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Toward skillful forecasting of super El
Niño events using a diffusion-based
westerly wind burst parameterization
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Chaopeng Ji1,2,3, Mu Mu1,2,3, Bo Qin1,2,3 , Tao Lian4,5,6, Shijin Yuan7,8,9, Jie Feng4, Xunshu Song4,
Yuntao Wei1,2,3, Guokun Dai1,2,3, Jinyu Wang1,2,3 & Xianghui Fang1,2,3

Forecasting super El Niño remains challenging, partly due to poor representation of westerly wind
bursts (WWBs). We developed an artificial intelligence-based denoising diffusion probabilistic model
(DDPM) to skillfully parameterizeWWBs, capturing their joint modulation by oceanic and atmospheric
processes. The DDPM-based scheme effectively captures observed WWBs’ characteristics (e.g.,
frequency, intensity, and spatial center). When implemented in the Community Earth SystemModel, it
outperforms both the control (CTRL, without WWBs parameterization) and conventional warm pool
eastern edge (WPEE)-dependent parameterization in predicting intensity and seasonal phase-locking
for super ElNiños (1982/83, 1997/98, 2015/16). This improvement stems fromDDPM’s realisticWWBs
representation, correcting CTRL and WPEE’s biases of overly weak and westward-shifted winds
during El Niño growth. Consequently, DDPM produces more realistic eastern Pacific sea surface
temperature anomaly warming patterns. These findings underscore WWB's accuracy as key to super
El Niño prediction and demonstrate machine learning’s potential for WWB's parameterization.

El Niño is the strongest interannual climate signal on Earth1, driving sig-
nificant global impacts on weather, ecosystems, and economies2,3. Among
these, super (or extreme) El Niño events have attracted significant attention
due to their broader spatial extent and stronger amplitude of sea surface
temperature (SST) anomalies,which lead tomore severemeteorological and
climatic disasters4,5. However, considerable uncertainty remains in fore-
casting the amplitude of super El Niño events6,7. The uncertainties in fore-
casting super El Niño events stem frommultiple sources, including (but not
limited to) complex inter-basin interactions among the Indian Ocean,
Atlantic Ocean, and Pacific Ocean8, the nonlinear response of the atmo-
sphere to oceanic processes9, and high-frequency atmospheric stochastic
forcing10. Notably, a key manifestation of this stochastic forcing is westerly
windbursts (WWBs). Extensive research fromobservational,modeling, and
theoretical perspectives has consistently demonstrated that WWBs play a
pivotal role in shaping super ElNiño evolutionby injectingwind energy into
the western and central Pacific11–13. This process enhances eastward zonal

current anomalies and generates eastward-propagating downwelling
equatorial Kelvin waves, which deepen the thermocline and facilitate the
eastward migration of the warm pool14–16. Collectively, these dynamical
mechanisms contribute to surface warming in the central and eastern
equatorial Pacific, leading to the development of El Niño. For instance, Lian
and Chen (2021) demonstrated that the strong and persistent WWBs
observed in March 1997 were a necessary condition for the onset of the
super 1997ElNiño event. Similarly, numerous studies have highlighted that
the contrasting intensities of the 2014/15 and 2015/16 El Niño events were
largely drivenby the frequency and intensity ofWWBs17–19. Thus, the ability
to realistically simulateWWBsduring superElNiñodevelopment is vital for
predicting the spatiotemporal evolution of super El Niño20,21.

However, many numerical models exhibit significant biases in simu-
lating WWBs22–24. This underscores the necessity for the widespread
application of WWB's parameterization schemes to thoroughly investigate
their impacts on the diversity and predictability of El Niño13,25–27. For
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example, studies indicated that the occurrence of WWBs is modulated by
oceanic conditions, manifesting as a type of semi-stochastic (or multi-
plicative) noise of El Niño14,28,29. This motivated Gebbie et al.30 to develop a
now widely used semi-stochastic parameterization scheme for WWBs
where WWB occurrence is influenced by SST (see “Methods” section).
Beyond this success, subsequent studies also highlighted the importance of
atmospheric internal variability in influencing the formation ofWWBs31–33.
For instance, the convectivephaseof theMadden-JulianOscillation34 (MJO)
is frequently associated with an increased likelihood ofWWBs33,35, and Lian
et al.31 highlighted that nearly 70% of WWBs are closely linked to tropical
cyclone (TC). Thus, it is essential to consider oceanic and atmospheric
variabilities simultaneously to capture the complexity of WWBs
comprehensively.

In recent years, artificial intelligence (AI) has been widely used in
atmospheric science and achieved remarkable advancements36–38. It offers
innovative approaches for parameterizingWWBs. For example, building on
the foundational work of Gebbie et al.30, You et al.39 developed a neural
WWBs parameterization scheme leveraging AI techniques, incorporating
oceanic and atmospheric variables as predictors. However, these para-
meterization schemes enforce fixed spatiotemporal structures on WWBs
and are limited to deterministic representations of only a few physical
parameters. Additionally, since WWBs are only one component of high-
frequency zonal wind (HFZW) anomalies, the WWB models may not
objectively reproduce the uncertainty of the spatial-temporal evolution of
WWBs comprehensively without including the realistically full spectral
components of HFZW anomalies.

