exceeding 25 °C during summer, withwinterminimum temperatures rising
to 10–15 °C. The SSP5-8.5 scenario projects minimum summer tempera-
tures above 30 °C and significant warming during winter to 15–20 °C.
Precipitation projections suggest substantial variations and reductions,
particularly during the summer months. Under SSP1-2.6, the precipitation
pattern remains relatively stable, with marked reductions during summer
indicative of seasonal droughts, while winter and springmonths experience

moderate rainfall. The SSP2-4.5 scenario continues to exhibit dry summer
periods but with an increased frequency of heavy rainfall events in certain
years and months, implying heightened variability and extreme precipita-
tion events. Winter months in this scenario experience less rainfall com-
pared to SSP1-2.6. The SSP5-8.5 scenario projects the most severe changes,
with intensified summer droughts and a near absence of rainfall from June
to September. Furthermore, sporadic occurrences of severe and irregular
precipitation events during spring and winter reflect a significant reduction
in annual precipitation and heightened climatic variability.

Projected spatial changes in climate parameters using
Stacking-EML
Analyzing maximum temperature, minimum temperature, and precipita-
tion at a general level lacks the spatial resolution to capture detailed regional
changes in the Middle East. To address this, the Hotspot Analysis Com-
parison tool in ArcGIS ProV3.3.0 with Fuzzyweights as a similar weighting
method was employed to identify areas with significant changes, hot spots,
and cold spots across different climate scenarios. This approach examines
spatial variations and highlights regions sensitive to climate change. The
analysis projects how these climatic elements will evolve under three

Fig. 3 | Hotspot and cold spot distribution of climate variables across the Middle
East in the baseline year 2015. Maps show the spatial clustering of a maximum
temperature (Tmax), bminimum temperature (Tmin), and c precipitation based on
Getis-Ord Gi* statistics. Hotspots represent statistically significant clusters of high

values, and cold spots represent significant clusters of low values at 90%, 95%, and
99% confidence levels. Areas not meeting statistical significance are labeled as Not
Significant. These maps highlight spatial extremes and heterogeneity in baseline
climate conditions.
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emissions scenarios, SSP1-2.6, SSP2-4.5, and SSP5-8.5, over the periods
2015–2045, 2045–2075, and 2075-2099, offering insights into regional
vulnerabilities.

Figure 5 presents the projected hotspots of maximum temperature
changes in the Middle East across the SSP scenarios for the specified
timeframes. Under the low-emission SSP1-2.6 scenario, the figure reveals
limited but noticeable warming, particularly in the southern regions
(Fig. 5a). Red areas shift to “Not significant to Hot,”mainly in central Saudi
Arabia, parts of Yemen, and eastern Egypt. In Turkey and northern Iran,
cooler regions maintain their “cold to cold” status. Between 2045 and 2075,
thewarming continueswith less intensity; severewarming is controlled, and
northern areas retain their cool status, though slight warming is observable
(Fig. 5b). By 2099, significant temperature increases are prevented;while red
areas slightly expand in Saudi Arabia and southern Iran, severe heat impact
remains limited, and northern regionsmaintain cooler climates (Fig. 5c). In
themoderate-emissionSSP2-4.5 scenario,more significantwarmingoccurs.
Hot areas expand in central Saudi Arabia, the Red Sea coasts, and southern
Iran, highlighting notable increases inmaximum temperatures (Fig. 5d). By
2075, these areas will intensify and extend into southern Iraq, Oman, and
western Yemen, indicating a shift toward extreme heat conditions (Fig. 5e).
In the north, cooler areas remain stable, but initial signs of warming emerge,
with some regions shifting to “cold to Not significant.” By 2099, a distinct
north-south division emerges, with the southern regions engulfed in red
zones, signaling persistent extreme heat, while the northern areas show a
more widespread warming trend (Fig. 5f).

Under SSP5-8.5, the most severe warming is projected. By 2045, vast
sections of the southern Middle East, including southern Saudi Arabia, the
Gulf countries, and parts of Iran, will be engulfed in red zones, indicating
substantial increases inmaximumtemperatures (Fig. 5g). Between2045 and
2075, the southern half of the Middle East remains dominated by these red
areas, with prolonged and intense heat affecting Saudi Arabia, Oman,

Yemen, and Egypt. In the northern regions, blue areas gradually diminish,
transitioning toward neutral conditions (Fig. 5h). As the century draws to a
close, severe warming peaks; red zones spread across the southern regions,
leaving few areas in the north untouched. This scenario highlights the grave
consequences of high emissions, potentially resulting in uninhabitable
conditions (Fig. 5i).

For minimum temperatures (Fig. 6), the SSP1-2.6 scenario indicates
moderate changes between 2015 and 2045. Blue areas (“cold to cold”) are
widespread in northern regions, particularly in Turkey and northern Iran,
signifying stable cooler temperatures (Fig. 6a). This stability reflects the
success of emission reduction efforts in preserving cooler climates in these
areas. Meanwhile, southern regions like Yemen, southern Iran, and Saudi
Arabia fall within red zones (“Hot to Hot”), pointing to persistently high
minimum temperatures. From 2045 to 2075, the red areas in the south
expand slightly (Fig. 6b), though emission control efforts effectively limit
severe warming. Northern regions remain largely unchanged, except for a
slight decrease in blue areas in Iran, suggesting a mild warming trend. By
2099, the overall patterns show little change (Fig. 6c), with the north
maintaining its status while the south continues to experience higher tem-
peratures. These mild changes highlight the positive impact of strong cli-
mate actions in mitigating severe shifts in minimum temperatures. Under
the SSP2-4.5 scenario, more noticeable changes in minimum temperatures
occur. In the period from 2015 to 2045, southern regions, particularly Saudi
Arabia, southern Iraq, and western Iran, transitioned to red areas (“Not
significant to Hot”), indicating an increase in minimum temperatures
(Fig. 6d). Northern regions remain coolwith blue areas, though this stability
appears increasingly threatened. By 2075, red zones in the south expand
further, with significant warming observed in Saudi Arabia and southern
Iraq (Fig. 6e). This trend suggests growing pressure on water resources,
agriculture, and the environment. Although the north maintains cool
temperatures, some blue areas gradually shift to neutral zones. By 2099, red

