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Potential tropical cyclone movement and
intensification factors imaged by
spaceborne SAR

Check for updates

Guosheng Zhang1 , Xiaofeng Li2 , Pakwai Chan3 & Hui Su4

Spaceborne synthetic aperture radar (SAR) is a microwave sensor that captures tropical cyclones
(TCs) with high spatial resolution. Based on three idealized TC parametric wind models, we provide a
comprehensive perspective on TC studies using SAR observations, including surface winds,
morphology, eye shape, asymmetry, inflow angle, steering flow, secondary eyewalls, vortex Rossby
waves, spatial rain bands, and other small-scale dynamics, contributing to a better understanding of
TC movement and intensification.

Advances in spaceborne SAR for tropical cyclone
monitoring
Themain advantages of SAR TCmonitoring are the high spatial resolution
and direct estimation of surface winds1–5 (Supplementary Fig. 1). Early
spaceborne SAR systems, such as ERS-1, ERS-2, and RADARSAT-1, were
limited to providing single-polarized SAR images using either HH or VV
polarization. These images allowed for TC center locating, size
measurements6, and intensity estimation7.However, due to the tendency for
HH and VV signals to saturate under TC conditions, they have limited use
in TC wind retrievals. Since the launch of RADARSAT-2 in 2008, multi-
polarizationSAR including four linearpolarizationsof co-polarizations (VV
or HH) and cross-polarizations (VH or HV) has been available. Compared
to the co-polarizations, the cross-polarized SAR images are expected to
remain unsaturated, suitable for capturing TC winds8–15. In the last decade,
two Sentinel-1 (2014/2016), three Gaofen-3 (2016/2021/2022), and three
RCM (RADARSAT Constellation Mission, 2019) satellites were launched,
all having C-band cross-polarized SAR imaging ability. The relationship
between sea surface wind speed and the C-band cross-polarized SAR signal
of NRCS (Normalized Radar Cross-Section) has been investigated, and sea
surfacewind retrievalmethods ormodels have been developed8–15 (Table 1).
Recently, NOAA (National Oceanic and Atmospheric Administration)
STAR (Center for satellite applications andResearch) hasworkedwith Joint
Typhoon Warning Center (JTWC), Naval Research Laboratory, and
National Hurricane Center to provide the retrieved wind products, radial
wind profiles, maximum wind speed, radius of maximum winds, and the
wind radii of the 34, 50, and 64 kt covering SAR satellites of RADARSAT-2,
Sentinel-1, and RCM16–20. Spaceborne SAR has also been used by JTWC for
both post-storm best-track (BT) adjustments and real-time analysis and

forecasting in conjunction with radiometers20. SAR operational use is still
limited to basicmeasurements. Anotable range of studies have attempted to
explore the diverse information contained in high spatial resolution wind
structures1,5,21–27. However, there is still a need for a comprehensive inte-
gration of such high-resolution parameters into a consistent system suited
for operational use.

Remote sensing is the primary method for monitoring TCs over the
openocean, utilizing cloud images fromgeostationary satellites in the visible
(Vis) and infrared (IR) bands, aircraft reconnaissance with Stepped-
Frequency Microwave Radiometer (SFMR), and satellite microwave sen-
sors, including SAR, scatterometers, and radiometers for sea surface wind
retrieval. Vis and IR satellite images remain the primary source of infor-
mation for estimating TC intensity in operational forecasting using the
Dvorak and similar techniques28–33 and exhibit a negligible bias of 0.33 hPa
and a root-mean-square error (RMSE)of 8.34 hPa (by central pressure)30. In
the North Atlantic and East Pacific basins, aircraft are flown into TCs to
obtain measurements, with each profile of the TC vortex typically taking
several hours to collect. These airborne measurements, such as those
obtained with SFMR and GPS dropwindsondes, provide valuable insights
into hurricane structure and small-scale processes along the airplane flight
track34,35, including parametric model development36,37 and convective
updraft studies38–40. These SFMR winds have been validated by measure-
ments from GPS dropsonde with a bias and RMSE of 2.3 m/s and 3.3m/s,
respectively41–44, while the dropsonde/SFMR wind comparisons are sig-
nificantly affected by the layer altitude and thickness42. Spaceborne scatte-
rometers and radiometers are effective tools formonitoring,measuring, and
studying TCs over the open ocean. These sensors have about 1000 km of
swath width with spatial resolutions between 12.5 km to 25 km with a bias
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and RMSE of 0.8 m/s and 7.8 m/s, respectively45. Previous studies45–49 have
demonstrated their usefulness in this regard. Spaceborne SAR can directly
retrieve the surface winds with high spatial resolution about 1 km (Sup-
plementary Fig. 2). Here, we present a range of algorithms designed to
extract features from SAR-estimated surface wind fields, including sig-
natures related to TC movement and intensification. These features
encompass environmental parameters (steering flow speed and direction),
internal processes (vortex Rossby waves), and structural vortex properties
(size, inflow angle, and wind direction).

