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Toward skillful forecasting of super El
Niho events using a diffusion-based
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Forecasting super El Nifio remains challenging, partly due to

poor representation of westerly wind

bursts (WWBs). We developed an artificial intelligence-based denoising diffusion probabilistic model
(DDPM) to skillfully parameterize WWBSs, capturing their joint modulation by oceanic and atmospheric
processes. The DDPM-based scheme effectively captures observed WWBs’ characteristics (e.g.,
frequency, intensity, and spatial center). When implemented in the Community Earth System Model, it
outperforms both the control (CTRL, without WWBs parameterization) and conventional warm pool
eastern edge (WPEE)-dependent parameterization in predicting intensity and seasonal phase-locking
for super El Nifios (1982/83, 1997/98, 2015/16). This improvement stems from DDPM’s realistic WWBs
representation, correcting CTRL and WPEE’s biases of overly weak and westward-shifted winds
during El Nifio growth. Consequently, DDPM produces more realistic eastern Pacific sea surface
temperature anomaly warming patterns. These findings underscore WWB's accuracy as key to super
El Nifio prediction and demonstrate machine learning’s potential for WWB's parameterization.

El Nifio is the strongest interannual climate signal on Earth', driving sig-
nificant global impacts on weather, ecosystems, and economies™’. Among
these, super (or extreme) El Nifio events have attracted significant attention
due to their broader spatial extent and stronger amplitude of sea surface
temperature (SST) anomalies, which lead to more severe meteorological and
climatic disasters*”. However, considerable uncertainty remains in fore-
casting the amplitude of super El Nifio events*’. The uncertainties in fore-
casting super El Nifio events stem from multiple sources, including (but not
limited to) complex inter-basin interactions among the Indian Ocean,
Atlantic Ocean, and Pacific Ocean®, the nonlinear response of the atmo-
sphere to oceanic processes’, and high-frequency atmospheric stochastic
forcing"’. Notably, a key manifestation of this stochastic forcing is westerly
wind bursts (WWBs). Extensive research from observational, modeling, and
theoretical perspectives has consistently demonstrated that WWBs play a
pivotal role in shaping super El Nifio evolution by injecting wind energy into
the western and central Pacific'"™". This process enhances eastward zonal

current anomalies and generates eastward-propagating downwelling
equatorial Kelvin waves, which deepen the thermocline and facilitate the
eastward migration of the warm pool*°. Collectively, these dynamical
mechanisms contribute to surface warming in the central and eastern
equatorial Pacific, leading to the development of El Nifio. For instance, Lian
and Chen (2021) demonstrated that the strong and persistent WWBs
observed in March 1997 were a necessary condition for the onset of the
super 1997 El Nifio event. Similarly, numerous studies have highlighted that
the contrasting intensities of the 2014/15 and 2015/16 El Nifo events were
largely driven by the frequency and intensity of WWBs'"~". Thus, the ability
to realistically simulate WWBs during super EI Nifio development is vital for
predicting the spatiotemporal evolution of super El Nifio™*".

However, many numerical models exhibit significant biases in simu-
lating WWBs™?%. This underscores the necessity for the widespread
application of WWB's parameterization schemes to thoroughly investigate
their impacts on the diversity and predictability of El Nifio"***". For
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example, studies indicated that the occurrence of WWBs is modulated by
oceanic conditions, manifesting as a type of semi-stochastic (or multi-
plicative) noise of El Nifio'****. This motivated Gebbie et al.” to develop a
now widely used semi-stochastic parameterization scheme for WWBs
where WWB occurrence is influenced by SST (see “Methods” section).
Beyond this success, subsequent studies also highlighted the importance of
atmospheric internal variability in influencing the formation of WWBs"'~.
For instance, the convective phase of the Madden-Julian Oscillation® (MJO)
is frequently associated with an increased likelihood of WWBs*>*, and Lian
et al.”' highlighted that nearly 70% of WWBs are closely linked to tropical
cyclone (TC). Thus, it is essential to consider oceanic and atmospheric
variabilities simultaneously to capture the complexity of WWBs
comprehensively.

In recent years, artificial intelligence (AI) has been widely used in
atmospheric science and achieved remarkable advancements®*, It offers
innovative approaches for parameterizing WWBs. For example, building on
the foundational work of Gebbie et al.”, You et al.”” developed a neural
WWRBs parameterization scheme leveraging Al techniques, incorporating
oceanic and atmospheric variables as predictors. However, these para-
meterization schemes enforce fixed spatiotemporal structures on WWBs
and are limited to deterministic representations of only a few physical
parameters. Additionally, since WWBs are only one component of high-
frequency zonal wind (HFZW) anomalies, the WWB models may not
objectively reproduce the uncertainty of the spatial-temporal evolution of
WWBs comprehensively without including the realistically full spectral
components of HEZW anomalies.