Fig. 4 | Temporal evolution of projected maximum temperature, minimum
temperature, and precipitation in theMiddle East from 2015 to 2099 under three
SSP scenarios. This figure presents heatmaps of monthly climatological variables

including maximum temperature (top row), minimum temperature (middle row),
and precipitation (bottom row), averaged across the region. Columns correspond to
SSP1-2.6 (left), SSP2-4.5 (middle), and SSP5-8.5 (right).
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areas dominate the southern Middle East (Fig. 6f), indicating severe
warming. While northern regions mostly retain cool temperatures, signs of
warming emerge, creating a clear North-South divide. The SSP5-8.5 sce-
nariopresents themost drastic changes inminimumtemperatures. Between
2015 and 2045, red areas became prominent across the Arabian Peninsula
and northern Yemen (Fig. 6g), where regions previously experiencing
moderate temperatures now face significant warming. While northern
regions initially remain within blue zones, some areas shift to “Not sig-
nificant to cold.” By 2075, warming intensifies, with red areas spreading
across most of the southern Middle East (Fig. 6h). Northern regions lose
their blue areas, indicating a gradual warming trend. By 2099, severe
warming is evident as red zones engulf much of Saudi Arabia, Oman,
Yemen, and Iran (Fig. 6i). Thenorthern regions losemost of their blue areas,
transitioning to warmer categories, underscoring the grave consequences of
continued high emissions. The SSP5-8.5 scenario presents the most drastic
changes in minimum temperatures. From 2015 to 2045, red areas became
prominent across the Arabian Peninsula and northern Yemen (Fig. 6g),

where regions previously experiencing moderate temperatures now face
significantwarming.Althoughnorthern regions initially remainwithin blue
zones, some areas shift to “Not significant to cold.” As we move into 2075,
warming intensifies, with red areas spreading across most of the southern
Middle East (Fig. 6h). In the north, blue areas begin to disappear, indicating
a gradual warming trend. By the end of the century, severe warming is
evident as red zones engulf much of Saudi Arabia, Oman, Yemen, and Iran
(Fig. 6i). Most northern regions lose their blue areas, transitioning to war-
mer categories, highlighting the grave consequences of continued high
emissions.

The analysis of projected precipitation changes under the SSP1-2.6
scenario reveals varying patterns between the northern and southern
regions of the Middle East. From 2015 to 2045, northern areas, including
Turkey and Iran, experienced a relative increase in precipitation (“Not
significant to Hot”), as shown in Fig. 7a, while southern regions like Saudi
Arabia faceddecreased rainfall. From2045 to 2075, precipitationpatterns in
the north remain stable. However, some areas in Iran shift towards unstable

Fig. 5 | Spatial projection of maximum temperature hotspot dynamics in the
Middle East under three SSP scenarios (SSP1–2.6, SSP2–4.5, SSP5–8.5) for the
future periods. a,d, g 2015–2045, b, e, h 2045–2075, and c, f, i 2075–2099. Themaps
display hotspot and cold spot transitions based on the Getis-Ord Gi* statistic using

Fuzzy weights. Color coding highlights statistically significant shifts in maximum
temperature: deep red (Hot to Hot), pale red (Not Sig to Hot), and light red (Hot to
Not Sig) indicate warming trends, while blue shades represent cooling (Cold toCold,
Cold to Not Sig, Not Sig to Cold).
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conditions (“Hot to Not significant”), as depicted in Fig. 7b. Regions with
lowprecipitation extend tohigher latitudes, affecting centralMiddle Eastern
areas. By 2099, the SSP1-2.6 scenario prevents more severe changes;
northern regions maintain stability, while southern areas continue to suffer
from aridity (Fig. 7c). Under the SSP2-4.5 scenario, more significant
changes occur. Between 2015 and 2045, northern regions continue to
receive increased rainfall (Fig. 7d), whereas southern regions, especially
Saudi Arabia and Yemen, encounter significant decreases. In 2075, central
and western Iran transformed into “Hot to Hot” areas (Fig. 7e), indicating
increased precipitation. In contrast, southern regions move towards severe
aridity (“cold to cold”). By the end of the century, red areas dominate the
southern Middle East (Fig. 7f), signifying severe aridity, while northern
regions show signs of instability. The SSP5-8.5 scenario predicts the most
severe precipitation changes.During theperiod from2015 to2045, southern
Saudi Arabia, Yemen, and Oman shifted from “cold to Not significant”
(Fig. 7g), although vast areas remain “cold to cold.” Western Iran

experiences decreased precipitation, changing from “Hot to Not sig-
nificant.” Between 2045 and 2075, precipitation increased in southern and
western Iran (Fig. 7h), but Saudi Arabia, Oman, and Egypt changed to
“cold”, signaling intensified aridity. Severe drought conditions dominate
towards the endof the century (Fig. 7i),with “cold to cold” areas prevalent in
southern regions, while northern areas exhibit widespread instability, even
in previously stable rainfall zones.

Discussion
In the Middle East, the climate crisis has become a primary concern for the
region’s countries76,77. Food shortages, exacerbated by high birth and con-
sumption rates and migration from unbearably hot areas to cooler regions,
threaten the agricultural sector, which still employs 40% of the Middle
Eastern population78. These factors illustrate the significant challenges the
climate crisis poses for the region. This development not only endangers
regional stability but also threatens global security. This study was designed

Fig. 6 | Spatial projection of minimum temperature hotspot dynamics in the
Middle East under three SSP scenarios (SSP1–2.6, SSP2–4.5, SSP5–8.5) for the
future periods. a, d, g 2015–2045, b, e, h 2045–2075, and c, f, i 2075–2099. This
hotspot analysis is based on the Getis-Ord Gi* statistic using fuzzy spatial weights.
Red shades indicate significant warming trends, with dark red representing

consistent hot spots (Hot to Hot) and pale red showing newly emerging hot areas
(Not Sig to Hot). Blue tones reflect areas of relative cooling (Cold to Cold, Not Sig to
Cold), while gray zones indicate no significant change.
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to develop a stackingmodel to improve climate projections’ accuracy for key
climatic elements in theMiddle East. One of the key findings is the superior
performance of the “Stacking-EML” framework compared to traditional
methods, particularly in the second scenario where geographical factors,
including longitude, latitude, elevation, slope, and aspect, were incorporated
into the model estimations. These results underscore that ML approaches,
especially stacking models based on ANN, can significantly enhance the
accuracy of climate predictions. By combining the capabilities of multiple
models and leveraging their complementary features, these approaches
improve predictive performance for complex climatic variables. This
advancement provides a more reliable foundation for policymakers to
formulate strategies addressing the climate crisis in the region.

Our study’s findings reveal that the expected rise in temperatures,
especially under the SSP5-8.5 scenario, could exacerbate these issues, leading
to even more profound environmental and societal consequences. The
substantial rise in temperatures, especially under the SSP5-8.5 scenario,
indicates a severe warming trend, which could lead to profound

environmental and societal consequences79,80. For instance, it is projected
that summer daytime temperatures will exceed 45 °C, which creates
hazardous heat conditions, puts immense strain on energy systems required
for cooling, and exacerbates water scarcity81. Additionally, the findings
indicate a projected increase inminimum temperatures in the coming years.
Higherwinter temperatureswill disrupt the seasonal balance, shortening the
cooler periods vital for agricultural cycles, natural ecosystems, and public
health25. The loss of this seasonal equilibrium is expected to trigger sig-
nificant changes in natural cycles and agricultural patterns across the
region29. These findings underscore the urgent need for climate adaptation
strategies, water resource management, and greenhouse gas emission
reduction to mitigate the growing impacts of climate change. Rising mini-
mum temperatures also present serious challenges for climate adaptation in
the region. Increasingminimum temperatures, particularly under the SSP5-
8.5 scenario, exacerbate climate anomalies by disrupting seasonal cycles and
intensifying extreme climate events, such asmore frequentwarmnights and
shorter cooler periods28. This trend leads to heightened energy consumption