In the past decade, research on SAR for TC research and forecasting
has had noteworthy advances in two key areas. First, studies utilizing
composite Bragg theory and non-Bragg scattering mechanisms have
explored semi-empirical models for sea surface winds50, currents51,
waves52, and rain53 from multi-polarized SAR images54. While these
studies provide valuable insights, achieving simultaneous retrieval of all
these meteorological parameters remains a future prospect. Hwang
et al.50 investigated multi-polarized (VV/HH/HV/VH) radar signals
(NRCS) backscattered from sea surface waves under various wind
conditions and concluded that wave breaking significantly influences
SAR wind monitoring. Kudryavtsev et al.51 analyzed VV and HH
polarizations using RADARSAT-2 SAR images, demonstrating that sea
surface current signatures are predominantly related to non-Bragg
backscatter. Hwang (2016)52 proposed an empirical formula, the wind-
wave triplets, linking sea surface winds, significant wave height, and
dominant wave period. Zhang et al.53 investigated five mechanisms for
rain’s impact on C-band dual-polarized (VV/VH) SAR channels and
suggested that rain-induced effects on sea surface wind waves are critical
for SARhurricanemonitoring. Zhang et al.54 developed a semi-empirical
model incorporating winds, rain, internal waves, and currents for
compact-polarimetry (CP) SAR, concluding that CV (circular transmit
and vertical receive) polarization is better suited for TCmonitoring than
CH (circular transmit and horizontal receive) polarization. The trans-
mitter of a general CPmode is in either circularmode or orientated at 45°
(π/4), and receivers at both H (horizontal) and V (vertical)
polarizations55. Rain rate estimation from SAR imagery using AI
methods have also been quantified by Mu et al.56 and Colin & Husson
(2025)57. Additionally, the noise floor (or noise-level equivalent) does

not exhibit a functional dependence on sea surface wind conditions and
therefore demonstrates no quantitative impact on the uncertainty of sea
surfacewind retrieval. Three critical aspects require clarification: (1) The
noise floor parameters are incorporated as intrinsic components within
SAR data products, exhibiting spatial variability across the image grid
with distinct values assigned to individual pixels. (2) Wind retrieval
validity depends on the comparative relationship between normalized
radar cross-section (NRCS) and noise floormeasurements: NRCS values
exceeding the noise floor threshold permit reliable wind retrieval,
whereas instances where the noise floor surpasses the NRCS render the
data unsuitable for wind estimation. (3) Systematic accounting for noise
floor effects commenced in 2010 following the seminal discovery by
Vachon and Wolfe (2010)8, who first identified the quasi-linear rela-
tionship between cross-polarized NRCS measurements and wind speed
parameters. Secondly, by utilizing data from multiple satellites and
various SAR images, researchers have conducted in-depth studies on the
structure and evolution of tropical cyclones1,2,5,23,24,58–69. Katsaros et al.58

detected TC rain bands coupled with possible boundary layer rolls from
Radarsat-1 SAR images. Based on 83 SAR images covering TC core area
from RADARSAT-1 and ENVISAT, Li et al.1 studied TCmorphology of
eye structure, meso-vortices, rainbands, and winds. Zhang and collea-
gues (2014; 2018)2,59 proposed SAR TC parameter estimation methods
for double-eye structure and identified a pathway in the secondary
eyewall that explained the dynamic processes of the abnormal eyewall
replacement cycle (ERC). Zhang et al.5,60,61 developed SAR TC para-
metric models for elliptical eyewall, asymmetry and inflow angle
structures to study the relationship between TC structural main prop-
erties and their intensity. Recently, new approaches, methods, and
parameters have been developed to explore the potential of SAR images
for TC intensity studies23,24,62–69. Foster et al.62 proposed a method to
determine TC surface pressures from SAR images. Vinour et al.23,63