Moreover, given the impact of WWBs on El Niño forecasts, as well as
the unpredictable nature ofWWBs on the seasonal forecasting timescale, it
is more crucial to estimate their occurrence likelihood throughout the
season than topredict their exact timing40.As anattempt, Ji et al.27 developed
an El Niño ensemble forecasting framework based on WWBs ensemble
forecasting, which improves the forecasting skills of El Niño since it better
accounts for interactions across different timescales than the widely used
initial condition-based framework. However, theWWB's parameterization
scheme used by Ji et al.27 considers only the role of the ocean. Developing a

probability parameterization scheme for WWBs that simultaneously
accounts for both oceanic and atmospheric processes is essential for cap-
turing their associated uncertainties in the super El Niño forecast. In this
paper, we aim to develop amore skillful parameterization forWWBs based
on the Denoising Diffusion Probabilistic Model (DDPM, see “Methods”
section), a state-of-the-art generative framework in AI. The DDPM-based
parameterization is then integrated online into the Community Earth
SystemModel (CESM) to systematically investigate the influence ofWWBs
on the prediction of super El Niño events.

Results
Evaluation of the new DDPM-based WWBs parameterization
First, we evaluated the simulation performance of WWBs across four
DDPM-based parameterization schemes with different conditional phy-
sical variable combinations (i.e., SST anomalies (SSTA), outgoing long-
wave radiation anomalies (OLRA), and sea level pressure anomalies
(SLPA)) designed to capture the spatiotemporal characteristics and sto-
chastic nature of WWBs (see “Methods” section). As shown in Fig. 1a, e,
the [SSTA] generates almost no WWBs. This discrepancy may arise
because SSTA evolves relatively slowly, making it challenging for AI
models to establish a robust mapping between slow-varying SSTA and
rapidly varying HFZW anomalies. This limitation is corroborated by the
power spectrum of HFZW anomalies (Fig. S1), which reveals that the
HFZW anomalies generated by [SSTA] are predominantly characterized
by low-frequency variability. As a result, these models fail to accurately
capture the high-frequency, episodic nature of WWBs. With the OLRA
included in [SSTA, OLRA], both the WWB intensity (NCWI below, see
“Methods” section) and numbers increase substantially (Fig. 1a, b).
However, their longitudinal center (LonCen, see “Methods” section) is too
concentrated in thewestern Pacific to capture the widespread character in
the observation (Fig. 1c, f), which was argued to be important in inducing
the El Niño diversity41. On this basis, including SLPA as another input
parameter in [SSTA, OLRA, SLPA] further refines the simulation details
of the WWBs numbers and NCWI (Fig. 1a, b), supporting the finding of
Lian et al.23 that WWBs are closely associated with TCs. Besides, the

Fig. 1 | Comparative analysis of WWB physical characteristics in DDPM simu-
lations with different parameterizations. Observed and simulated WWB a total
numbers, b annual accumulated NCWI, and c probability distribution of the Lon-
Cen, d ROC curve, the closer the curve is to the upper left corner, the better the
simulation performance of the accuracy of WWBs monthly occurrence for all

months during 2011–2022 (for details, see “Methods” section), and e–h scatter plots
of the LonCen and NCWI of each WWB, comparing the observed and simulated.
Shading and error bars indicate a one standard deviation interval among the 20
members. Blue, yellow, orange, purple, and green represent observations, [SSTA],
[SSTA, OLRA], [OLRA, SLPA], and [SSTA, OLRA, SLPA], respectively.
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[SSTA, OLRA, SLPA] significantly improves the simulation of WWBs
occurrence probability in each month (Fig. 1d), which is crucial for
WWBs and El Niño ensemble forecasting27.

Moreover, given the extensive research emphasizing the regulatory
effects of SSTA on WWBs28,42, we trained [OLRA, SLPA] using OLRA
and SLPA as constraints to further investigate the respective roles of
oceanic and atmospheric processes in WWBs. The results indicate that
compared to the [SSTA, OLRA, SLPA], the [OLRA, SLPA] simulates
fewer and weaker WWBs (Fig. 1a, b), with a slight bias in the simulated
monthly occurrence probability of WWBs (Fig. 1d). Additionally, the
LonCen of WWBs in the [OLRA, SLPA] are more concentrated in the
western Pacific (Fig. 1c, g), showing an obvious bias compared to
observations. These results suggest that in the AI model, SSTA may
provide a conducive environment for WWBs occurrence and regulate
their central location, while the frequency and intensity of WWBs are
primarily dominated by atmospheric internal variability. In other words,
the regulatory effect of SSTA on WWBs requires the cooperation of
atmospheric internal variability to better characterize the various phy-
sical attributes of WWBs, which is consistent with the findings of Liang
et al.43 in numerical models. We also compared the [OLRA, SLPA] and
[SSTA, OLRA, SLPA] regarding WWBs’ maximum amplitude, latitu-
dinal center, zonal range, duration, monthly frequency, and numbers of
each year between 2011 and 2022. The [SSTA, OLRA, SLPA] demon-
strated superior simulation capability in all these aspects (Figs. S2–S3).