Moreover, given the impact of WWBs on El Nifio forecasts, as well as
the unpredictable nature of WWBs on the seasonal forecasting timescale, it
is more crucial to estimate their occurrence likelihood throughout the
season than to predict their exact timing™. As an attempt, Ji et al.”’ developed
an El Nifio ensemble forecasting framework based on WWBs ensemble
forecasting, which improves the forecasting skills of El Nifio since it better
accounts for interactions across different timescales than the widely used
initial condition-based framework. However, the WWB's parameterization
scheme used by Ji et al.”” considers only the role of the ocean. Developing a

probability parameterization scheme for WWBs that simultaneously
accounts for both oceanic and atmospheric processes is essential for cap-
turing their associated uncertainties in the super El Nifio forecast. In this
paper, we aim to develop a more skillful parameterization for WWBs based
on the Denoising Diffusion Probabilistic Model (DDPM, see “Methods”
section), a state-of-the-art generative framework in AI. The DDPM-based
parameterization is then integrated online into the Community Earth
System Model (CESM) to systematically investigate the influence of WWBs
on the prediction of super El Nifio events.

Results

Evaluation of the new DDPM-based WWBs parameterization
First, we evaluated the simulation performance of WWBs across four
DDPM-based parameterization schemes with different conditional phy-
sical variable combinations (i.e., SST anomalies (SSTA), outgoing long-
wave radiation anomalies (OLRA), and sea level pressure anomalies
(SLPA)) designed to capture the spatiotemporal characteristics and sto-
chastic nature of WWBs (see “Methods” section). As shown in Fig. 1a, e,
the [SSTA] generates almost no WWBs. This discrepancy may arise
because SSTA evolves relatively slowly, making it challenging for AI
models to establish a robust mapping between slow-varying SSTA and
rapidly varying HFZW anomalies. This limitation is corroborated by the
power spectrum of HFZW anomalies (Fig. S1), which reveals that the
HFZW anomalies generated by [SSTA] are predominantly characterized
by low-frequency variability. As a result, these models fail to accurately
capture the high-frequency, episodic nature of WWBs. With the OLRA
included in [SSTA, OLRA], both the WWB intensity (NCWI below, see
“Methods” section) and numbers increase substantially (Fig. la, b).
However, their longitudinal center (LonCen, see “Methods” section) is too
concentrated in the western Pacific to capture the widespread character in
the observation (Fig. 1c, f), which was argued to be important in inducing
the El Nifio diversity*'. On this basis, including SLPA as another input
parameter in [SSTA, OLRA, SLPA] further refines the simulation details
of the WWBs numbers and NCWI (Fig. 1a, b), supporting the finding of
Lian et al.* that WWBs are closely associated with TCs. Besides, the
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Fig. 1 | Comparative analysis of WWB physical characteristics in DDPM simu-
lations with different parameterizations. Observed and simulated WWB a total
numbers, b annual accumulated NCWI, and ¢ probability distribution of the Lon-
Cen, d ROC curve, the closer the curve is to the upper left corner, the better the
simulation performance of the accuracy of WWBs monthly occurrence for all

months during 2011-2022 (for details, see “Methods” section), and e-h scatter plots
of the LonCen and NCWTI of each WWB, comparing the observed and simulated.
Shading and error bars indicate a one standard deviation interval among the 20
members. Blue, yellow, orange, purple, and green represent observations, [SSTA],
[SSTA, OLRA], [OLRA, SLPA], and [SSTA, OLRA, SLPA], respectively.

npj Climate and Atmospheric Science| (2025)8:273


www.nature.com/npjclimatsci

https://doi.org/10.1038/s41612-025-01158-x

Article

Fig. 2 | Differences in simulated WWB char- (a) LonCen (b) ROC curve
acteristics between DDPM and WPEE para- ' .
meterizations. The [SSTA, OLRA, SLPA] (green) 0.03| OBS
and WPEE-dependent (magenta) parameteriza- WPEE-dependent
tions are compared in their representation of WWBs 2 ——[SSTA,OLRA,SLPA]
f = 0.02
or a LonCen, b monthly occurrence accuracy, e}
¢ numbers, and d NCWI. The shaded regions indi- 3
cate one standard deviation across the 20 ensemble g 001 4 /\ .
members. The blue lines in (a), (¢), and (d) represent : /
the observed.
0 0
120°E 180 120°W 0 0.2 04 0.6 0.8 1
False-alarm Rate (FR)
() WWB numbers (d) NCWI
20 40
v 15
o
= 10 NG / \ \\// ?
5 \‘§
0 0 . - :
2011 2013 2015 2017 2019 2021 2011 2013 2015 2017 2019 2021

Years Years

[SSTA, OLRA, SLPA] significantly improves the simulation of WWBs
occurrence probability in each month (Fig. 1d), which is crucial for
WWaBs and El Nifio ensemble forecasting”.