analyzed TC vortex parameters, including Vmax, radius of maximum
wind (RMW), radial profiles, and eye and RMW shapes, as well as newly
designed parameters for characterizing TC contraction and asymmetry
from high-resolution SAR data. These studies further assess the rela-
tionship between SAR-derived features and TC intensity evolution.
Moore Torres et al.64 analyzed themorphologies of TC eye structures and

Table 1 | A brief history of C-band Cross-polarized SAR TC wind retrieval algorithms

Year People Features Database Errors Journal

2011 Vachon
and Wolf

Linear or nearly linear formula
was firstly proposed

546 sets of R2 quad-pol NRCSs vs.
buoy winds

Bias = 0.07m/s
RMSE = 1.56m/s, wind speed up to
25m/s

IEEE Geosci
Remote Sens Lett

2012 Zhang and
Perrie

C-bandcross-polwasdiscussed
under TC condition

1. 1126 sets of R2 quad-pol NRCSs vs.
buoy winds
2. 343 sets of R2 dual-pol NRCSs vs.
SFMR winds

1. Bias = 0.01 m/s
RMSE = 1.63m/s, up to 25m/s
2. Bias= -0.89m/s RMSE= 3.23m/s,
wind speed up to 40m/s

Bull Amer
Meteorol Soc

2014 Zadelhoff et al. C-bandcross-polwasdiscussed
for two wind ranges

19 R2 dual-pol NRCSs vs. winds of diverse
sources

Atmos Meas Tech

2015 Hwang et al. The incidence angle is detected
as a parameter for cross-pol

Database ofR2quad-polNRCSs vs.windsof
diverse sources

The RMSEs are various for different
methods and data

J Geophys Res
Oceans

2017 Zhang et al. The linear relationship, including
incidence is developed

1299 sets of R2 dual-pol NRCSs
vs.
SFMR winds over five TCs

Bias = 0.12m/s
RMSE = 2.81m/s, wind speed up to
40m/s

IEEE Trans Geosci
Remote Sens

2019 Mouche et al. co- and cross-pols are combined
for TC wind observation

Six dual-pol SAR of S1/R2 vs.
Winds mainly from SFMR

Bias=1.5m/s RMSE is round 5m/s,
but can detect small winds.

J Geophys Res
Oceans

2019 Zhang et al. RR-pol of CP mode is
demonstrated as circular
cross-pol

Simulated RR NRCSs vs.
Winds of buoy

Bias = 0.03m/s
RMSE = 2.32m/s, wind speed up to
25m/s

IEEE Geosci
Remote Sens Lett

2022 Mu et al. deep learning was applied for
SAR TC wind retrieval

16127 sets of dual-pol NRCSs vs.
Winds of SFMR

Bias = -0.11 m/s
RMSE = 1.72m/s, wind speed up to
75m/s

IEEE Trans Geosci
Remote Sens

2024 Fang et al. Validations of wind retrieval
method from Mouche et al.4

Database of 600 S1A/B, RS2, and RCM SAR
images vs. Ocean wind from Airborne SFMR
and radiometers

The Bias and RMSE are various for
different ocean wind data

J Meteorol Res
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gathered intensity information. Avenas et al. (2023) re-estimated TC
RMW by more information than wind speed structure directly from
SAR65. Avenas et al.66 compared the TC energy from SAR to structure
parameters of Holland Bs and RMW and concluded a good relationship
between SAR-derived structure parameters and TC intensity66. SAR-
derived TC wind speeds have been compared with conventional Best
Track (BT) data67, and RMWs derived from SAR and IR images have
been compared68. Yurchak24. developed a new method to estimate TC
intensity associated with spiral signatures from SAR24. Zheng et al.69

investigated the probability of rainbands in SAR images and found it
would be related to morning/evening and TC intensity69,70. Using
spaceborne SAR has opened a new avenue for studying TCs over the
open ocean. Our perspective details the measurements taken by SAR for
TC remote sensing over ocean, including asymmetric vortex structures,
and TC dynamics in small-scale. These measurements are vital for
comprehending and predicting TC movement and intensity evolution.