Furthermore, we compared the performance of the [SSTA, OLRA,
SLPA] with the traditional warm pool eastern edge (WPEE, see “Methods”
section)-dependent WWBs parameterization30 in capturing key character-
istics of WWBs, including their LonCen, monthly occurrence accuracy,
numbers, and NCWI. As illustrated in Fig. 2, the [SSTA, OLRA, SLPA]
significantly outperforms the WPEE-based approach in representing the
physical features of WWBs. This result underscores the importance of
incorporating atmospheric variability into the parameterization ofWWBs3
5,39 and the high efficiency of the diffusion-basedAI scheme in doing this. By
better capturing the state-dependent nature ofWWBs and their interactions
with large-scale air-sea processes, the [SSTA, OLRA, SLPA] is believed to
provide amore robust framework for understanding and predicting the role
of WWBs in super El Niño events.

Embedding DDPM-based WWBs parameterization into CESM
and forecasting of super El Niño
The evaluation above demonstrates that the [SSTA, OLRA, SLPA] achieves
the best performance in simulating WWBs among the diffusion-based
frameworks. Therefore, in the subsequent forecast experiments focusing on
super El Niño events, we exclusively coupled the [SSTA,OLRA, SLPA]with
the CESM, which is compared with the one that adopts the traditional
WPEE-dependent WWBs parameterization. For convenience, the super El
Niño forecast experiments incorporating the two parameterizations are
termed as “DDPM” and “WPEE” in the following text, respectively (see
“Methods” section).

Figure 3 presents the observed, control (CTRL, CESMwithoutWWBs
parameterization),WPEE,andDDPMforecast experiments for theNiño3.4
index over a 12-month lead time, initialized in February and May (i.e.,
before and end of the boreal spring season) of 1982, 1997, and 2015,
respectively. As shown, the CTRL consistently underestimates the intensity
of super El Niño events, aligning with findings from previous studies44,45. In
the WPEE experiment, the inclusion of WWBs partially improves the
predicted El Niño intensity, but the overall underestimation persists. In
contrast, theDDPMexperiment demonstrated significant improvements in
predicting the intensity of super El Niño events. Notably, the spread of
ensemble members (the green shade in Fig. 3) effectively encompassed
observations, indicating the reliability of the DDPM approach. This
improvement stems from the DDPM’s more accurate representation of
WWBs (Fig. 2), which better captures their critical role in establishing the
super El Niño events46,47. Additionally, while observations indicate that all
three El Niño events peak in December (i.e., seasonal phase-locking), the
CTRL and WPEE exhibit significant biases in capturing this character.
When initialized in February, CTRL and WPEE experiments exhibit a
distinctive double-peak evolution: an initial Niño3.4 peak at 6-month lead
time (summer) followed by weakening and subsequent re-intensification to
a second peak (winter) at lead 12 months, contrasting with the observed
steady intensification toward a single December peak (Fig. 3a–c). Notably,
we emphasize that in the 1997 case, all three experimental configurations
reproduce the observed December peak in El Niño development (Fig. 3b).
For May initializations (post-spring when air-sea coupling is better estab-
lished), while the double-peak feature weakens, the predicted peaks still lag

Fig. 2 | Differences in simulated WWB char-
acteristics between DDPM and WPEE para-
meterizations. The [SSTA, OLRA, SLPA] (green)
and WPEE-dependent (magenta) parameteriza-
tions are compared in their representation ofWWBs
for a LonCen, b monthly occurrence accuracy,
c numbers, and d NCWI. The shaded regions indi-
cate one standard deviation across the 20 ensemble
members. The blue lines in (a), (c), and (d) represent
the observed.
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observations by approximately one month (Fig. 3d–f). These errors reflect
common seasonal phase-locking prediction biases prevalent in many
complex climate models48–50. Notably, the DDPM experiment efficiently
overcomes all these shortcomings andaccurately predicts the evolutionof all
these super ElNiño events. This hints that improved representation of high-
frequency atmospheric processes likeWWBs in climatemodelsmay help to
mitigate the seasonal phase-locking bias of El Niño. Moreover, forecast
experiments for the 1994/1995 and 2009/2010 moderate El Niño events
showed DDPM’s improvement was slightly smaller than for super El Niño,
but still yielded the best overall forecast results (Fig. S4).

To better illustrate the spatiotemporal evolution, Fig. 4 presents the
SSTA along the equatorial (5°S–5°N mean) Pacific from observations

and the three forecast experiments (taking the 1997/98 event as an
example, the results for the other two events are similar, as illustrated in
Figs. S5–S8). The observed SSTA exhibits a broad spatial distribution
spanning the central and eastern Pacific (Fig. 4a, e). In contrast, the
major warming in the CTRL experiment is primarily confined to the far
eastern Pacific, with only limited westward extension (Fig. 4b, f). Con-
sequently, the SSTAs in the Niño3.4 region (black dashed boxes) are
significantly underestimated compared to observations. Additionally,
although manifesting weak warming within the Niño3.4 region, the
CTRL exhibits a distinct seasonal double-peak structure (i.e., summer
and winter), markedly diverging from observations (Fig. 4a, b, e, f).
These findings align with the phase-locking biases identified in Fig. 3.