Fig. 7 | Spatial projection of precipitation hotspot dynamics in the Middle East
under three SSP scenarios (SSP1–2.6, SSP2–4.5, SSP5–8.5) for the future periods.
a, d, g 2015–2045, b, e, h 2045–2075, and c, f, i 2075–2099. This analysis utilizes the
Getis-Ord Gi* statistic with fuzzy spatial weighting to identify significant changes in

precipitation patterns across the region. Red areas indicate zones of statistically
significant increases in precipitation (e.g., “Hot to Hot”), while blue shades show
areas of drying (e.g., “Cold to Cold”). The gray category represents areas with no
significant change.
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additional stress on water and energy infrastructures, and poses significant
risks to public health through prolonged heatwaves and warm nights,
severely impacting human health and ecosystems82–84. Long-term climate
policies, particularly in response to the SSP5-8.5 scenario, must become a
regional priority to address these emerging challenges. Additionally, as
highlighted by ref. 85, integrating the prediction of heatwave-related mor-
tality into climate models can improve the forecasting of extreme tem-
perature impacts on public health. This method further supports the need
for adaptive management in vulnerable regions like the Middle East, where
rising temperatures could substantially increase mortality rates due to heat
stress.

The analysis of precipitation patterns under different climate scenarios
further emphasizes the critical risks facing the Middle East. A significant
reduction in rainfall, especially under the SSP5-8.5 scenario, suggests an
intensification of seasonal droughts and greater variability in precipitation,
leading to severe challenges such as water resource depletion, reduced
agricultural productivity, and increased environmental hazards79. Long-
term projections, such as those by ref. 86, support these concerns, showing
that the region’s arid and semi-arid areas will significantly reduce pre-
cipitation and soil moisture, further straining water resources. Moreover,
the increased variability and frequency of extreme precipitation events
under this scenario highlight the need for comprehensive water resource
management and climate adaptation planning87. Even under the SSP2-
4.5 scenario, notable changes in precipitation patterns raise concerns about
heightened risks of flash floods and other climate-induced challenges. For
example,Kassaye et al.88 concluded that under the SSP2-4.5 scenario, studies
project a general increase in streamflow magnitude, with yearly flow
expected to rise by 4.8% during the mid-term (2041–2070). These trends
make it clear that urgent climate action and targeted water management
strategies are essential to mitigate the long-term impacts of climate change
across various scenarios, particularly the pessimistic SSP5-8.582.

Given the significant impacts of climate change in the Middle East,
identifying the most vulnerable areas is crucial for targeted adaptation and
resource management. Initially, a trend analysis using the Mann-Kendall
test was conducted to identify these critical areas. However, after calculating
the trends, it became clear that under the SSP5-8.5 scenario, the entire
Middle East exhibits consistent upward trends inminimum andmaximum
temperatures and a downward trend in precipitation, making it impossible
to distinguish specific vulnerable areas based solely on trend analysis.
Therefore, one of the most effective techniques in this context, Hotspot
comparison analysis, was applied89. Thismethod identifies “hot” and “cold”
spots and tracks their shifts over time. In this study, these areas were found
to be statistically significant at the 99% confidence level, with at least two
intersecting climatic elements, helping policymakers prioritize regions
where the impacts of climate change are likely to bemost severe. The spatial
distribution of sensitive areas in the Middle East under various climate
scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) projected for 2099 offers cri-
tical insights into the future climate risks faced by the region. Analysis of
these projections reveals five categories of risk areas: (1) regions with high
maximum and minimum temperatures alongside low precipitation, (2)
regions exposed to high maximum and minimum temperatures, (3) areas
vulnerable due to high maximum temperatures combined with reduced
precipitation, (4) regions at risk from highminimum temperatures coupled
with low precipitation, and (5) regions projected to experience increased
precipitation. Under the SSP1-2.6 scenario (Fig. 8a), southern Saudi Arabia,
UAE, Yemen, and Oman regions are high-risk, particularly concerning the
highest maximum and minimum temperatures. This suggests that, even
under a low-emission scenario, these areas will face elevated temperatures,
potentially exacerbating heat stress, agricultural challenges, and water
scarcity90. These findings align with projections by Mora et al.81 and Lima
et al.91, which indicate an increase in both the frequency and intensity of
heatwaves in theMiddle East, even under low-emission scenarios. Themost
critical areas are concentrated in southeastern Saudi Arabia, northern
Oman, and eastern Yemen, where all three climatic variables reach their
most extreme levels.

Additionally, coastal vulnerability is observed in eastern Egypt, attri-
butable to high maximum and minimum temperatures and a lack of pre-
cipitation. Conversely, northern Iran, parts of the Zagros Mountains, and
eastern Turkey are projected to experience increased rainfall. In the SSP2-
4.5 scenario (Fig. 8b), the expansion of high-risk areas becomes more
pronounced, particularly in southern and central Saudi Arabia, Qatar, the
UAE, Oman, western Yemen, Iran, and Egypt. The findings indicate that in
this scenario, an intensification of extreme heat conditions and a further
reduction in precipitation are expected, especially in southern regions.
These findings corroborate research by Hamed et al.92, who reported that
CMIP6models project a decrease in precipitation, and byMalik et al.93, who
noted a significant increase in temperature in arid and semi-arid regions
under moderate-emission scenarios. Critical areas concerning maximum
and minimum temperatures, previously limited to southern Iran, have
expanded considerably in this case.

The most vulnerable regions are in western Yemen, where extreme
temperatures coincide with diminished rainfall. As projected in the SSP1-
2.6 scenario, most parts of the Middle East are expected to experience a
decrease in precipitation. According to the research by Terink et al.94, most
countries in the Middle East are expected to experience a reduction in
annual precipitation. In particular, a 15–20%decrease in rainfall is projected
during 2040–2050.Regions such as southernEgypt, SaudiArabia, Syria, and
eastern Iran are expected to face the most significant reductions in
precipitation.

On the other hand, increased precipitation is expected for northern
Iran, areas along the Caspian Sea, the Zagros Mountains, and eastern
Turkey. This finding is consistent with previous research indicating a shift
toward heavier rainfall events in these areas95–97. According to these studies,
the western and northern parts of Iran are expected to encounter significant
increases in precipitation. Abbaspour, Faramarzi, Ghasemi and Yang97

suggest that northern andwestern Iranwill experience greater rainfall and a
higher likelihood of large and severe floods in these regions under various
climate change scenarios.