Asymmetric vortex and TCmovement
TC movement understanding and forecasting is a foundation, because a
perfect forecast of intensity and size is meaningless when the location of the
TC is inaccurate. The most important factor to ‘steer’ TC is supposed to be
the large-scale flow surrounding the TC vortex, which is also denoted as
‘steering flow’71–77. The wind asymmetry induced by steering flow related to
movement has been investigated and modeled61,72,73. In parametric wind
models73,78–83, the surrounded large-scale flow is assumed as a unified
background wind vector and linearly related to the TC movement. This
unifiedbackground vector is used as an important parameter in storm surge
modeling and is referred to as the TC’s forward velocity at the surface.

Following the above studies, a SHEW-2 model has been proposed to
derive the unified backgroundwind vector (unified steeringflow) associated
with the inflow angle asymmetry61. This model for background wind vector
determination fromSARTCwinds has been developed by using a dataset of
130 SARTC images across various hurricane categories fromRADARSAT-
2 and SENTINEL-1. The composed results of 130 SAR-winds show the

asymmetrical vortex induced by a unified background vector represents the
major part of TC asymmetry61. The details of SHEW-2model are presented
in the Method section.

As an example, the procedure is illustrated using a SARwind field over
Hurricane Teddy in Fig. 1. The ocean surface wind speeds retrieved from
C-band VH-polarized SAR images of RADARSAT-2 are shown in Fig. 1b.
The reconstructed TC surface winds by using the SHEW-2model are fitted
to the SAR-derived oceanwindfield using the least squaremethod, resulting
in the asymmetric wind field and associated wind vectors displayed in
Fig. 1c, and the surface backgroundwind vector and symmetrical wind field
shown in Fig. 1d. Here, TC movement information is estimated from SAR
observations directly. Therefore, we get the best-fitted inflow angle asym-
metry and TC movement information (the surface background wind vec-
tor) from SAR observations. We want to denote that only the wind speed
field estimated by SHEW-2model is used during thefitting process. SHEW-
2model simulates awind vectorfield, which includeswind speedfield, wind
direction and inflow angle fields. When the wind speed field is fixed, the
other twofields ofwinddirection and inflowanglewill also befixed. In other
words, the inflow angles are detected by SHEW-2model associatedwith the
wind speed fitting process. The obtained surface background wind vector is
also compared to the BT data, revealing that the SAR-derived background
wind direction is similar to the movement of the TC from the BT database
with a bias of 27.9o. The discrepancies between SAR estimates and BT data
primarily arise from two factors: (1) SAR captures surface wind dynamics
influenced by planetary boundary layer friction, while BT data represent
free-tropospheric flow patterns, and (2) asynchronous observation timing
between the two datasets. In reality, the ‘steering flow’ is more complicated
than just a unified background wind vector. For example, the movement of
the long-lived Cyclone Freddy in 2023 lasted 35 days, one of the most
remarkable storms inhistory,waspoorlypredicted, likelydue to factors such
as the influence of the subtropical high, TC size, and interactions between
two TCs84. Figure 2 presents a synergistic analysis of Cyclone Freddy’s
surface wind structure derived from SAR and the associated steering flow
vectors (background wind vectors) from the SHEW-2 model. The steering

Fig. 1 | SAR monitoring asymmetric vortex and
unified background wind vector related to Tro-
pical Cyclone (TC) movement. a best track and the
respective position of SAR winds acquired at 10:05
UTC on September, 2020 over Hurricane Teddy
(2020), (b) high spatial resolution winds derived
from SAR image, (c) the reconstructed asymmetric
wind field and associated wind vectors at the surface
level and (d) the estimated background wind vector
(white arrows) related to TC movement and the
symmetric vortex.
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flow around Freddy likely did not remain static as the Mascarene High
(subtropical high) strengthened or weakened84. This highlights the impor-
tance of real-time observations by SAR, which can capture critical
movement-related factors such as steering flow, inflow angle asymmetry,
and TC size. These observations remain vital for advancing the under-
standing and forecasting of TC behavior. Furthermore, in complex sce-
narios, multiple steering flows may better explain TC movement than a
single unified flow. Therefore, in the future, the high spatial resolution SAR-
winds have the potential to study the relationships between the complicated
steering flows and TC movement.