Moreover, given the extensive research emphasizing the regulatory
effects of SSTA on WWBs™**, we trained [OLRA, SLPA] using OLRA
and SLPA as constraints to further investigate the respective roles of
oceanic and atmospheric processes in WWBs. The results indicate that
compared to the [SSTA, OLRA, SLPA], the [OLRA, SLPA] simulates
fewer and weaker WWBs (Fig. 1a, b), with a slight bias in the simulated
monthly occurrence probability of WWBs (Fig. 1d). Additionally, the
LonCen of WWBs in the [OLRA, SLPA] are more concentrated in the
western Pacific (Fig. lc, g), showing an obvious bias compared to
observations. These results suggest that in the AI model, SSTA may
provide a conducive environment for WWBs occurrence and regulate
their central location, while the frequency and intensity of WWBs are
primarily dominated by atmospheric internal variability. In other words,
the regulatory effect of SSTA on WWBs requires the cooperation of
atmospheric internal variability to better characterize the various phy-
sical attributes of WWBs, which is consistent with the findings of Liang
et al.”’ in numerical models. We also compared the [OLRA, SLPA] and
[SSTA, OLRA, SLPA] regarding WWBs” maximum amplitude, latitu-
dinal center, zonal range, duration, monthly frequency, and numbers of
each year between 2011 and 2022. The [SSTA, OLRA, SLPA] demon-
strated superior simulation capability in all these aspects (Figs. S2-S3).

Furthermore, we compared the performance of the [SSTA, OLRA,
SLPA] with the traditional warm pool eastern edge (WPEE, see “Methods”
section)-dependent WWBs parameterization™ in capturing key character-
istics of WWBs, including their LonCen, monthly occurrence accuracy,
numbers, and NCWIL. As illustrated in Fig. 2, the [SSTA, OLRA, SLPA]
significantly outperforms the WPEE-based approach in representing the
physical features of WWBs. This result underscores the importance of
incorporating atmospheric variability into the parameterization of WWBs’
> and the high efficiency of the diffusion-based Al scheme in doing this. By
better capturing the state-dependent nature of WWBs and their interactions
with large-scale air-sea processes, the [SSTA, OLRA, SLPA] is believed to
provide a more robust framework for understanding and predicting the role
of WWBs in super El Nifo events.

Embedding DDPM-based WWBs parameterization into CESM
and forecasting of super El Nifo

The evaluation above demonstrates that the [SSTA, OLRA, SLPA] achieves
the best performance in simulating WWBs among the diffusion-based
frameworks. Therefore, in the subsequent forecast experiments focusing on
super El Nifio events, we exclusively coupled the [SSTA, OLRA, SLPA] with
the CESM, which is compared with the one that adopts the traditional
WPEE-dependent WWBs parameterization. For convenience, the super El
Nifio forecast experiments incorporating the two parameterizations are
termed as “DDPM” and “WPEE” in the following text, respectively (see
“Methods” section).

Figure 3 presents the observed, control (CTRL, CESM without WWBs
parameterization), WPEE,and DDPM forecast experiments for the Nifi03.4
index over a 12-month lead time, initialized in February and May (i.e.,
before and end of the boreal spring season) of 1982, 1997, and 2015,
respectively. As shown, the CTRL consistently underestimates the intensity
of super El Nifio events, aligning with findings from previous studies**’. In
the WPEE experiment, the inclusion of WWBs partially improves the
predicted El Nifo intensity, but the overall underestimation persists. In
contrast, the DDPM experiment demonstrated significant improvements in
predicting the intensity of super El Nifio events. Notably, the spread of
ensemble members (the green shade in Fig. 3) effectively encompassed
observations, indicating the reliability of the DDPM approach. This
improvement stems from the DDPM’s more accurate representation of
WWRBs (Fig. 2), which better captures their critical role in establishing the
super El Nifio events**"’. Additionally, while observations indicate that all
three El Nifo events peak in December (i.e., seasonal phase-locking), the
CTRL and WPEE exhibit significant biases in capturing this character.
When initialized in February, CTRL and WPEE experiments exhibit a
distinctive double-peak evolution: an initial Nifio3.4 peak at 6-month lead
time (summer) followed by weakening and subsequent re-intensification to
a second peak (winter) at lead 12 months, contrasting with the observed
steady intensification toward a single December peak (Fig. 3a—-c). Notably,
we emphasize that in the 1997 case, all three experimental configurations
reproduce the observed December peak in El Nifio development (Fig. 3b).
For May initializations (post-spring when air-sea coupling is better estab-
lished), while the double-peak feature weakens, the predicted peaks still lag
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Fig. 3 | Observed and forecasted Nifio3.4 index. Observed (blue), CTRL (orange),
WPEE (magenta), and DDPM (green) forecast experiments for the Nifio3.4 index
(unit: °C) over a 12-month lead time, initialized in February and May a, d 1982,

b, e1997,and ¢, £2015. The shaded areas represent one standard deviation across the
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the ensemble mean across these 10 members. The x-axis indicates the forecast end
month, where (0) denotes months in the El Nifio development year and (1) repre-
sents months in the subsequent year. For instance, in (d), May (0) corresponds to

May 1982 while Jan (1) indicates January 1983.
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Fig. 4 | Observed and forecasted monthly mean SSTA. a, e Observed, b, f CTRL,
¢, g WPEE, and d, h DDPM forecast experiments for the monthly mean SSTA (unit:
°C) averaged between 5°S and 5°N over a 12-month lead time, initialized in February
and May 1997. Contours indicate SSTA exceeding 2 °C. The black dashed boxes
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denote the zonal extent of the Nifo3.4 region (190°W-240°W). The WPEE and
DDPM experiments display the ensemble mean across these 10 members. Where 0
represents the year of El Nifo development (1997) and 1 represents the following
year (1998).