Fig. 3 | Observed and forecasted Niño3.4 index. Observed (blue), CTRL (orange),
WPEE (magenta), and DDPM (green) forecast experiments for the Niño3.4 index
(unit: °C) over a 12-month lead time, initialized in February and May a, d 1982,
b, e 1997, and c, f 2015. The shaded areas represent one standard deviation across the
10 ensemble forecastingmembers, while theWPEE andDDPMexperiments display

the ensemble mean across these 10 members. The x-axis indicates the forecast end
month, where (0) denotes months in the El Niño development year and (1) repre-
sents months in the subsequent year. For instance, in (d), May (0) corresponds to
May 1982 while Jan (1) indicates January 1983.

Fig. 4 | Observed and forecasted monthly mean SSTA. a, e Observed, b, f CTRL,
c, gWPEE, and d, hDDPM forecast experiments for the monthly mean SSTA (unit:
°C) averaged between 5°S and 5°N over a 12-month lead time, initialized in February
and May 1997. Contours indicate SSTA exceeding 2 °C. The black dashed boxes

denote the zonal extent of the Niño3.4 region (190°W–240°W). The WPEE and
DDPM experiments display the ensemble mean across these 10 members. Where 0
represents the year of El Niño development (1997) and 1 represents the following
year (1998).
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The WPEE experiment produces a more westward-extended warming
pattern compared to CTRL (Fig. 4c, g), exhibiting broader spatial cov-
erage across the eastern Pacific. While this configuration partially
mitigates the characteristic double-peak bias in the Niño3.4 index evo-
lution (Fig. 3), its impact remains substantially limited—the simulated
SSTA in the Niño3.4 region still exhibits pronounced underestimation
compared to observations. Furthermore, the slower westward propa-
gation of SSTA, combined with the unrealistic weakening of anomalies
in the far eastern Pacific, causes a delayed peak in the Niño3.4 region
relative to observations, leading to seasonal phase-locking biases in
forecasts (Fig. 4f, g). In contrast, the DDPM experiment demonstrates
notable improvements over CTRL and WPEE in terms of both the
spatial distribution and intensity of SSTA (Fig. 4d, h).

Mechanisms of DDPM in improving super El Niño prediction
The results above demonstrate the significant advantages of the DDPM
experiment in improving the prediction of super El Niño events. To
understand the underlying physical mechanisms, Fig. 5 illustrates the spa-
tiotemporal evolution of observed and predicted monthly mean westerly
wind stress and sea surface height anomalies (SSHA). It is evident that,
compared to observations, the westerly wind stress anomalies in the CTRL
and WPEE experiments are weaker and more confined to the western
Pacific. This results in a reduced propagation time for the upwelling Rossby
waves (excited by westerly wind stress) to reflect at the western boundary as
Kelvinwaves, therebymore rapidly counteracting the eastward-propagating
downwelling Kelvin waves51. Consequently, the SSHA and SSTA in the
eastern Pacific are significantly weakened, as the positive feedback has less
time to amplify them41. Although the westerly wind stress anomalies in
CTRL and WPEE gradually strengthen and shift eastward with the devel-
opment of SSTA, the anomalies show a systematic westward displacement
compared to observations. This systematic bias fundamentally impairs the
models’ capacity to sustain the Bjerknes feedback, leading to biases in the
prediction of ElNiño’s seasonal phase-locking and intensity. In contrast, the
DDPM experiment, with its stronger and more eastward-shifted westerly
wind stress anomalies that closely align with observations, facilitates the
accumulation of downwelling Kelvin waves in the eastern Pacific, mani-
festing as an enhancement of positive SSHA in this region. This process
intensifies positive SSHA in the region, thereby strengthening the Bjerknes
feedback52 and accelerating the amplification of SSTA. Simultaneously, the
continuous growth of SSTA further increases the probability of WWBs

occurrence, creating a positive feedback loop that amplifies the SSTA. The
improved representation of these dynamical interactions in the DDPM
framework highlights its superior ability to capture the key mechanisms
driving super El Niño events, leading to more accurate predictions of their
seasonal phase-locking and intensity. These results demonstrate that
improved representation of WWBs’ characteristics contributes to reducing
model systematic biases, thereby improving the forecast skill for super El
Niño events.

Discussion
This study first developed a skillful parameterization scheme for WWBs
using an AI-based diffusion model, which effectively reproduces multiple
observed physical attributes of WWBs. Based on this scheme, we further
revealed that WWBs, as a form of multiplicative noise on the interannual
timescale, originate from oceanic states that provide the background con-
ditions forWWBs formationand regulate their central location.Meanwhile,
internal atmospheric processes (e.g., MJO, TC) influence the intensity and
frequency ofWWBs. Therefore,WWBs cannot be solely attributed to SSTA
regulation in theAImodel as inpreviousparameterization schemes26,30. This
is because SSTA regulation of WWBs requires coordination with internal
atmospheric variability.