Small-scale patterns and TC intensification
Vortex Rossby-waves (VRWs) often play an important role in upscaling
energy transfer from the TC asymmetrical structure to the TC vortex mean
flow85–88. Analogous to the dynamics of rotating fluid systems observed in
Earth’s atmosphere or ocean that are capable of impacting planetary-scale
atmospheric and/or oceanic processes89, a TC is also a rotating fluid system.
Therefore, wave patterns like the Rossby waves have been detected in TCs,
which are denoted as ‘Rossby-like waves’90 or ‘vortex Rossby waves’
(VRWs)85,91. VRWs have been detected in typhoon spiral rainbands90, but
have been simulated numerically in wind fields85. The radial wavelengths of
the possible VRWbands are suggested on the order of 10 km to 20 km92. By
comparison, the boundary layer rolls may have some similarity to VRWs
but are sub-kilometer scale93–95.

Here, we takeHurricaneVance (2014) as an example (Fig. 3), the spiral
rainbands in the upper level of the troposphere suggest the presence of
VRWs (Fig. 3i). The VRWs are analyzed in the azimuth-radial distribution

of residual winds (Fig. 3f), which are computed by removing the symmetric
meanvortex (Fig. 3c) byusing theSHEWmodel detailed in theMethod.The
wave features in the residualwindfield are indicated by theblackdashed line
in Fig. 3f, as well as similar features along the radius.We apply a fast Fourier
transform (FFT) to the residual wind speed along the black dashed line. The
peak FFT powers are associated with wave features that have horizontal
scales of 12.22 km, 15.71 km and 18.33 km, which are consistent with the
model results (Fig. 3h). In order to understand the radially outward-
propagating waves in spiral bands, A ‘simplest’ dynamic model has been
chosen for simulating VRWs excited by the azimuthal wind asymmetry85.
Using theTCvortexparameters of intensity andRMWextracted fromSAR-
derived winds; while retaining values for the other parameters that are the
same as ref. 85, we simulate the perturbation azimuthal wind speeds of the
VRWs along the radius for Hurricane Vance (Fig. 3g).

Then we apply the FFT to the simulated perturbation wind speed. The
scale of the peak FFT power of the simulated perturbation winds is 15.9 km
(Fig. 3h). This estimated scale of the VRWs is close to the SAR observation,
which is in the range 10-20 km. One caveat is that the above simulation is
based on a simple dynamic model which assumes a frictionless boundary.
However, the 10-m winds in real TCs experience surface friction. Differ-
ences between observed and modeled scales of VRWs are thus expected.
Additionally, four extended evidences of the possible VRW patterns in the
SAR-derived wind fields in north Atlantic basin in 2023 are presented
(Fig. 4).The symmetrical intensities andRMWs(SupplementaryTable1) are
determined by the SHEW model. By removing the symmetrical wind field
from the SAR-derived winds (Supplementary Fig. 3), the azimuth-radius
plots of the residual winds are shown in Fig. 4. The FFT results are from

Fig. 2 | Four SARmonitoring asymmetric vortexes and background wind vectors
related to TC movement over Cyclone Freddy. a acquired at 11:28 UTC on 11
February, 2023, onboard RCM-1, (b) acquired at 11:36 UTC on 11 February, 2023,

onboard RADARSAT-2, (c) acquired at 23:24 UTC on 13 February, 2023, onboard
RCM-2, and (d) acquired at 08:28 UTC on 14 February, 2023, onboard RCM-3.
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16.7 km to 25 km (Supplementary Table 1), which are similar to Hurricane
Vance (2014) as well as theory results. Additionally, SAR canmonitor spiral
rainbands (Supplementary Fig. 4), which represent the ‘troughs’ of vortex
Rossby waves. While the exact impact of rain on C-band radar remains an
active research topic4,18, several mechanisms have been proposed: (1) splash
products from raindrop impact96, (2) wind downbursts increasing surface
winds97, and (3) volume backscattering from the melting layer where ice
particles transition into raindrops98. The dual-polarization (VV/VH) mode
of SAR enables simultaneous monitoring of wind wave patterns (VH-
polarization) and spiral rainbands (VV-polarization), enhancing our ability
to study these features.