Similarly95, found that the number of days with heavy (R10mm) and
heavy rainfall (R20mm) will significantly increase, particularly along the
southern Caspian Sea coast and the Zagros Mountains. In alignment with
these findings, our results also corroborate Sarış98, who highlighted the
increased susceptibility of the Black Sea region to heavy precipitation. Fur-
thermore,Majdi et al.99 reported a decrease in precipitation, ranging between
5 and 133mm on average, across most parts of the Middle East and Medi-
terranean regions, based on an analysis of 23 GCMs. This variability across
regions underscores climate change’s complex and multifaceted impacts on
rainfall patterns in the broader region. Similarly, the SSP2-4.5 scenario also
anticipates increased precipitation in some parts of Iran and Turkey. The
potential for future increases in precipitation in certain areas of the Middle
East may be explained by a theory put forward by Francis and Vavrus100,
which links climate change to extreme weather patterns in mid-latitude
regions. This theory suggests that weakened zonal winds, coupled with
increased wave amplitude, contribute to the slower movement of Rossby
waves, subsequently increasing the likelihood of extreme weather events101.

The SSP5-8.5 scenario (Fig. 8c) presents the most severe and wide-
spread climate impacts. The southernMiddle East, including Saudi Arabia,
Oman, Yemen, Iraq, and Iran, is predominantly characterized by extreme
heat, with substantial consequences for agriculture, water resources, and
humanhabitability. In this scenario, regions experiencing criticalmaximum
and minimum temperatures and precipitation reduction, which were pre-
viously confined to lower latitudes, now extend to Kuwait and southeastern
Iraq. These findings align with previous research by Black et al.102, which
projects a decrease in precipitation and an increase in temperatures in the
southern Middle East under greenhouse gas emission scenarios. The study
also predicts a shift toward polar storm tracks and the weakening of Med-
iterranean storm systems, potentially leading to reduced winter rainfall in
the region. According to research conducted by Almazroui et al.103, it is
projected that by the end of the 21st century, under the RCP8.5 scenario,
temperatures in the central and southern regions of the Arabian Peninsula
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will increasebyup to6.4 °C. In contrast, thenorthern regionswill experience
a temperature rise of 5.2 °C. These projections further corroborate our
findings, suggesting a significant rise in temperature in areas such asKuwait
and southeastern Iraq and highlighting the broader trend of increasing
temperatures across the Arabian Peninsula. Similarly, Varela et al.104 con-
cluded that the eastern Arabian Peninsula and North Africa will be among
the most affected areas, with extreme temperatures occurring over 80%
of days.

In summaty, this study presents a novel ensemble ML framework,
Stacking-EML, aimed at enhancing climate forecasting for the Middle East
by utilizing CMIP6 datasets. With its diverse climate and geography, the
Middle East faces major ecological challenges due to climate change. These
challenges include rising temperatures, changes in precipitation trends, and
more frequent severe weather events. Accurately predicting and assessing
these climate impacts is crucial for effective adaptation and mitigation
strategies. Our methodology seeks to address this need by combining var-
ious ML algorithms to improve the accuracy and robustness of climate
variable forecasts against varying input data and different climatic condi-
tions. The Stacking-EML model was developed through a comprehensive,
multi-phase framework. Initially, five distinct ML algorithms, including

Random Forest, XGBoost, LGBM, SVM, and CatBoost, were trained using
monthly datasets covering precipitation, maximum temperature, and
minimum temperature from selected CMIP6 GCMs for 2015–2100.
Among these, LGBM and RF showed superior performance, particularly in
capturing the variability in climate data across the Middle East. These
models were then combined into a meta-model using a stacking ensemble
strategy, with an ANN acting as the most effective regressor in the final
meta-model. The Stacking-EML framework significantly improved com-
pared to individual models and traditional CMIP6 outputs. Evaluation
criteria, including RMSE and R², showed enhanced predictive accuracy for
precipitation and temperature extremes. Incorporating geographical and
topographical factors, such as longitude, latitude, elevation, slope, and
aspect, further optimized the model’s performance, highlighting the
importance of integrating diverse data sources in climate modeling. Spatial
analyses using Hotspot Analysis revealed critical insights into expected
climate changes under different SSP scenarios. The model forecasts a con-
siderable increase in maximum and minimum temperatures across the
Middle East, particularly under the high-emission SSP5-8.5 scenario. This
scenario predicts extreme temperature increases, with summer maximum
temperatures exceeding 45 °C and a notable disruption of seasonal

Fig. 8 | Spatial distribution of critical climate-vulnerable areas in theMiddle East
under three SSP scenarios (SSP1–2.6, SSP2–4.5, and SSP5–8.5) for the year 2099,
based on Hotspot Comparison Analysis. Maps (a–c) illustrate the intersection of
significant climatic stressors including maximum temperature, minimum

temperature, and precipitation using Getis-Ord Gi* analysis. Colored zones
represent areas where at least two extreme climatic variables coincide, identifying the
regions at greatest risk from combined heat and moisture stress. Red and orange
boundaries indicate compounding temperature extremes, blue.
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temperature balance. Precipitation trends are expected to show substantial
variability and reductions, especially during summer, leading to intensified
drought conditions and greater climate variability.Identifying vulnerable
areas through hotspot and cold spot assessments highlights regions likely to
experience the most severe impacts of climate change. Southern areas,
including Saudi Arabia, Oman, Yemen, and parts of Iran and Egypt, are
projected to face extreme heat scenarios and reduced precipitation, poten-
tially exacerbating water scarcity, agricultural productivity, and public
health issues. In contrast, northern regions such as Turkey and northern
Iran may see increased precipitation, presenting distinct challenges such as
flooding and ecosystem disruptions.

Methods
Study area
The Middle East (Fig. 9) is a geographically and climatically diverse region
encompassing sixteen countries, including those of the Arabian Peninsula
(Oman, the United Arab Emirates, Bahrain, Saudi Arabia, Kuwait, Yemen,
and Qatar), as well as Jordan, Syria, Iran, Palestine, Iraq, Turkey, Egypt, and
Lebanon105. It spans an area of over 69million km2 and hosts a wide range of
climatic conditions, from the extremely arid deserts of theArabian Peninsula
and parts of Egypt to the semi-arid or more temperate highlands of Turkey
and the mountainous regions of Iran106. Average annual precipitation typi-
cally falls below 250mm in vast portions of the region; however, areas

adjacent to theMediterranean and Caspian Seas andmountainous corridors
such as the Zagros and Taurus ranges can receive substantially higher
rainfall74–76,107. Temperature extremes are equally striking,with summerhighs
frequently surpassing 50 °C in the Arabian Peninsula and winter lows
dropping below freezing in upland areas93. Such spatial heterogeneity and
pronounced aridity pose major challenges for climate modeling, particularly
given limited in-situ data coverage, complex topographical influences, and
rapid demographic expansion in water-scarce zones77,106. This study’s focus
on the Middle East is motivated by its acute vulnerability to climate-related
stressors, including heatwaves, rainfall deficits, and water resource depletion,
all of which are exacerbated by climate change76. The region’s significant
temperature gradient from intensely hot and hyper-arid conditions along the
southern Arabian coasts and deserts to cooler, more humid pockets in
northern highlands creates an ideal testbed for evaluating ensemblemachine
learning approaches that aim to capture the complexity and extremes of
regional climatic behaviors. By systematically incorporating both arid low-
lands and relativelymore temperate uplands, thepresent frameworkprovides
an opportunity to assess the robustness of our Stacking-EML methodology
across a broad range of climate profiles.