We then incorporate DDPM-based parameterization, along with a
conventional WWBs parameterization dependent on the WPEE, into the
CESM to conduct ensemble forecasting experiments for three historical
super El Niño events. The results indicate that the DDPM scheme sig-
nificantly improves the prediction of El Niño intensity and mitigates the
seasonal phase-locking bias in comparison to the CTRL and WPEE
experiments. This improvement primarily stems from the ability of the
DDPM scheme to better characterize WWB occurrences, thereby mitigat-
ing the systematic biases in the CTRL andWPEE experiments, which tend
to produce weaker and more westward-displaced westerly wind stress
anomalies. As a result, SSTAs in the eastern Pacific are better maintained
and progressively develop westward, exhibiting spatiotemporal evolution
and intensity that closely align with observations.

Our results highlight the critical role of accurately representingWWBs
in improving super El Niño predictions, while demonstrating the efficacy of
AI-based approaches in addressing this longstanding challenge. Further-
more, as emphasized in the introduction, the predictability limit of WWBs
on interannual timescales implies that any deterministic forecast ofWWBs
inherently carries considerable uncertainty, which inevitably propagates

Fig. 5 | Same as Fig. 4, but for SSHA (units: m). a, e Observed, b, f CTRL,
c, g WPEE, and d, h DDPM forecast experiments for the monthly mean SSHA
averaged between 5°S and 5°Nover a 12-month lead time, initialized in February and

May 1997. Black vector arrows in (a–h) representmonthlymeanwesterly wind stress
anomalies (units: N/m2, shown only for values exceeding 0.02 N/m2).
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into super El Niño predictions. Our findings suggest that ensemble fore-
casting may serve as an effective strategy for addressing the interactions
between phenomena across different timescales, such as WWBs and El
Niño, thereby improving the reliability of climate predictions.

Methods
Data
The National Oceanic and Atmospheric Administration daily Optimum
Interpolation Sea Surface Temperature (OISST53) and daily OLR spanning
1981–2022were used54. Daily 10-m zonal wind and SLP data were obtained
from the National Centers for Environmental Prediction–National Center
for Atmospheric Research (NCEP-NCAR) Reanalysis 2 Project55, spanning
1979–2022. Additionally, daily SST, OLR, SLP, and 10-m zonal wind data
from the European Centre for Medium-Range Weather Forecasts Reana-
lysis v5 (ERA556) were also used, covering the same period (1979–2022).
Daily anomalies within our analysis were defined as deviations from the 30-
year climatological mean (1981–2010). Then, a 60-day high-pass filter was
applied to the 10-m zonal wind anomalies to further isolate the high-
frequency components. The observational data for monthly SST, SSH, and
wind stresses were sourced from the Global Ocean Data Assimilation Sys-
tem (GODAS57).

Mathematical formulation of DDPM
DDPMs are a class of generative models designed to model the gradual
transformation of data from a simple, known distribution, such asGaussian
noise, into more complex distributions, like those found in real-world
atmospheric states58. DDPM has been successfully applied in various
domains, including image synthesis59, and natural language processing60.
More recently, their application in atmospheric sciencehas gained attention,
particularly in ensemble forecasting, due to their probabilistic framework for
forecasting61,62.

The fundamental concept underlying DDPM is to simulate a forward
diffusion process inwhich data is incrementally corruptedbynoise, which is
then followed by a reverse denoising process where the model iteratively
learns to remove the noise to eventually reconstruct the original data. This
reverse denoising process can subsequently be employed to generate new
data, beginning with pure noise and denoising it through iterative
refinement.
1. Forward Diffusion Process

The forward diffusion process gradually adds noise to the data over a
series of discrete time steps, effectively converting the data distribu-
tion x0 into a simple Gaussian distribution xT ðT ! þ1Þ. This
process is often modeled as a Markov chain, where the data at each
time step t is conditioned only on the data at the previous time step
t � 1:

qðxt jxt�1Þ ¼ N xt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
xt�1; βtI

� �
ð1Þ

where xt represents the data at time step t; βt is a small positive scalar (linear
interpolation from 0.0001 to 0.02) that controls the variance of the noise
added at each step.N ð�; μ;PÞ denotes aGaussian distributionwithmean μ
and covariance

P
; I is the identity matrix.

The cumulative effect of this forward process over T steps can be
described by:

qðxt jx0Þ ¼ N ðxt ;
ffiffiffi
�α

p
tx0; ð1� �αtÞIÞ ð2Þ

where αt ¼ 1� βt and �αt ¼
Qt

s¼1αs
This formulation indicates that xt is a noisy version of the original
data x0, with noise increasing as t approaches T :

xt ¼
ffiffiffi
�α

p
tx0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
ξt ð3Þ

Where ξt � N ð0; IÞ.

2. Reverse Diffusion Process
The reverse diffusion process aims to recover the original data from
the noisy data xt by learning a model that approximates the reverse
Markov chain.When βt is small enough, the inverse process is also a
Gaussian distribution:

pθðxt�1jxtÞ ¼ N xt�1; μθ xt; t
� �

;
X
θ

ðxt ; tÞ
 !