Through a process known as ‘axisymmetrization’, VRWs have the
ability to transfer energy from TC asymmetries to the vortex mean
flow85. As shown in Fig. 3, intensification occurs between the two SAR

images, while possible VRW patterns are observed in the SAR-derived
winds at the onset of the intensification. Using numerical models, pre-
vious studies85–88,99 have simulated radially propagating waves in TC-like
vortices. And ref. 100. demonstrated that VRWs may play an important
role in regulating TC intensity change due to the process of asymmetric
heating, controlled by environmental shear flow or internal dynamics.
We acknowledge that rainband dynamics extend beyond VRW pro-
cesses and at least two types of rainbands exist—inner rainbands (within
~3×RMW) and outer rainbands—with various studies exploring their
roles in TC development. VRWs represent just one of many possible
contributing factors101. Thus, we do not suggest that the presence of a
strong rainband pattern necessarily indicates impending TC intensifi-
cation. Instead, we highlight ‘axisymmetrization’ as one potential pro-
cess among many. In this study, we aim to present observations of

Fig. 3 | Vortex Rossby wave structures extracted from SAR-derived high spatial
resolution wind field before TC intensification of Hurricane Vance (2014). a TC
intensity from best track (BT), (b) storm-centered SAR-derived wind field within
150 km from RADARSAT-2 VH-polarized ScanSAR image acquired at 01:12 UTC
on 2November, (c) reconstructed symmetric mean flow of (b), (d) & (e) same as (b)
& (c) but acquired at 13:11UTCon3November, 2014, (f)Azimuth-radius plot of the
residual wind speed obtained by removing Fig. 3c from Fig. 3b and azimuth-radius

distribution of the residual wind speed with horizontal resolution of 1 km and
azimuthal resolution of 2 degrees, (g) Radial wind profiles of SARdetection along the
dash line in Fig. 3e and theoretical vortex Rossby wavemodel with RMWof 16.0 km
and TC intensities of 23.3 m/s estimated by SHEW model, (h) FFT (fast Fourier
transform) results of the theory simulation and SAR detection, and (i) spiral rain
band features indicating VRWs (Vortex Rossby waves) shown by GOES (Provided/
NOAA) taken at 16:00 UTC on Nov, 2, 2014 between the two SAR images.
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possible VRWs in the wind field and their association with TC
intensification.

Zhang et al.102 used RADARSAT-1 SAR imagery during the hurricane
watch project to confirm the boundary layer rolls detected from aircraft
observations, with roll wavelengths of around 900m. Huang et al.103 ana-
lyzed 16 SAR images covering the core area of a TC to investigate marine
atmospheric boundary layer rolls, revealing asymmetrically distributed
wavelengths of 0.6 to 1.6 km in eyewall and rainbands.Measuring the size of
boundary layer rolls provides insights into momentum exchange, sensible
heat, and moisture transport within the TC boundary layer, processes that
are closely linked to storm development and intensification. Additionally, it
aids in estimating potential TC-induced damage during landfall. Therefore,
the small-scale structure monitoring would be important for TC intensifi-
cation understanding and forecasting, and spaceborne SAR can be a viable
tool for the TC multi-scale structure monitoring.

Summary
As an imaging radar, spaceborne SAR can simultaneously observe sea
surface roughness and capture high spatial resolution images. The
roughness of the sea surface can be analyzed to directly determine the
surface wind of a TC, in addition to other parameters such as sea surface
wave and rainfall. While SAR images are snapshots, they offer a high
spatial resolution of the ocean surface, which is unattainable with other
-monitoringmethods. A unified steering flow (unified background wind
vector) and the associated inflow angle can be estimated using the
SHEW-2model, which is based on a simplified conceptual approach that
performs well under specific conditions. However, in more

complex situations, multiple steering flows may be needed to better
explain TC movement. The high spatial resolution of SAR enables the
development of multiple steering flow detection methods that better
reflects real conditions. Meanwhile, TC intensity prediction persists as a
significant challenge, stemming from insufficient understandings and
observations of high-resolution TC inner-core vortex dynamics104–108.
Using the FFT method, the estimated horizontal scales of these waves
range from 10 to 20 km, aligning with results from theoretical models,
suggesting that these signatures may reflect ongoing VRW activity.