Methodological framework
The comprehensive framework employed in this study is illustrated in
Fig. 10. The methodology is structured into five phases: Phase I involves

Fig. 9 | Geographic location and extent of the study area.
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compiling the Model Dataset, Phase II, Base ML Model Development,
entails training five machine learning algorithms, including RF, Extreme
Gradient Boosting (XGBoost), Light Gradient Boosting Machine
(LightGBM), SupportVectorMachine (SVM), andCatBoost. Thesemodels
predict the input data in Phase III, Base Model Predictions. Phase IV,
Stacking andMeta-Modeling, focuses on creating the Meta Model. Finally,
Phase V emphasizes predicting input data using the Stacking-EML
approach.

Phase I: Dataset compilation
Phase I involves compiling theModelDataset, which includesmonthly data
on precipitation, maximum temperature, and minimum temperature from
CMIP6, simulated by selected Global Climate Models (GCMs) for
2015–2100. Additionally, ERA5 reanalysis data (1995–2014) are employed
for bias-correcting the historical portion of the GCM outputs and for vali-
dating model performance, while the digital elevation model (DEM)

provides critical topographical features (elevation, slope, and aspect) that
support both the co-Kriging downscaling step and the subsequent refine-
ment of predictions in themeta-model. The datasets employed in this study
are outlined as follows:

CMIP6
The monthly maximum temperature, minimum temperature, and pre-
cipitationdataofCMIP6 simulatedby some selectedGCMsover 2015–2100
are obtained from the Earth System Grid data distribution portal (https://
cds.climate.copernicus.eu/). CMIP6 uses future scenarios to examine how
climate change might occur under different greenhouse gas emission
scenarios108. SSP1-2.6, SSP2-4.5, and SSP5-8.5 climate scenarios represent
future global climate change projections until 2100. SSP1-2.6 represents an
optimistic scenario where global CO2 emissions drop to zero by 2050,
aligning with the Paris Agreement’s goal to limit global warming to 1.5 °C
above pre-industrial levels, with a radiative forcing of 2.6W/m² and

Fig. 10 | Proposed stacking ensemble model work-
flow for climate projections (MaxTemperature,Min
Temperature, and Precipitation) in the Middle East.
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temperatures stabilizing at 1.4 °C by 210012. In contrast, SSP2-4.5 is a
moderate scenario with intermediate climate mitigation and adaptation
efforts, leading to a radiative forcing of 4.5W/m² by 2100. It aligns some-
what with the Paris Agreement, predicting a warming of ~2.7 °C by the end
of the century109. On the other hand, SSP5-8.5 outlines a high-emission
scenario with significant climate changemitigation challenges andminimal
adaptation issues, leading to a radiative forcing of 8.5W/m² by 2100.
Without additional climate policies, it predicts a 4 °C increase in global
temperatures by the end of the century, updating the CMIP5
RCP8.5 scenario with socioeconomic factors110,111.

This study utilizesmonthly outputs from three CMIP6Global Climate
Models (GCMs), namely AWI-CM-1-1-MR, MIROC6, and MRI-ESM2-0
for theperiod 2015–2100under three Shared SocioeconomicPathway (SSP)
scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) (Table 3). These GCMs were
selected based on four principal criteria: (i) spatial resolution (nominal
100–250 km), which balances computational efficiency with adequate
representation of regional climate processes112, (ii) scenario availability for
all three SSP pathways, essential in assessing a broad range of future emis-
sion trajectories, (iii) proven skill in precipitation simulation over arid and
semi-arid domains, as demonstrated in prior regional studies52, and (iv)
temporal coverage and consistency with a baseline observational period
(1995–2014) to facilitate bias correction against ERA5 reanalysis data25.

The raw GCM outputs frequently exhibit systematic biases, particu-
larly in topographically complex or data-sparse regions113. To address these
discrepancies and reconcile the varying spatial resolutions (GCM nominal
resolutionsof 1.1°–1.4°vs. ERA5at 0.1° and thehigh-resolutionDEM), a co-
Kriging downscaling approach was employed, and the GCM outputs were
first spatially resampled to a consistent 0.5° × 0.5° grid. Specifically, a co-
Kriging method was used for this spatial interpolation, leveraging topo-
graphical features (elevation, slope, and aspect) from theDEMas secondary
variables. This approach improves upon ordinary Kriging by incorporating
additional geographic information, thereby refining estimates in complex
terrains and preserving local variance more effectively114. Moreover, Co-
Kriging offers a significant advantage in regions with complex topography
or sparse observational data by leveraging secondary topographical vari-
ables. This method refines spatial patterns in climate simulations by
incorporating real-world geographical dependencies, reducing systematic
interpolation errors that may arise in simpler spatial resampling methods.
Co-Kriging is particularly advantageous for downscaling climate variables
in mountainous or data-sparse areas, as it leverages correlations with sec-
ondary variables to achieve higher spatial accuracy115. Following the co-
Kriging downscaling, a two-step bias correction (Linear Scaling and
Quantile Mapping) was applied for bias correction116. The bias correction
process reduces discrepancies between GCM outputs and observed data,
facilitating alignment between modeled and observed distributions. While
this process cannot eliminate structural uncertainties arising from the
incomplete simulation of certain physical processes in climate models, its
effectiveness in improving accuracy and consistency with real-world data
has been demonstrated in various studies113. The combination of Co-
Kriging and bias correction in this study provides a comprehensive and
efficient approach to enhancing the accuracy of climate data. This method
corrects systematic biases in GCM outputs and offers greater flexibility in
downscaling data to more accurately represent regional climate variations.

Previous research has shown that such an integrated approach significantly
improves prediction accuracy and enhances the agreement between simu-
lated and observed values117. Therefore, while uncertainties are an inherent
part of climate modeling, adopting this combined approach effectively
minimizes errors and improves the regional representation of climate
data118. Prior validation studies confirm that AWI-CM-1-1-MR, MIROC6,
and MRI-ESM2-0 exhibit robust skill in simulating temperature trends,
precipitation variability, and key climatological extremes over the Middle
East119–121. Comparative evaluationswith broaderCMIP6ensembles suggest
that thesemodels effectively capture seasonal precipitation cycles, including
winter rainfall peaks in northern Middle Eastern regions, and reproduce
long-term warming trends consistent with multi-model assessments92.
Furthermore, their skill in replicating historical drought frequencies and
heatwave intensities has been established in prior regional assessments,
reinforcing their credibility for future projections122. Despite these advan-
tages, it is important to note that any downscaling proceduremay introduce
additional uncertainties, particularly in areas where observational data are
sparse or topographic gradients are highly variable.