ð4Þ

where μθðxt ; tÞ;
P

θðxt ; tÞ are functions (often parameterized by neural
networks) that predict the mean and variance of xt�1 given xt and the time
step t. θ represents the parameters of the model. The goal of training is to
learn the parameters θ such that the reverse process accurately inverts the
forward process, ultimately leading to the reconstruction of the original
data x0.
3. Training Objective

It is not practical to directly calculate the distribution of the inverse
operationof addingnoise for all datapθðxt�1jxtÞ.However, if a training set is
used as input x0, it allows us to approximate pθðxt�1jxtÞ effectively:

qðxt�1jxt ; x0Þ ¼ qðxtjxt�1; x0Þ
qðxt�1jx0Þ
qðxt jx0Þ

ð5Þ

where qðxt�1jxt ; x0Þ shows the inverse operation of adding noise and its
mean and variance need to be determined. qðxt jxt�1; x0Þ ¼
N xt;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
xt�1; βtI

� �
denotes the distribution of the addednoise. Since

x0 is known, we have:

qðxt jx0Þ ¼ N ðxt ;
ffiffiffiffi
�αt

p
x0; ð1� �αtÞIÞ ð6Þ

qðxt�1jx0Þ ¼ N ðxt�1;
ffiffiffiffiffiffiffiffiffi
�αt�1

p
x0; ð1� �αt�1ÞIÞ ð7Þ

Substituting Eqs. (6) and (7) into Eq. (5), we can get:

qðxt�1jxt ; x0Þ ¼ N xt�1;eμt xt; x0
� �

;eβtI
� �

ð8Þ

where eμt and eβt represent the mean and variance of qðxt�1jxt; x0Þ,
respectively.

eμt ¼ 1ffiffiffiffi
αt

p xt �
1� αtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p ξt

� �
ð9Þ

eβt ¼ 1� �αt�1

1� �αt
βt ð10Þ

Here, αt , βt , �αt , and �αt�1 are all known parameters, while only ξt is
unknown. Thus, in training the reverse process of the neural network, the
core objective is to predict the noise added in the forward process at
each step.

So, this objective can be expressed as:

L ¼ Eq x0ð Þ;ξt�N 0;Ið Þ;t jjξt � ξθ xt ; t
� �jj2	 


ð11Þ

where ξθ xt ; t
� �

is the neural network’s estimate of the added noise ξt , and t
is a random time step chosen during training. Eqðx0Þ is the mathematical
expectation of qðx0Þ.

DDPM-based parameterization of WWBs
We adopted the DDPM to construct a newWWBs parameterization with
high spatiotemporal complexity. Its framework is illustrated in Fig. 6. The
forward chain indicated by black arrows in Fig. 6a is typically designed to
map a complex data distribution into a standard Gaussian distribution by
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gradually adding noise, which is also the distribution shift learning process
from practical data to Gaussian. The reverse chain, as red arrows in Fig. 6a,
gradually turns Gaussian distributions into practical data distributions,
which is regarded as the generationprocess.During the implementation, the
reverse chain reconstructs the data by predicting the noise added during the
forward chain andprogressively denoising it stepby step, as illustrated in the
two boxes in Fig. 6a. Figure 6b displays the network structure we used in
DDPM with detailed data flow and tensor operators, which contains two
kinds of inputs for noised data and conditions, outputting the noise present
in the data. Conditions represent a constraint, ensuring that the generated
datamaintains physical consistency. This network is designedwith state-of-
the-art neural blocks, including ConvNeXt block63 and Swin-Transformer
block64, as well as our designed Down-/Up-Sampling block; the detailed
architectures of internal modules are exhibited in Fig. 7.

As highlighted in the introduction, El Niño, MJO, and TC events play
significant roles in modulating the occurrence of WWBs. We selected
various combinations of SSTA, OLRA, and SLPA as conditions for the
DDPM, as they effectively capture the activity states of El Niño, MJO, and
TC, analogous to You et al.39.We trained four distinctmodel configurations
utilizing varying conditions: (1) SSTA, (2) SSTA and OLRA, (3) SSTA,
OLRA, and SLPA, and (4) OLRA and SLPA, denoted as [SSTA], [SSTA,
OLRA], [SSTA, OLRA, SLPA], [OLRA, SLPA], respectively. For example,
SSTA serves as a constraint for the [SSTA], guiding the initial randomnoise
to transform into daily HFZW anomalies at the corresponding time via the
reverse process. The output variable for all model configurations was the
daily HFZW anomalies. The spatial domain of the predictors and output
was the tropical Pacific region (120°E–80°W, 30°S–30°N), with a spatial
resolution of 2.5° × 2.5°. The remaining model configurations adopt a
comparablemethodology.We useNCEP andERA5data from1979 to 2010
for training, and ERA5 data from 2011 to 2022 as test sets. For these four
models, we generate 20 ensemble members to assess their simulation per-
formance in simulating WWBs.