observations by approximately one month (Fig. 3d-f). These errors reflect
common seasonal phase-locking prediction biases prevalent in many
complex climate models* ™. Notably, the DDPM experiment efficiently
overcomes all these shortcomings and accurately predicts the evolution of all
these super El Nifo events. This hints that improved representation of high-
frequency atmospheric processes like WWBs in climate models may help to
mitigate the seasonal phase-locking bias of El Nifio. Moreover, forecast
experiments for the 1994/1995 and 2009/2010 moderate El Nifio events
showed DDPM’s improvement was slightly smaller than for super El Nifio,
but still yielded the best overall forecast results (Fig. S4).

To better illustrate the spatiotemporal evolution, Fig. 4 presents the
SSTA along the equatorial (5°S-5°N mean) Pacific from observations

and the three forecast experiments (taking the 1997/98 event as an
example, the results for the other two events are similar, as illustrated in
Figs. S5-S8). The observed SSTA exhibits a broad spatial distribution
spanning the central and eastern Pacific (Fig. 4a, e). In contrast, the
major warming in the CTRL experiment is primarily confined to the far
eastern Pacific, with only limited westward extension (Fig. 4b, f). Con-
sequently, the SSTAs in the Nifo3.4 region (black dashed boxes) are
significantly underestimated compared to observations. Additionally,
although manifesting weak warming within the Nifno3.4 region, the
CTRL exhibits a distinct seasonal double-peak structure (i.e., summer
and winter), markedly diverging from observations (Fig. 4a, b, e, f).
These findings align with the phase-locking biases identified in Fig. 3.
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Fig. 5 | Same as Fig. 4, but for SSHA (units: m). a, e Observed, b, f CTRL,
¢, g WPEE, and d, h DDPM forecast experiments for the monthly mean SSHA
averaged between 5°S and 5°N over a 12-month lead time, initialized in February and
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May 1997. Black vector arrows in (a-h) represent monthly mean westerly wind stress
anomalies (units: N/m2, shown only for values exceeding 0.02 N/m2).

The WPEE experiment produces a more westward-extended warming
pattern compared to CTRL (Fig. 4c, g), exhibiting broader spatial cov-
erage across the eastern Pacific. While this configuration partially
mitigates the characteristic double-peak bias in the Nifo3.4 index evo-
lution (Fig. 3), its impact remains substantially limited—the simulated
SSTA in the Nifio3.4 region still exhibits pronounced underestimation
compared to observations. Furthermore, the slower westward propa-
gation of SSTA, combined with the unrealistic weakening of anomalies
in the far eastern Pacific, causes a delayed peak in the Nifio3.4 region
relative to observations, leading to seasonal phase-locking biases in
forecasts (Fig. 4f, g). In contrast, the DDPM experiment demonstrates
notable improvements over CTRL and WPEE in terms of both the
spatial distribution and intensity of SSTA (Fig. 4d, h).

Mechanisms of DDPM in improving super El Nifo prediction

The results above demonstrate the significant advantages of the DDPM
experiment in improving the prediction of super El Nifo events. To
understand the underlying physical mechanisms, Fig. 5 illustrates the spa-
tiotemporal evolution of observed and predicted monthly mean westerly
wind stress and sea surface height anomalies (SSHA). It is evident that,
compared to observations, the westerly wind stress anomalies in the CTRL
and WPEE experiments are weaker and more confined to the western
Pacific. This results in a reduced propagation time for the upwelling Rossby
waves (excited by westerly wind stress) to reflect at the western boundary as
Kelvin waves, thereby more rapidly counteracting the eastward-propagating
downwelling Kelvin waves™'. Consequently, the SSHA and SSTA in the
eastern Pacific are significantly weakened, as the positive feedback has less
time to amplify them*'. Although the westerly wind stress anomalies in
CTRL and WPEE gradually strengthen and shift eastward with the devel-
opment of SSTA, the anomalies show a systematic westward displacement
compared to observations. This systematic bias fundamentally impairs the
models’ capacity to sustain the Bjerknes feedback, leading to biases in the
prediction of EI Nifio’s seasonal phase-locking and intensity. In contrast, the
DDPM experiment, with its stronger and more eastward-shifted westerly
wind stress anomalies that closely align with observations, facilitates the
accumulation of downwelling Kelvin waves in the eastern Pacific, mani-
festing as an enhancement of positive SSHA in this region. This process
intensifies positive SSHA in the region, thereby strengthening the Bjerknes
feedback™ and accelerating the amplification of SSTA. Simultaneously, the
continuous growth of SSTA further increases the probability of WWBs

occurrence, creating a positive feedback loop that amplifies the SSTA. The
improved representation of these dynamical interactions in the DDPM
framework highlights its superior ability to capture the key mechanisms
driving super El Nifio events, leading to more accurate predictions of their
seasonal phase-locking and intensity. These results demonstrate that
improved representation of WWBSs’ characteristics contributes to reducing
model systematic biases, thereby improving the forecast skill for super El
Nifio events.