Reanalysis data. ERA5, the fifth generation of reanalysis products
developed by the ECMWF, is employed to reanalyze global atmospheric
changes using both models and observational data. Data from multiple
sources, including satellites, meteorological stations, and aircraft, are
combined with advanced physical models to produce high-precision
spatiotemporal distributions of various meteorological variables on a
global scale123. Significant improvements over its predecessor, ERA-
Interim, include enhanced spatial resolution (0.25° compared to 0.75° for
ERA-Interim), the incorporation of a substantially larger volume of
observations for data assimilation, improved representation of radiative
forcing (including sulphate aerosols from volcanic eruptions), a better
global balance between precipitation and evaporation, andmore accurate
sea surface temperature and sea ice coverage124,125. For this study, ERA5
precipitation and temperature data from 1 January 1995 to 31 December
2014, with a spatial resolution of 0.1° × 0.1° and monthly temporal
resolution, were obtained from the Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/).

Digital elevation model. In this study, the Digital Elevation Model
(DEM) was employed to capture the topographical features of the study
area, including elevation, slope, and aspect. The high-resolution
SRTM15+DEM, with a spatial resolution of 15 arc seconds (~500 m
at the equator), was used to provide detailed bathymetry and topography
data. Thismodel integrates over 33.6millionmeasurements from sources
such as the National Geospatial-Intelligence Agency and Scripps Insti-
tution of Oceanography. Onshore topography data are primarily derived
from SRTM-CGIAR V4.1, ArcticDEM above 60°N, and the Reference
ElevationModel of Antarctica below 62°S126. These DEM-based variables
were instrumental in the co-Kriging downscaling step and were intro-
duced later in Phase IV to refine the meta-model’s predictive accuracy.

Phase II: Base model development
Phase II focuses on developing base models using various ML algorithms.
This phase aims to create models that can accurately predict climate

Table 3 | Information on the three cmip6 global climate models employed in this study

Model
Name

Country Institution Resolution
(Lat*Lon)

Reference

AWI-CM-
1-1-MR

Germany Alfred Wegener Institute 1.1° × 1.1° Semmler, Danilov, Gierz, Goessling, Hegewald, Hinrichs,
Koldunov, Khosravi, Mu and Rackow182

MIROC6 Japan Japan Agency for Marine-Earth Science and
Technology, Japan

1.4° × 1.4° Shiogama183

MRI-
ESM2-0

Japan Meteorological Research Institute (MRI) of the Japan
Meteorological Agency (JMA)

1.125°
× 1.125°

Yukimoto, Kawai, Koshiro, Oshima, Yoshida, Urakawa, Tsujino,
Deushi, Tanaka and Hosaka184
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variables, such as maximum temperature, minimum temperature, and
precipitation, based on historical data from different scenarios (SSP1-2.6,
SSP2-4.5, and SSP5-8.5) derived from the CMIP6 climate models (AWI-
CM-1-1-MR,MIROC6,MRI-ESM2-0). To ensure the reliability of training
data, ERA5 reanalysis data was used as a reference for bias correction of the
CMIP6 model outputs before being employed in ML model training. The
reanalysis dataset provides high-resolution climate variables, reducing
systematic biases in raw GCM simulations and ensuring that training data
better represents observed climate conditions. ERA5-adjusted climate
variables served as input features for training all base ML models, thereby
improving model generalization. In this phase, various ML algorithms are
employed to develop base models, each designed to effectively capture the
complex relationships in climate data. Thesemodels were selected based on
their proven ability to process nonlinear climate dynamics, handle high-
dimensional datasets, and provide reliable predictions in climate modeling
applications127. We adopted a structured feature selection approach to
enhance themodels’ predictive performance. RF andXGBoost were used to
assess the importance of various predictors, given their proven ability to
rank features effectively in complex environmental datasets128.

Based on these analyses, temperature, precipitation, elevation, slope,
and aspect emerged as the most influential variables, ensuring spatial con-
sistency and optimizingmodel outcomes. By contrast, initially considered a
potential predictor, wind speed had a negligible impact on overall perfor-
mance and was thus excluded from the final feature set. Focusing on these
high-contribution predictors allowed a clearer understanding of how cli-
mate variables interact with geographic factors, ultimately improving
forecast accuracy. Subsequently, we partitioned the dataset using an 80-20
split, with 80% of the data allocated for training and 20% reserved for
validation. In addition, a stratified 5-fold cross-validation procedure was
implemented to reduce predictive variance further and bolster model gen-
eralization.Thismethod strikes apragmatic balancebetweencomputational
efficiency and dependable performance estimation in datasets of moderate
size, where larger k-values often yield diminishing returns while sub-
stantially increasing computational overhead.Model hyperparameters were
optimized using GridSearchCV, which systematically evaluates different
parameter configurations to identify the best fit for each base algorithm.
This tuningprocesswas conducted independently for everymodel, ensuring
that each algorithm performed optimally. Once trained, the base models
produced predictive outputs covering key variables like temperature and
precipitation that were consolidated into a structured dataset, ready for
integration into the subsequent meta-modeling phase.

Base ML models. ML offers promising algorithms for analyzing com-
plex environmental phenomena and climate studies129,130. Over recent
decades, it has been extensively utilized for predicting and forecasting
various climate parameters131–135. ML models’ superior performance and
ability to handle large datasets make ML a popular and practical alter-
native to traditional statistical methods for predicting climatic and
complex variables133,136. Considering the critical role of ML in enhancing
the accuracy of climatic variable predictions, this research applied a range
of advanced ML algorithms, including RF, XGBoost, LightGBM, SVM,

and CatBoost. These models were chosen for their strong predictive
capabilities and suitability inmanaging complex environmental datasets.
Table 4 provides a comparative analysis of these ML models, outlining
their strengths and weaknesses. Each algorithm was trained on a portion
of the dataset to maximize predictive accuracy.

Random forest
Random forest is a sophisticated ML algorithm that combines tree-based
classifiers and is known for its high accuracy in classification, prediction, and
regression tasks137. This algorithm constructs an ensemble by averaging
outputs from multiple trees, and each is created using bootstrap samples
from the training data. At each node of the trees, a random selection of
predictor variables is assessed, introducing diversity and reducing correla-
tion among the trees. RF’s notable resistance tooverfitting and its robustness
in handling noisy data and irrelevant features make it particularly effective.
This has resulted in its outperforming traditional ML models, especially in
climate studies and environmental research, where it has found widespread
application138–141.

XGBoost
XGBoost, an optimized version of Gradient Boosting (GB), is widely
regarded for its use in optimal classification trees142. It effectively addresses
overfitting by reducing model complexity, enhancing classification accu-
racy, and decreasing computation time through high-speed analysis143,144.
Unlike traditional GB, which relies solely on decision trees, XGBoost
incorporates classification trees and linear regression, making it highly
effective in processing sparse data through parallel computing145,146.

LGBM
LGBM is a decision tree-based gradient boosting framework that utilizes
boosting techniques147.UnlikeXGBoost, LGBMemploys ahistogram-based
algorithm, which accelerates training, reduces memory usage, and utilizes a
leaf-wise growth strategy with depth constraints148,149. The histogram algo-
rithm discretizes continuous floating-point values into bins, constructing a
histogram without needing additional storage for pre-sorted data. This
approach allows the model to reduce memory consumption significantly,
~1/8 of the original, without compromising accuracy.

