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Mechanisms behind the rapid rise of
extreme heat discomfort days in
South China

Check for updates
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Extreme heat discomfort days (EHDDs) are increasing in frequency and intensity under global
warming, raising growing concerns in subtropical regions such as South China. Using multi-decadal
observational data, we identify a marked increase in the frequency and spatial extent of EHDDs since
2000, following an absence of significant trends in earlier decades. A convolutional neural network
trained on sea level pressure and 500-hPa geopotential height fields successfully detects 92% of
these events and reveals their dominant circulation features. The northwestward extension of the
western North Pacific subtropical high induces an anomalous anticyclone over South China,
weakening summer monsoon winds and suppressing ventilation. In the presence of high humidity,
these stagnant and hot conditions exacerbate heat discomfort. Concurrently, a post-2000
strengtheningofmid-latitudeblockinghigh activity reinforces high-pressure anomaliesover EastAsia.
The joint influence of intensified blocking highs and northwestward extension of the western North
Pacific subtropical high drives the sharp rise in both frequency and intensity of regional EHDDs. These
findings highlight the importance of large-scale circulation changes, in combination with long-term
global warming, in amplifying extreme thermal stress under a warming climate.

Outdoor heat discomfort (OHD) is an essential indicator for assessing
human health and environmental conditions1,2. In warm seasons, a notable
increase in OHD has been observed across various regions, including Asia,
NorthAfrica andEurope3–5. This declinemay result in increaseddiscomfort,
severe heat stress, and higher health risks, especially in urban areas where
heat island effects intensify these challenges for dense populations6,7. Fur-
thermore, poor thermal comfort during extreme weather conditions drives
substantial increases in energy demand, particularly for cooling systems,
thereby amplifying energy consumption and exacerbating environmental
impacts8,9.

OHDis strongly influencedbymeteorological conditions, including air
temperature, humidity, wind speed, and solar radiation, with these factors
interacting in a complex way to affect human physiological responses10–12.
High humidity and stagnant winds impede sweat evaporation and con-
vective cooling, while strong solar radiation elevates mean radiant

temperature and skinheat load13,14. These combined effects lead to increased
heat discomfort and severe health risks13–16. Global warming has a profound
effect on OHD by altering the thermal environment in which individuals
live17–19. Rising global air temperatures due to climate change present sig-
nificant challenges for maintaining human thermal comfort outdoors
(IPCC, 2021)20. The increased frequency and intensity of extreme heat
events exacerbated discomfort and heat stress15,21. Although trends in rela-
tive humidity vary by region, a general pattern of decline has been observed
across many land areas during boreal warm seasons, such as the Northern
Hemisphere mid-latitudes, parts of South America and central Africa22–24.
This overall decline conceals a critical health concern−high humidity levels
frequently coincide with extreme heat, intensifying physiological stress and
resulting in an increased number of uncomfortable days15,25–27. Additionally,
research indicated a phenomenon known as “global terrestrial stilling,”
where near-surface wind speeds decreased globally by about 2.3% per
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decade from1978 to 201028–30. However, studies have noted a reversal of this
trend after the year 2010, with wind speeds increasing by roughly 7% in
northern mid-latitude regions30,31. Rising temperatures, increasing fre-
quency of hot and humid days, and shifts in wind patterns interact to affect
OHD levels.

The challenge of increasing OHD days due to rising temperatures and
shifting weather patterns is an urgent issue in South China, a densely
populated region highly susceptible to the impacts of climate change3,5,25. By
the end of the century, OHD is projected to increase sharply in South China,
with a significant rise in the frequency of OHD days3,5,27. In a warming
climate, understanding how global warming impactsOHD in SouthChina is
essential not only for improving public health but also for addressing other
environmental concerns, such as rising energy consumption, changes in local
weather patterns, and adverse effects onmental health and social interactions.

Studies have emphasized several key large-scale circulation patterns
that drive thedry orhumidheat events in SouthChina, establishing a critical
connection between atmospheric dynamics andOHD variations32–34. These
circulation patterns include the SouthAsian high, the westernNorth Pacific
subtropical high (WNPSH), and low-level anticyclone anomalies. Linking
OHD with these circulation patterns provides a valuable framework for
exploring localized climate phenomena and their driver. Recent advance-
ments in deep learning visualization within the geosciences have opened
new avenues for analyzing the dynamic processes ofOHD35–38. In particular,
convolutional neural networks (CNNs) have demonstrated strong cap-
ability in capturing complex atmospheric patterns and uncovering under-
lying physical processes. In this study, we implement a supervised CNN
framework to identify the dominant atmospheric circulation patterns
associated with extreme heat discomfort days (EHDDs) in South China.
Leveraging their ability to extract spatially coherent features from gridded
fields, CNNs enable recognition of key large-scale structures that drive
EHDDs. This approach not only improves predictive understanding but
also offers physical insights into the dynamic processes underlying EHDD
occurrences within the context of global warming, contributing to more
climate-resilient planning in the region.