Discussion

This study first developed a skillful parameterization scheme for WWBs
using an Al-based diffusion model, which effectively reproduces multiple
observed physical attributes of WWBs. Based on this scheme, we further
revealed that WWBs, as a form of multiplicative noise on the interannual
timescale, originate from oceanic states that provide the background con-
ditions for WWBs formation and regulate their central location. Meanwhile,
internal atmospheric processes (e.g., MJO, TC) influence the intensity and
frequency of WWBs. Therefore, WWBs cannot be solely attributed to SSTA
regulation in the Al model as in previous parameterization schemes”*. This
is because SSTA regulation of WWBs requires coordination with internal
atmospheric variability.

We then incorporate DDPM-based parameterization, along with a
conventional WWBs parameterization dependent on the WPEE, into the
CESM to conduct ensemble forecasting experiments for three historical
super El Nifio events. The results indicate that the DDPM scheme sig-
nificantly improves the prediction of El Nifio intensity and mitigates the
seasonal phase-locking bias in comparison to the CTRL and WPEE
experiments. This improvement primarily stems from the ability of the
DDPM scheme to better characterize WWB occurrences, thereby mitigat-
ing the systematic biases in the CTRL and WPEE experiments, which tend
to produce weaker and more westward-displaced westerly wind stress
anomalies. As a result, SSTAs in the eastern Pacific are better maintained
and progressively develop westward, exhibiting spatiotemporal evolution
and intensity that closely align with observations.

Our results highlight the critical role of accurately representing WWBs
in improving super El Nifio predictions, while demonstrating the efficacy of
Al-based approaches in addressing this longstanding challenge. Further-
more, as emphasized in the introduction, the predictability limit of WWBs
on interannual timescales implies that any deterministic forecast of WWBs
inherently carries considerable uncertainty, which inevitably propagates
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into super El Nifio predictions. Our findings suggest that ensemble fore-
casting may serve as an effective strategy for addressing the interactions
between phenomena across different timescales, such as WWBs and El
Nifio, thereby improving the reliability of climate predictions.

Methods

Data

The National Oceanic and Atmospheric Administration daily Optimum
Interpolation Sea Surface Temperature (OISST*) and daily OLR spanning
1981-2022 were used™. Daily 10-m zonal wind and SLP data were obtained
from the National Centers for Environmental Prediction-National Center
for Atmospheric Research (NCEP-NCAR) Reanalysis 2 Project™, spanning
1979-2022. Additionally, daily SST, OLR, SLP, and 10-m zonal wind data
from the European Centre for Medium-Range Weather Forecasts Reana-
lysis v5 (ERA5*) were also used, covering the same period (1979-2022).
Daily anomalies within our analysis were defined as deviations from the 30-
year climatological mean (1981-2010). Then, a 60-day high-pass filter was
applied to the 10-m zonal wind anomalies to further isolate the high-
frequency components. The observational data for monthly SST, SSH, and
wind stresses were sourced from the Global Ocean Data Assimilation Sys-
tem (GODAS”).

Mathematical formulation of DDPM

DDPMs are a class of generative models designed to model the gradual
transformation of data from a simple, known distribution, such as Gaussian
noise, into more complex distributions, like those found in real-world
atmospheric states”. DDPM has been successfully applied in various
domains, including image synthesis”, and natural language processing™.
More recently, their application in atmospheric science has gained attention,
particularly in ensemble forecasting, due to their probabilistic framework for
forecasting®".

The fundamental concept underlying DDPM is to simulate a forward
diffusion process in which data is incrementally corrupted by noise, which is
then followed by a reverse denoising process where the model iteratively
learns to remove the noise to eventually reconstruct the original data. This
reverse denoising process can subsequently be employed to generate new
data, beginning with pure noise and denoising it through iterative
refinement.

1. Forward Diffusion Process
The forward diffusion process gradually adds noise to the data over a
series of discrete time steps, effectively converting the data distribu-
tion x, into a simple Gaussian distribution x;(T — +00). This
process is often modeled as a Markov chain, where the data at each
time step t is conditioned only on the data at the previous time step
t—1:

qlx,lx,_y) = N<xt§ V31— ﬁtxt—UﬁtI) 1

where x, represents the data at time step ¢; 3, is a small positive scalar (linear
interpolation from 0.0001 to 0.02) that controls the variance of the noise
added at each step. V'(-; ¢4, > ) denotes a Gaussian distribution with mean y
and covariance > ; I is the identity matrix.
The cumulative effect of this forward process over T steps can be
described by:

q(x,x0) = N (x;; Vaxy, (1 — &)I) (2
where ¢, =1 — B, and &, = [['_, «,

This formulation indicates that x, is a noisy version of the original
data x,,, with noise increasing as t approaches T:

X = Vax, + V-, (€)
Where &, ~ N(0, ).