Figure 5 provides an overview of key SAR satellites, an example of SAR
imaging modes of RCM satellites, and potential TC dynamic processes
observable with SAR. Through SAR-based identification of TC vortex fea-
tures (e.g., eye shape, center location, RMW, intensity, and possible double-
eye structures) by SHEW models, TC movement factors of inflow angle,
steering flows, size information in four- quadrant and possible two TC
conditions, as well as intensification factors with smaller-scale including
vortex Rossby waves, boundary layer rolls, rain bands (Supplementary Fig.
4), and sub-scale or tornado-scale vortices can be analyzed. Consequently,
further exploration of these processes and their representation in high-
resolution SAR observations is necessary to achieve a deeper understanding
of TC movement and intensification. Spaceborne SAR applications in TC
monitoring face three primary constraints: (1) non-real-time operational
characteristics necessitating about 3 day advance scheduling for config-
uration of acquisition positioning and operational mode selection, (2) TCs,
characterized by strong winds and heavy rains, remain a critical research
focus for declining retrieval uncertainty of winds and rains, and (3) limited
temporal resolution from orbital cycle constraints.

Fig. 4 | Azimuth-radius plot of the residual wind
speed obtained by removing the SHEW derived
symmetric vortex from the SAR wind field. Four
cases in north Atlantic for 2023 hurricane season
and SAR observations over: (a) Hurricane Idalia
acquired at 11:26 UTC on 28 August, 2023, onboard
RCM-1, (b) Hurricane Franklin acquired at 10:21
UTC on 26 August, 2023, onboard Sentinel-1A, (c)
Hurricane Lee acquired at 09:03 UTC on 7 Sep-
tember, 2023, onboard RCM-2, and (d) Hurricane
Margot acquired at 08:28 UTC on 11 September,
2023, onboard RCM-1. The FFT (fast Fourier
transform) peak results along the black lines are
20.0 km, 25.0 km, 20.0 km and 16.7 km respectively.
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Traditionally, wind and rain rate retrievals fromSARrely on physically
based algorithms that useNRCS in theVVandVHpolarization channels to
estimate surface wind speed. While effective, these models are limited to
interpreting only the physical signal response. In contrast, SAR imagery also
contains rich spatial information, such as texture features derived from the
Gray-Level Co-occurrenceMatrix (GLCM) and storm-scalemorphological
structures, which are typically overlooked by physical models. Machine
learning methods offer a powerful alternative by integrating both the phy-
sical backscatter signals and these higher-order spatial features, enabling a
more comprehensive, data-driven approach to retrieval. Recent studies,
such as Mu et al.56, have demonstrated that machine learning models can
significantly decline the uncertainty and enhance the robustness of wind
speed and rain rate estimations from SAR, surpassing the capabilities of
conventional physics-based methods.

A critical challenge hindering SAR-based TC monitoring is its inade-
quate temporal resolution. Its inadequate temporal resolution limits its
integration into operationalNumericalWeatherPrediction (NWP)models,
which universally require data inputs suitable for 6 h assimilation cycles to
maintain forecast accuracy. As a result, SAR data is not directly assimilated
into NWP systems globally. Nevertheless, agencies such as NOAA/NESDIS
and JTWC routinely disseminate SAR imagery and derived products, such
as surface wind speed, storm center location, andmaximumwind radius, in

near-real-time. These products are instrumental for forecasters in analyzing
storm structure and intensity, thereby enhancing situational awareness
despite the current limitations in model assimilation. Upcoming missions
such as the Meteorological Operational Satellite Programme Second Gen-
eration (MetOp-SG) aim to deploy enhanced C-band scatterometers with
SAR-like resolution (5 km), offering 12-h global coverage. These systems,
coupled with planned SAR constellations (e.g., NASA-ISRO SARMission),
could provide overlapping swaths to achieve sub-daily TC monitoring.
Future efforts should prioritize the systematic integration of SAR data into
operational TC forecasting systems through three sequential phases: (1)
identification of critical movement or intensification factor derived from
SAR-based TC monitoring, (2) comprehensive utilization of SAR-derived
factor to advance fundamental understanding of TC dynamics, and (3)
operational implementation of these improved dynamic insights through
numerical assimilation frameworks. The latter two phaseswill be conducted
in close collaboration with TC dynamic specialists to ensure rigorous
physical interpretation and effective translation of SAR observations into
predictive model enhancements.