SVM
Support Vector Machines (SVMs) extensively utilize supervised learn-
ing algorithms that employ linear statistical functions for regression and
classification tasks150. High levels of accuracy are achieved by SVMs even
when dealing with limited data, owing to their maximal-margin classi-
fication approach. Input vectors are mapped into an infinite-
dimensional feature space, where nonlinear transformations are used
to construct an optimal hyperplane that maximizes class separation151.
The performance of SVMs is significantly influenced by the choice of
kernel functions, which include polynomial, sigmoid, radial basis
function (RBF), and linear kernels. The RBF kernel is commonly
employed among these, particularly in flood vulnerability
assessments152.

Table 4 | The five individual ML models employed in this study

Model Strengths Weaknesses Reference

RF Handles non-linearity, robust to overfitting, interpretable
feature importance

Computationally expensive for large datasets Breiman, L.185

XGBoost Fast computation, reduces overfitting with regularization,
highly efficient.

Sensitive to hyperparameters, requires fine-tuning Li, P.142

LGBM Faster training, memory-efficient, good for large datasets Less interpretable than RF, sensitive to outliers Ke et al.147

SVM Effective in high-dimensional spaces, works well with small
datasets

Computationally expensive for large datasets requires careful
kernel selection

Vapnik, V.186

CatBoost Handles categorical features well, reduces overfitting, good for
imbalanced data

Slower training compared to LGBM and XGBoost Prokhorenkova et al.156

https://doi.org/10.1038/s41612-025-01033-9 Article

npj Climate and Atmospheric Science |           (2025) 8:174 16

www.nature.com/npjclimatsci


CatBoost
CatBoost is a gradient-boosting decision tree model known for its excep-
tional performance as an individual and a meta-model in ensemble
methods153. It efficiently handles categorical features, reducing information
loss and mitigating overfitting through a random permutation method for
selecting tree structures154,155. This capabilitymakesCatBoost highly suitable
for real-world applications, such as predicting soil water content using
multi-sensor data156.

Phase III: base model predictions
Phase III focuses on generating initial predictions by applying the trained
basemodels fromPhase II to the test data for forecasting climatevariables.A
stratified fivefold cross-validation approach was employed to ensure robust
performance, facilitating model generalization and minimizing predictive
variance. Hyperparameter optimization was conducted using Grid-
SearchCV, systematically identifying the best configurations for eachmodel.
Details on data partitioning and validation methodology are provided in
Section 3.2. Once trained, the base models produced predictive outputs for
key climate variables, which were subsequently integrated into the meta-
modeling phase. This technique reduces the prediction variance and helps
prevent overfitting byvalidating themodel acrossmultiple datapartitions157.
After generating predictions, evaluation metrics such as the Root Mean
Squared Error (RMSE), the coefficient of determination (R2), Nash-Sutcliffe
Efficiency (NSE), and bias metrics like Mean Bias Error (MBE) are calcu-
lated to assess model performance. These results identify the best-
performing models, which will be refined and combined in the next
phase to create amore robust ensemblemodel. This approach leverages the
strengths of each base model, enhancing overall predictive accuracy and
robustness.

Phase IV: Stacking and meta-modeling
Phase IV enhances predictive accuracy by constructing a meta-model that
integrates the predictions from the two best-performing base models
identified in Phase III. This approach utilizes stacking, a well-known
ensemble learning technique originally proposed by Wolpert158, which
leverages the complementary strengths of multiple models to improve
overall prediction accuracy. Stacking combines the outputs of several base
models as input features for training ameta-model,whichproduces thefinal
predictions for the target variable. The meta-model is trained to effectively
integrate the base models’ predictions, enhancing overall performance and
generalization capability159. In this phase, additional geographical and
topographical features, including elevation, slope, aspect, longitude, and
latitude, were introduced as supplementary predictors in themeta-model to
improve spatial precision and ensure that predictions account for topo-
graphic influences on climate variables while preventing multicollinearity
issues. The meta-learning model at this stage evaluates whether topo-
graphical factors significantly improve predictive performance, allowing for
amore adaptive and dynamicmodeling approach. The stacking framework
consists of multiple base models performing classification or regression
tasks on the training dataset, with a meta-learner refining these predictions
to surpass the accuracy of any single model.

To mitigate overfitting and ensure robust performance, leave-one-out
cross-validation was applied, enabling the meta-learner to effectively
leverage the complementary characteristics of the basemodels160. Unlike the
base models, which primarily focused on climate variables, the meta-model
incorporated topographical features at this stage to refine the final predic-
tions and improve spatial consistency in projections. In this study, two
scenarios are considered in the meta-modeling process: Scenario 1 (SC1)
utilizes precipitation (P), maximum temperature (Tmax), and minimum
temperature (TMin) as input variables, while Scenario 2 (SC2) expands this
input set by incorporating additional geographical and topographical fea-
tures, including longitude, latitude, elevation, slope, and aspect. The meta-
learning model typically employs a weighted average approach or a linear
regression model161,162. However, this study evaluated three regressors,
including ANN, MLR, and LASSO, with the best-performing regressor

selected to construct thefinalmeta-model. Thesemodelswere chosendue to
their distinct capabilities in handling climate data and improving predictive
accuracy: ANN was selected for its ability to model nonlinear relationships
and capture complex interactions between variables163. MLR served as a
benchmark linear model to assess the performance of more advanced
approaches164. LASSO was incorporated for its ability to enhance model
sparsity by selecting the most relevant predictors, thereby reducing
overfitting165.

Multiple linear regression. Multiple Linear Regression is a widely used
statistical method for regression analysis that describes the relationship
between one dependent variable and two or more independent variables
by fitting a linear equation166. Climate studies frequently employ this
approach for downscaling and impact analysis167–169. Mathematically, the
general form of MLR can be expressed as:

y ¼ β0 þ β1x1 þ β2x2 þ . . .þ βnxn þ ε ð1Þ

where: y is the dependent variable, x1, x2,…, xn are the independent vari-
ables, β0, β1,…, βn are the parameters (coefficients) to be estimated, and ϵ
represents the error term.

Lasso regression. Traditional regressionmethods commonly utilize the
Ordinary Least Squares (OLS) algorithm to estimate the coefficient β by
minimizing the residual sum of squares (RSS) in the model170:

α̂ðolsÞ; β̂
ðolsÞ� �

¼ argðα;βÞ min
Xn
i¼1

yi � α�
Xp
j¼1

xijβi

 !2

ð2Þ

While OLS coefficients are generally considered the best-unbiased
estimators, this approach is based on the assumption of linearity, which can
lead to excessively high variance in the estimates. Moreover, OLS often
struggles with accurately estimating and interpreting models, particularly
when applied to high-dimensional datasets. Tibshirani171 introduced the
LASSO algorithm to address these limitations, which enhances the OLS
method by incorporating an L1 penalty function on β. This addition alters
the OLS model, transforming it into an unconstrained quadratic pro-
gramming problem that improves model performance by managing mul-
ticollinearity and facilitating variable selection. The modified objective
function for LASSO is given as:

α̂ðlassoÞ; β̂
ðlassoÞ� �

¼ argðα;βÞ min
Xn
i¼1

yi � α�
Xp
j¼1

xijβi

 !2

þ λ
Xp
j¼1

βi
�� ��( )

ð3Þ
where λ is the penalty coefficient that controls the extent of shrinkage
applied to the coefficients. The L1 penalty term encourages sparsity in the
model by shrinking some coefficients to zero, allowing the model to select
the most relevant predictors, thereby enhancing both predictive accuracy
and interpretability. The LASSO algorithm is now commonly employed in
climate and environmental studies (Hammami et al.172).