2. Reverse Diffusion Process
The reverse diffusion process aims to recover the original data from
the noisy data x, by learning a model that approximates the reverse
Markov chain. When f3, is small enough, the inverse process is also a
Gaussian distribution:

pB(xtfl Ixt) = N (xtl 5 ‘MG (-xt7 t)7 Z(xﬁ t)) (4)
0

where py(x,,t), Y p(x,,t) are functions (often parameterized by neural
networks) that predict the mean and variance of x,_; given x, and the time
step t. 8 represents the parameters of the model. The goal of training is to
learn the parameters 0 such that the reverse process accurately inverts the
forward process, ultimately leading to the reconstruction of the original
data x,.

3. Training Objective

It is not practical to directly calculate the distribution of the inverse
operation of adding noise for all data py(x,_, |x,). However, if a training set is
used as input x,, it allows us to approximate py(x,_, |x,) effectively:

q(x;,_1%o)

q(x;1%,) ®)

g%y 1%, %) = g(x 1%y, %)
where g(x,_,|x;, x,) shows the inverse operation of adding noise and its
mean and variance need to be determined. q(x,|x,_;,x,) =

N (x,; /1 = Bix,_1, B,I) denotes the distribution of the added noise. Since
X, is known, we have:

Q(xt|xo) = N(xﬁ \/axm (1 - 5‘:)1) (6)
q(x,_qlx) = N(xt_ﬁ V1%, (1 —a,_)I) (7)

Substituting Egs. (6) and (7) into Eq. (5), we can get:
glx,_y 1%, Xp) = N(’Ct—l?ﬁt (xtvxo)a[’)rl> (8)

where y, and B, represent the mean and variance of q(x,_,|x,,x,),
respectively.

~ 1 l—octf g
ﬂt—ﬁ<xt—ﬁt) )
~ 1 —«
b=t (10)

Here, «,, B,, &, and &,_; are all known parameters, while only ¢, is
unknown. Thus, in training the reverse process of the neural network, the
core objective is to predict the noise added in the forward process at
each step.

So, this objective can be expressed as:

L= Eq(xo)fpj\f(o,m U|£t — & (xtv t) Hz}

where &, (x,, t) is the neural network’s estimate of the added noise ,, and
is a random time step chosen during training. £, ) is the mathematical
expectation of g(x,).

(11)

DDPM-based parameterization of WWBs

We adopted the DDPM to construct a new WWBs parameterization with
high spatiotemporal complexity. Its framework is illustrated in Fig. 6. The
forward chain indicated by black arrows in Fig. 6a is typically designed to
map a complex data distribution into a standard Gaussian distribution by
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Fig. 6 | Flowchart of DDPM. a The black (red) arrows indicate the forward (reverse)
diffusion process, and t indicates the time step of adding noise, with a total of
T = 1600 steps. q(x,|x,_,) = N (x,; /1 — B.x,_;, B,I) indicates that the noise added
at each step follows a Gaussian distribution. 3, is a small positive scalar (linear
interpolation from 0.0001 to 0.02) that controls the variance of the noise added at
each step. py(x,_; 1x,) = N (x,_y; o (x,, t), > (x,, 1)) represents the Gaussian dis-
tribution of the denoising process, with mean i (x,, t) and variance >"(x,, 1),

o

where 6is the distribution parameter. &, (x,, t) is the neural network’s estimate of the
added noise ¢,. E 4(x0) £~ 1) 1 the mathematical expectation of g(x, ), and £ =
E js0)&~01) [I1&; — &g (x;, £)I*] represents the loss function, b is the network
structure we used in DDPM with detailed data flow and tensor operators. Given the
initial random noise and conditions (SSTA, OLRA, and SLPA), the neural network is
trained to predict the added noise and gradually remove it.

¥ o F @

Down-/Up-Sampling ConvNeXt  Swin-Transformer .
Block Block Block Linear Layer

gradually adding noise, which is also the distribution shift learning process
from practical data to Gaussian. The reverse chain, as red arrows in Fig. 6a,
gradually turns Gaussian distributions into practical data distributions,
which is regarded as the generation process. During the implementation, the
reverse chain reconstructs the data by predicting the noise added during the
forward chain and progressively denoising it step by step, as illustrated in the
two boxes in Fig. 6a. Figure 6b displays the network structure we used in
DDPM with detailed data flow and tensor operators, which contains two
kinds of inputs for noised data and conditions, outputting the noise present
in the data. Conditions represent a constraint, ensuring that the generated
data maintains physical consistency. This network is designed with state-of-
the-art neural blocks, including ConvNeXt block® and Swin-Transformer
block™, as well as our designed Down-/Up-Sampling block; the detailed
architectures of internal modules are exhibited in Fig. 7.