Three idealized models for SAR TCmonitoring
SAR TC monitoring has been discussed, and idealized models can provide
additional information beyond SAR-derived sea surface winds. Although

Fig. 5 | Spaceborne SAR TC research enters a golden era with the increasing SAR
satellites. a SAR satellite brief history, (b) SAR imagingmodes of RCM satellites, and
(c) possible TC structures imaged by SAR, including asymmetrical mean flow,

boundary layer rolls, subscale vortex, rain bands, and vortex Rossby waves can be
investigated by SAR as shown in an artist’s schematic.
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SAR images only cover a portion of thewind speedfield over the sea surface,
morphology models can provide valuable information. Based on the SAR-
derived ocean wind field, various mean flow has been estimated by the
idealized SHEW (Symmetric Hurricane Estimates for Winds) model2,60,
ASHEW (Asymmetric Hurricane Estimates for Winds) model5, and
SHEW-2 (Surface Hurricane Estimates for Wind speed and Wind direc-
tion) model61. The SHEW model is for elliptical mean flow, the ASHEW
model is for Fourier wavenumber-1 asymmetry, and the SHEW-2model is
for inflowangle asymmetry. The idealizedmodels have been developed over
the past 10 years to detect theTCcenter, intensity, radius ofmaximumwind
(RMW) and various asymmetrical TC structures of asymmetrical ampli-
tude, inflow angle, elliptical eyewall, and secondary eyewall from SAR-
derived winds directly, automatically and independently. The general
approach of the three idealized models is as follows: (1) give an initial TC
center, (2) detect the maximum wind and location in each azimuth of the
360degreeswith awindowof 10degrees, (3)find the reference ellipse closest
to the locations of maximum wind in each direction, (4) compute the TC
center as the center of reference ellipse, (5) fit the parametric TC model
(Rankine vortex or Holland vortex model) to the SAR-derived winds using
the detected center, and (6) extract the TC parameters of various TC vor-
texes and structures.

The surface background wind related to TC movements discussed in
“Asymmetric vortex and TC movement” can be detected by the SHEW-2
model. This model is a feasible method for identifying inflow angle and
approximating wind direction using SAR-derived sea surface wind fields.
When the wind speeds in the estimated SHEW-2 vectors are fitted to SAR-
retrievedwind speedfield, the wind directions are estimated associatedwith
the best-fitted wind speed field in the estimated SHEW-2 vector field. For
the small-scale features discussed in “Small-scale patterns and TC intensi-
fication”, the idealized models can be used to reconstruct the complete TC
surface wind field, which provides the baseline for TC dynamic studies.
Additionally, TC center identified from SAR data independently is crucial
for determining the structure and size from SAR data (Supplementary Fig.
5). There are two methods to locate the hurricane center: directly from the
derived SAR wind field or from the SAR image. The SHEW models are
belonging to the first method. Regarding the second method, we
acknowledge Du’s work6. Furthermore, Jin and colleagues have explored
various approaches for this task109–111.

Data availability
The RADARSAT-2 data were provided by the Canadian Space Agency
under the Hurricane Watch project, which can be acquired from Earth
Observation Data Management System (https://www.eodms-sgdot.nrcan-
rncan.gc.ca). The Sentinel-1 data were provided by the European Space
Agency (https://eoda.cls.fr/client/oceano/#Sentinel). The SFMR and drop-
sonde data were provided by NOAA (https://www.aoml.noaa.gov/hrd/
data_sub/hurr.html). The best track data are from Schreck, Carl &National
Center for Atmospheric Research Staff (Eds). Last modified 2022-09-09
“The Climate Data Guide: IBTrACS: Tropical cyclone best track data.”
Retrieved from https://climatedataguide.ucar.edu/climate-data/ibtracs-
tropical-cyclone-best-track-data. The spiral rain band features indicating
VRWs in hurricane Vance (2014) shown by GOES is Provided by NOAA
(https://www.ctvnews.ca/world/hurricane-vance-forms-in-pacific-no-
immediate-threat-to-land-1.2083274).

Code availability
The codes that support the findings of this study are available from the
corresponding author on request. And we can provide colorblind-friendly
figures upon request.
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