Traditional WPEE-dependent WWBs parameterization scheme
The traditional WWBs parameterization scheme, initially developed by
Gebbie et al.30, captures themultiplicative noise characteristics ofWWBs by

linking their occurrence probability (pwwb) to the position of the WPEE.
This approach has been widely adopted in studies investigating the dyna-
mical impacts ofWWBs on El Niño27,65–68. In this parameterization scheme,
pwwb and the spatiotemporal distribution of their associated wind stress
anomalies (τwwb x; y; t

� �
) are defined as follows:

pwwbs tð Þ ¼
p1
2

tanh
ðwpedge tð Þ � 180Þπ

60

� �� �
þ 1 ð12Þ

τwwb x; y; t
� � ¼ A exp � t � T0

� �2
T2 � x � x0

� �
L2x

2

� y � y0
� �

L2y

2
 !

ð13Þ

wherewpedge is theWPEE,defined as the longitude of the 28.5 °C isotherm; t
is the considered time. A WWB event was initiated only when pwwb was
greater than a random number. The meanings and specific values of the
parameters in Eqs. (12) and (13) are summarized in Table 1 below, con-
sistent with those used in Chen et al.66. While the parameters in Eq. (13) are
presently treated as deterministic, future work could explore integrating
stochastic processes to better capture WWB variability. Such refinements
might improve the parameterization’s skill and its utility for El Niño fore-
casting, though this extension lies beyond the scope of the present study.

Definitions of WWBs and Niño index
The definition of a WWB event follows Ji et al.27, where the threshold for
WWB detection is defined as three times the mean standard deviation of
HFZW anomalies over the 5°S–5°N, 120°E–80°W region, consistent with
Seiki et al.24. The WWBs thresholds for observations and the four model
configurations, i.e., [SSTA], [SSTA, OLRA], [SSTA, OLRA, SLPA], and
[OLRA, SLPA], are 5m/s, 4.6m/s, 4.2m/s, 4.9m/s, and 4.8 m/s, respec-
tively.Additionally, previous studies have demonstrated that the cumulative
WWBs intensity (CWI) and WWBs’ longitudinal center (LonCen) are the
key physical attributes affecting El Niño dynamics. For example, Chen
et al.69 noted that the strongCWIwas a crucial factor in the occurrenceof the
superElNiño in 2015.Moreover, the central positionofWWBs significantly
affects the annual cycle and diversity of ElNiño41,70. Therefore, we primarily

Fig. 6 | Flowchart ofDDPM. aThe black (red) arrows indicate the forward (reverse)
diffusion process, and t indicates the time step of adding noise, with a total of
T = 1600 steps. qðxt jxt�1Þ ¼ N xt ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
xt�1; βtI

� �
indicates that the noise added

at each step follows a Gaussian distribution. βt is a small positive scalar (linear
interpolation from 0.0001 to 0.02) that controls the variance of the noise added at
each step. pθðxt�1jxtÞ ¼ N xt�1; μθ xt ; t

� �
;
P

θðxt ; tÞ
� �

represents the Gaussian dis-
tribution of the denoising process, with mean μθ xt ; t

� �
and variance

P
θðxt ; tÞ,

where θ is the distribution parameter. ξθ xt ; t
� �

is the neural network’s estimate of the
added noise ξt . Eq x0ð Þ;ξt�N 0;Ið Þ is the mathematical expectation of q x0

� �
, and L ¼

Eq x0ð Þ;ξt�N 0;Ið Þ jjξt � ξθ xt ; t
� �jj2	 


represents the loss function, b is the network
structure we used in DDPMwith detailed data flow and tensor operators. Given the
initial randomnoise and conditions (SSTA,OLRA, and SLPA), the neural network is
trained to predict the added noise and gradually remove it.
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evaluate the DDPM’s ability to characterize these two features. The CWI,
LonCen, of WWBs are defined as follows35,69:

LonCen; LatCenð Þ ¼ lon xð Þ; lat y
� �� � � u10 x; y; t

� �
dxdydt

u10 x; y; t
� �

dxdydt
ð14Þ

CWI ¼ u10 x; y; t
� �

dxdydt ð15Þ
where the integral covers the whole spatiotemporal domain of a WWB
event. The term lon xð Þ; lat y

� �
represent the spatial position of the longitude

and latitude of u10, with x, y, and t representing longitude, latitude, and

WWBdurations, respectively.Wenormalized theCWI by dividing it by the
standard deviation, hereafter termed NCWI. Besides, the maximumWWB
amplitude is defined as the maximum value within the WWB spatio-
temporal region, and the zonal range is defined as the range between the
farthest and nearest points within this region. The duration is defined as the
interval between the first and last day that meets the WWB definition. The
latitude center (LatCen) ofWWBs is defined as Eq. (14). TheNiño3.4 index
is defined as the area-averaged SSTAover the region 5°N–5°S, 120°–170°W.