As highlighted in the introduction, El Nifio, MJO, and TC events play
significant roles in modulating the occurrence of WWBs. We selected
various combinations of SSTA, OLRA, and SLPA as conditions for the
DDPM, as they effectively capture the activity states of El Nifio, MJO, and
TC, analogous to You et al.”. We trained four distinct model configurations
utilizing varying conditions: (1) SSTA, (2) SSTA and OLRA, (3) SSTA,
OLRA, and SLPA, and (4) OLRA and SLPA, denoted as [SSTA], [SSTA,
OLRA], [SSTA, OLRA, SLPA], [OLRA, SLPA], respectively. For example,
SSTA serves as a constraint for the [SSTA], guiding the initial random noise
to transform into daily HFZW anomalies at the corresponding time via the
reverse process. The output variable for all model configurations was the
daily HFZW anomalies. The spatial domain of the predictors and output
was the tropical Pacific region (120°E-80°W, 30°S-30°N), with a spatial
resolution of 2.5°x2.5°. The remaining model configurations adopt a
comparable methodology. We use NCEP and ERA5 data from 1979 to 2010
for training, and ERA5 data from 2011 to 2022 as test sets. For these four
models, we generate 20 ensemble members to assess their simulation per-
formance in simulating WWBs.

Traditional WPEE-dependent WWBs parameterization scheme
The traditional WWBs parameterization scheme, initially developed by
Gebbie et al.”’, captures the multiplicative noise characteristics of WWBs by

linking their occurrence probability (p,,,,) to the position of the WPEE.
This approach has been widely adopted in studies investigating the dyna-
mical impacts of WWBs on El Nifio”*****. In this parameterization scheme,
Py and the spatiotemporal distribution of their associated wind stress
anomalies (7,,,,;,(x, , t)) are defined as follows:

Do) = bh {tanh (w) } +1 (12)

2 60

2 2 2
Ty (X0, 1) = Aexp (_ (t —TZO) _ (x zzxo) _ (y ;2)/0) ) (13)
* y

where wp, dge is the WPEE, defined as the longitude of the 28.5 °C isotherm; ¢
is the considered time. A WWB event was initiated only when p,, , was
greater than a random number. The meanings and specific values of the
parameters in Egs. (12) and (13) are summarized in Table 1 below, con-
sistent with those used in Chen et al.*. While the parameters in Eq. (13) are
presently treated as deterministic, future work could explore integrating
stochastic processes to better capture WWB variability. Such refinements
might improve the parameterization’s skill and its utility for El Nifo fore-
casting, though this extension lies beyond the scope of the present study.

Definitions of WWBs and Nifio index

The definition of a WWB event follows Ji et al.”’, where the threshold for
WWB detection is defined as three times the mean standard deviation of
HFZW anomalies over the 5°S-5°N, 120°E-80°W region, consistent with
Seiki et al.**. The WWBs thresholds for observations and the four model
configurations, ie., [SSTA], [SSTA, OLRA], [SSTA, OLRA, SLPA], and
[OLRA, SLPA], are 5m/s, 4.6 m/s, 4.2 m/s, 4.9 m/s, and 4.8 m/s, respec-
tively. Additionally, previous studies have demonstrated that the cumulative
WWRBs intensity (CWI) and WWBs’ longitudinal center (LonCen) are the
key physical attributes affecting El Nifo dynamics. For example, Chen
etal.” noted that the strong CWI was a crucial factor in the occurrence of the
super EI Nifio in 2015. Moreover, the central position of WWBs significantly
affects the annual cycle and diversity of E1 Nifio*”". Therefore, we primarily
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Fig. 7 | Network structure diagram. a, b, and ¢, respectively, exhibit the detailed
modules of Down-/Up-Sampling block, ConvNeXt block, and Swin-Transformer
block used in DDPM-based WWBs parameterization, where k, s, p and ¢ = 64
represent the kernel size, stride, padding, and channel. Pachify represents an
operation that cuts the gridded data into small patches. Inverse Pachify is the
restoration process. MLP represents a multi-layer perceptron. Window — MSA
represents the multi-head sliding-window self-attention layer.

Table 1| The physical meanings and values of each parameter
of the WWB parameterization

Parameter Description Value

A WWB amplitude 0.15Nm=
P4 WWB basic occurrence probability 0.06d™’

To WWB peak time 12.5 days
T WWB timescale 15 days

Xo WWB longitude center WPeqgge —40°
Yo WWB latitude center 0° (equator)
(L WWB zonal scale 20°

L, WWB meridional scale 6°

evaluate the DDPM’s ability to characterize these two features. The CWI,
LonCen, of WWBs are defined as follows*’:

(lon(x), lat (y)) - uyo (x, y, t) dxdydt

LonCen, LatCen) =
(LonCen, LatCen) ulo(X,J’, t)dxdydt

(14)

(15)

where the integral covers the whole spatiotemporal domain of a WWB
event. The term lon(x), lat ( ) represent the spatial position of the longitude
and latitude of u,,, with x, y, and t representing longitude, latitude, and

CWI = uy,(x, y, t) dxdydt

Table 2 | Contingency table

Forecast Observation

Occurrence Nonoccurrence
Occurrence TP FP
Nonoccurrence FN TN

WWB durations, respectively. We normalized the CWI by dividing it by the
standard deviation, hereafter termed NCWI. Besides, the maximum WWB
amplitude is defined as the maximum value within the WWB spatio-
temporal region, and the zonal range is defined as the range between the
farthest and nearest points within this region. The duration is defined as the
interval between the first and last day that meets the WWB definition. The
latitude center (LatCen) of WWBs is defined as Eq. (14). The Nifio3.4 index
is defined as the area-averaged SSTA over the region 5°N-5°S, 120°-170°W.