Artificial Neural Network (ANN). ANN is a widely used ML algorithm
known for its short computational time and capability to model complex
nonlinear functions173. Inspired by the human brain, ANN is a data-
driven model designed to establish relationships between input and
output variables174. It consists of multiple layers, including input, hidden,
and output, each containing neurons that process data. Due to its flex-
ibility and strong performance, ANN has been applied to model various
parameters (Ouarda and Shu et al.175). The relationship between inputs
(x) and output (Y) in an ANN is represented by the equation176:

Y ¼ f ðw1x1 þ w2x2 þ . . .þ wnxn þ bÞ ð4Þ
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where f is the activation function, b is the bias, and Wn represents the
weights of the connections.

Phase V: final prediction
In the final prediction phase, the Stacking-EML framework developed in
the previous stage is utilized to generate forecasts for three essential
climate variables, including maximum temperature, minimum tem-
perature, and precipitation across three different scenarios (SSP1-2.6,
SSP2-4.5, SSP5-8.5). These forecasts provide valuable insights into
future climatic patterns, facilitating informed decision-making and
strategic planning.

Assessment of algorithm performance
In this study, several evaluation criteria, including RMSE, R², MAE,
MBE, and NSE, were used to assess the performance of the ML algo-
rithms. RMSE measures the accuracy of the model’s predictions,
quantifying the average magnitude of the prediction errors177. The R²
ranges between 0 and 1, indicating how closely the observed values align
with the fitted regression line. It represents the proportion of variance in
the observed data explained by the model, providing insight into the
model’s explanatory power. MAE calculates the mean absolute differ-
ence between observed and predicted values, representing the average
error magnitude without considering the direction of errors. It provides
a straightforward measure of model accuracy, with lower values indi-
cating better performance178. MBE evaluates whether a model system-
atically overestimates or underestimates predictions. A positive MBE
indicates overestimation, whereas a negative MBE suggests
underestimation178. NSE is widely used in hydrological and environ-
mental modeling to assess predictive performance. It compares the
model’s prediction accuracy against a simple mean-based prediction179.
An NSE value of 1 represents a perfect model, while values close to 0 or
negative indicate poor predictive ability. The definitions and purposes of
these evaluation metrics are as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðxi � yiÞ2
s

ð5Þ
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q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � �xÞ2

q
0
B@

1
CA

2

ð6Þ

MAE ¼ 1
n

Xn
i¼1

yi � ŷi
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where n represents the total number of observations. The term xi refers to
the predicted value for the i-th observation, while yi denotes the actual or
observed value for the same observation. The symbol �y stands for the mean
of the observed values and �x represents the mean of the predicted values.

Optimizing the hyper-parameters of ML models
To enhance the performance of the base learners, a grid search cross-
validation (GridSearchCV) method was employed to identify the optimal
hyperparameter combinations. This approach involved systematically
testing different parameter sets within predefined ranges, as guided by
previous research177,180. The effectiveness of these combinations was eval-
uated using a tenfold cross-validation strategy alongside RMSE and the R².
This strategy enabled themodel to be repeatedly validatedonvariousdataset
partitions, effectively minimizing variance and reducing the risk of over-
fitting. This comprehensive search determined the optimal hyper-
parameters for each base model, and these models were subsequently
integrated as base learners in the stacking framework. The specific hyper-
parameters and their tested values for each base model are presented in
Table 5.

Hotspot and cold-spot analyses
Hotspot analyses were commonly used in socio-economic and ecological
studies to identify significant spatial clusters, or “hotspots” and “cold spots,”
of climate parameters across theMiddle East region5. Hotspots denote areas
with elevated values, while cold spots signify areas with lower values relative
to the surrounding areas89. This investigation focused on the baseline year of
2015, using these analyses to establish a reference point for comparative
studies over three future periods: the near-term (2015–2045),medium-term
(2045–2075), and long-term (2075–2099), thereby facilitating the obser-
vation of spatial shifts in climatic patterns over time. The Stacking-EML
approach was utilized to model these climate parameters, and the analyses

Table 5 | Hyper-parameters of ML models adjusted in this study

Algorithm Hyper-parameters Explanation Grid search values

Random Forest (RF) n_estimators Number of trees in a forest 100, 150

max_depth Highest depth of the tree 10, 15

Support Vector Machine (SVM) C Penalty parameter 0.1, 1, 10

gamma Bandwidth parameter 0.01, 0.1, 1

kernel Kernel function RBF

LightGBM (LGBM) n_estimators Number of trees in a forest 100, 150

learning_rate Learning rate 0.01, 0.1

num_leaves Number of leaves in one tree 31, 50

max_depth Highest depth of the tree −1, 10

XGBoost (XGB) n_estimators Number of trees in a forest 100, 150

learning_rate Learning rate 0.01, 0.1

max_depth Highest depth of the tree 3, 5

CatBoost (CB) iterations Number of boosting iterations 100, 150

learning_rate Learning rate 0.01, 0.1

depth Depth of the tree 4, 6
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were conducted using ArcGIS Pro software. The Hot Spot Analysis (Getis-
OrdGi*) tool was employed to detect statistically significant clusters of high
or low values in the dataset, leveraging the Getis-Ord Gi* statistic to cal-
culate z-scores and p-values. The z-scores indicate the number of standard
deviations a feature’s value is from the mean, while the p-values represent
the probability of the observed clustering occurring by chance181. TheGetis-
Ord Gi* statistic is computed as follows89:

G*
i ¼

Pn
j¼1wijxj � �X

Pn
j¼1wijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �2h i
n�1
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s
ð10Þ

where: Xj is the attribute value for feature j,wij is the spatial weight between
features i and j, n is the total number of features, X

�
is the mean of the

attribute values, S is the standarddeviation of the attribute values. TheGetis-
Ord Gi* statistic determines whether high or low values cluster spatially by
calculating these values for each feature. This analysis identified hotspots
and cold spots with confidence levels of 90%, 95%, and 99%, providing a
detailed spatial representation of areaswith significantly elevated or reduced
minimum temperatures, maximum temperatures, and precipitation.
Following the initial hotspot detection, a Hotspot Comparison Analysis
was performed to compare spatial shifts across the studied periods. This
comparison facilitated the identification of trends in the changes in climate
parameters, allowing for a comprehensive examination of how hotspots
(areas of intense climate parameter values) and cold spots (areas of low
values) evolved. The results offer valuable insights into the region’s spatial
dynamics of climatic changes.

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author upon reasonable request.

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers at a reasonable request from the corre-
sponding author.
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