Relative Operating Characteristic curve
The Relative Operating Characteristic (ROC) curve is commonly utilized to
evaluate the performance of probabilistic forecast models. When assessing
the occurrence of an event, themodel’s predictions are verified against actual
outcomes, resulting in one of the following categories71: true positive (TP),
false negative (FN), false positive (FP), or true negative (TN). Based on these
results, a binary contingency table (Table 2) can be obtained:

The hit rate (HR) and false-alarm rate (FR) are defined as:

HR ¼ TP
TP þ FN

ð16Þ

FR ¼ FP
FP þ TN

ð17Þ

Here, the ROC curve is used to evaluate the simulation accuracy ofmonthly
occurrences of WWBs. In the observational data (2011–2022), each month
was assigned a binaryWWBs occurrence probability (1 ifWWBs occurred,
0 otherwise). For each WWB parameterization, the predicted probability
was defined as the proportion of ensemble members that predict WWB
occurrence in a given month. Given a specific probability threshold (e.g.,
0.5)—if the forecasted probability exceeds this threshold, a WWB event is
predicted to occur; otherwise, it is predicted not to occur. Using varying
probability thresholds, we calculated corresponding HR and FR pairs. The
ROC curve was then generated by plotting HR against FR across all
thresholds. The closer the ROC curve approaches the top-left corner of the
coordinate plane, the higher the predictive accuracy of the simulation.

CESM
CESM version 1.2.2 is employed in this study for our forecast experiments.
CESM is one of the most widely used fully coupled climate models,
encompassing comprehensive components for the atmosphere, ocean, land,
land ice, and sea ice72. Its ability to realistically simulate key features of El
Niño variability and complexity has made it a cornerstone in El Niño-
related research46,73,74. In this study, the atmospheric component was
represented by the Community Atmosphere Model 4, configured with a
horizontal resolution of approximately 0.9° × 1.25° (f09) and a 26-layer
hybrid sigma-pressure vertical coordinate system. The oceanic processes
were simulated using the Parallel Ocean Program 2model, which features a
horizontal resolution of roughly 1.1°× (0.54°–1°) (gx1v6) and 60 vertical
layers. Additionally, the modeling framework incorporated several other
critical components: theCommunity LandModel, the LosAlamosNational
Laboratory Sea Ice Model, the Community Ice Sheet Model, and the River
Transport Model.

Design of super El Niño forecast experiments
Using the analysis fields derived from Song et al.74, we conducted three
forecast experiments (Table 3) for three historical super El Niño events

Fig. 7 | Network structure diagram. a, b, and c, respectively, exhibit the detailed
modules of Down-/Up-Sampling block, ConvNeXt block, and Swin-Transformer
block used in DDPM-based WWBs parameterization, where k; s; p and c ¼ 64
represent the kernel size, stride, padding, and channel. Pachify represents an
operation that cuts the gridded data into small patches. Inverse Pachify is the
restoration process. MLP represents a multi-layer perceptron. Window�MSA
represents the multi-head sliding-window self-attention layer.

Table 1 | The physical meanings and values of each parameter
of the WWB parameterization

Parameter Description Value

A WWB amplitude 0.15 Nm−2

p1 WWB basic occurrence probability 0:06d�1

T0 WWB peak time 12.5 days

T WWB timescale 15 days

x0 WWB longitude center wpedge−40°

y0 WWB latitude center 0° (equator)

Lx WWB zonal scale 20°

Ly WWB meridional scale 6°

Table 2 | Contingency table

Forecast Observation

Occurrence Nonoccurrence

Occurrence TP FP

Nonoccurrence FN TN
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(1982/83, 1997/98, and 2015/16). The experiments were initialized in Feb-
ruary andMayof theElNiñodevelopment year,with each forecast lead time
of 12 months.

We conducted a control forecast (CTRL) using the default config-
uration of the CESM as a baseline. Moreover, as highlighted in the intro-
duction, the inherent predictability limit of WWBs on interannual
timescales implies that deterministic forecasts of WWBs are subject to
significantuncertainties,which inevitably affect predictionsof superElNiño
events. To address this, utilizing the stochastic nature of WWB's para-
meterization, we generated a 10-member ensemble forecast for both the
DDPM and WPEE forecast experiments. This ensemble approach high-
lights the effectiveness of capturing multi-timescale interactions, such as
those betweenWWBs and El Niño27, while emphasizing the importance of
accurately representing WWB physical characteristics to enhance super El
Niño forecast skills. Notably, given that theCESM inherently captures high-
frequency atmospheric variability, we employed the online low-pass filter-
ing method developed by Lian and Chen (2021) to remove high-frequency
zonalwind stress components from themodel before incorporatingWWBs.
This approach ensures numerical integration stability and mitigates
potential impacts on model climate drift67.

Data availability
All data used in this study are publicly available online. OISST andOLR are
accessed at https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.
html53 and https://psl.noaa.gov/data/gridded/data.olrcdr.interp.html54,
respectively. NCEP data are freely available at https://psl.noaa.gov/data/
gridded/data.ncep.reanalysis2.html55. ERA5 data are freely available at
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets56.
The GODAS data are obtained from https://psl.noaa.gov/data/gridded/
data.godas.html. Information and the source code for data analysis are
available from the Matrix Laboratory (MATLAB 2023). *Version R2023a*
[Software]. Natick, Massachusetts: The MathWorks Inc. (https://www.
mathworks.com).

Code availability
The CESM source codes are publicly available at https://www.cesm.ucar.
edu/models/releases. The source code of the DDPM is available at https://
zenodo.org/records/15655250.
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