Relative Operating Characteristic curve

The Relative Operating Characteristic (ROC) curve is commonly utilized to
evaluate the performance of probabilistic forecast models. When assessing
the occurrence of an event, the model’s predictions are verified against actual
outcomes, resulting in one of the following categories”: true positive (TP),
false negative (FN), false positive (FP), or true negative (TN). Based on these
results, a binary contingency table (Table 2) can be obtained:

The hit rate (HR) and false-alarm rate (FR) are defined as:

P
HR=—— 16
TP + EN (16)

Fp
FR=—— 17
FP+ TN (17)

Here, the ROC curve is used to evaluate the simulation accuracy of monthly
occurrences of WWBs. In the observational data (2011-2022), each month
was assigned a binary WWBs occurrence probability (1 if WWBs occurred,
0 otherwise). For each WWB parameterization, the predicted probability
was defined as the proportion of ensemble members that predict WWB
occurrence in a given month. Given a specific probability threshold (e.g.,
0.5)—if the forecasted probability exceeds this threshold, a WWB event is
predicted to occur; otherwise, it is predicted not to occur. Using varying
probability thresholds, we calculated corresponding HR and FR pairs. The
ROC curve was then generated by plotting HR against FR across all
thresholds. The closer the ROC curve approaches the top-left corner of the
coordinate plane, the higher the predictive accuracy of the simulation.

CESM

CESM version 1.2.2 is employed in this study for our forecast experiments.
CESM is one of the most widely used fully coupled climate models,
encompassing comprehensive components for the atmosphere, ocean, land,
land ice, and sea ice”. Its ability to realistically simulate key features of El
Nifo variability and complexity has made it a cornerstone in El Nifo-
related research>”. In this study, the atmospheric component was
represented by the Community Atmosphere Model 4, configured with a
horizontal resolution of approximately 0.9°x 1.25° (f09) and a 26-layer
hybrid sigma-pressure vertical coordinate system. The oceanic processes
were simulated using the Parallel Ocean Program 2 model, which features a
horizontal resolution of roughly 1.1°x (0.54°-1°) (gx1v6) and 60 vertical
layers. Additionally, the modeling framework incorporated several other
critical components: the Community Land Model, the Los Alamos National
Laboratory Sea Ice Model, the Community Ice Sheet Model, and the River
Transport Model.

Design of super El Nifio forecast experiments
Using the analysis fields derived from Song et al.”, we conducted three
forecast experiments (Table 3) for three historical super El Nifo events

npj Climate and Atmospheric Science| (2025)8:273


www.nature.com/npjclimatsci

https://doi.org/10.1038/s41612-025-01158-x

Article

Table 3 | Forecast experiments

Forecast case Description Members

CTRL Control forecast, CESM without WWBs 1
parameterization

WPEE CESM Ensemble forecasting with WPEE WWBs 10
parameterization

DDPM CESM Ensemble forecasting with [SSTA, OLRA, 10

SLPA] WWBs parameterization

(1982/83, 1997/98, and 2015/16). The experiments were initialized in Feb-
ruary and May of the El Nifio development year, with each forecast lead time
of 12 months.

We conducted a control forecast (CTRL) using the default config-
uration of the CESM as a baseline. Moreover, as highlighted in the intro-
duction, the inherent predictability limit of WWBs on interannual
timescales implies that deterministic forecasts of WWBs are subject to
significant uncertainties, which inevitably affect predictions of super El Nifio
events. To address this, utilizing the stochastic nature of WWB's para-
meterization, we generated a 10-member ensemble forecast for both the
DDPM and WPEE forecast experiments. This ensemble approach high-
lights the effectiveness of capturing multi-timescale interactions, such as
those between WWBs and El Nifio”’, while emphasizing the importance of
accurately representing WWB physical characteristics to enhance super El
Nifio forecast skills. Notably, given that the CESM inherently captures high-
frequency atmospheric variability, we employed the online low-pass filter-
ing method developed by Lian and Chen (2021) to remove high-frequency
zonal wind stress components from the model before incorporating WWBs.
This approach ensures numerical integration stability and mitigates
potential impacts on model climate drift”.

Data availability

All data used in this study are publicly available online. OISST and OLR are
accessed at https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.
html® and https:/psl.noaa.gov/data/gridded/data.olrcdr.interp.html™,
respectively. NCEP data are freely available at https://psl.noaa.gov/data/
gridded/data.ncep.reanalysis2.html”. ERA5 data are freely available at
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets™.
The GODAS data are obtained from https:/psl.noaa.gov/data/gridded/
data.godas.html. Information and the source code for data analysis are
available from the Matrix Laboratory (MATLAB 2023). *Version R2023a*
[Software]. Natick, Massachusetts: The MathWorks Inc. (https://www.
mathworks.com).

Code availability

The CESM source codes are publicly available at https://www.cesm.ucar.
edu/models/releases. The source code of the DDPM is available at https://
zenodo.org/records/15655250.
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