Results
Spatial and temporal patterns of EHDDs over South China
Figure 1a illustrates the mean spatial distribution of EHDDs over South
China during warm seasons from 1979 to 2023. Coastal areas and southern

regions, includingHainan Island andGuangdongprovince, experienced the
highest frequency of EHDDs, with value exceeding 70 days. Other regions
such as Hunan, Jiangxi, and Guangxi provinces reported slightly fewer
EHDDs, ranging between 60 and 70 days. It reveals a high prevalence of
EHDDs in South China during warm seasons over the decades.

As shown in Fig. 1b, the geographical extent of EHDDs expanded
significantly in South China from 1979 to 2023, particularly in the late
period of 2000–2023. The affected area remained relatively stable from1979
to 1999, showing no significant long-term trend. However, there was a
significant increase in the affected areas over the period of 2000–2023.
Similarly, therewas a notable upward trend of 0.52 days per year (P < 0.001)
in the frequency of regional EHDDs occurred from 1979 to 2023, with no
significant trend from 1979 to 1999 and a sharper rise of 0.74 days per year
(P = 0.04) from 2000 to 2023 (Fig. 1c). Spatial patterns of trends in the
frequency of EHDDs over South China varied distinctly across the two
periods. During 1979− 1999, the frequency of EHDDs slightly increased
along coastal regions of Guangdong province (Fig. 1d), whereas from 2000
to 2023, widespread increases were observed across Guangdong, Guangxi,
Jiangxi, Hunan and Hainan (Fig. 1e). These regions experienced greater
exposures to extremeheat discomfort, reflecting a shift from relatively stable
condition pre-2000 to a pronounced rise in the frequency and intensity of
EHDDs post-2000. The region’s dense population further compounded the
impact, as reflected in Fig. 1f, which indicates a rise in population exposure
to EHDDs from 2000 to 2020.

Evaluation of the CNN
We designed a CNN to identify key circulation patterns associated with
regional EHDDs (Fig. 2). The CNNmodel trained using SLP and 500-hPa
GPH demonstrates robust performance in predicting regional EHDDs in
South China (Fig. 3a). The model correctly classifies 92% of regional
EHDDsasEDCPs, achieving anoverall classification accuracyof 0.89 across
both classes (Fig. 3b). Among all days classified as EDCPs, 58% correspond
to regional EHDDs,while only 1.35%of non-EDCPdays are associatedwith
regional EHDDs. Additionally, the time series of regional EHDDs and
EDCP-classified days shows a high correlationwith a correlation coefficient
of 0.88 (Fig. 3c), displaying the high reliability of the CNN model. With
Areas under the Curve scores of 97.0% on the training set, 92.5% on the test
set, and 95.9% across all days, the model strikes a good balance between
precision and recall (Supplementary Fig. 4), proving its strength in

Fig. 1 | Trends and spatial patterns of extreme heat discomfort days (EHDDs) in
South China. a Climatological mean frequency of EHDDs (days yr−1) over South
China (15°–27°N, 106°–125°E) during 1979–2023. b Time series of the number of
grid cells affected by EHDDs, with linear trends (days yr−1) for the full period (black
dashed line), early period (1979–1999; gray solid line), and late period (2000–2023;
orange solid line). cTime series of regional EHDD frequency over South China, with

linear trends (days yr−1) for the same three periods as in (b). d, e Linear trends (days
per decade) in EHDDs over South China during the early (d) and late (e) periods.
Dotted areas indicate regions where trends are statistically significant at the 95%
confidence level (two-tailed Student’s t test). f Population exposure to EHDDs in
South China over time. The Breakpoint was detected using theMann–Kendal test at
the 95% confidence level.
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accurately detecting theminority class EDCPs.These results suggest that the
model has a strong capability to accurately recognize the minority
class EDCPs.

During EDCP days, distinct atmospheric anomalies manifest in both
the middle and lower troposphere. In the middle troposphere, an antic-
yclonic anomaly dominates South China, centered over Guangxi province,
suggesting a northwestward extension of theWNPSH (Fig. 3d).Meanwhile,
a cyclonic anomaly occurs atmid-latitudes aroundNortheastChina−Korea
−Japan, indicating an intensification of the East Asian westerly trough. In
the lower troposphere, the SLP anomaly pattern during EDCPs show a low-
pressure anomaly over the southeast of South China and a high-pressure
anomaly over SouthAsia, accompanied by anomalous northerly winds over
South China (Fig. 3d). The high-pressure anomaly over South China,
resulting from the northwestward extension of the WNPSH, raises air
temperatures through increased downward solar radiation and diabatic
heating caused by anomalous descending air movement39. Moreover,
anomalous northerly winds weaken the southwesterly summer monsoon,
reducing wind speed over South China. As a result, increased air tem-
perature and stagnant winds tend to trigger EHDDs. In contrast, the cir-
culation anomaly patterns during non-EDCP days exhibit opposing
characteristics, but their intensity is notably weaker compared to that for
EDCP days (Fig. 3e). These non-EDCP days are associated with conditions
conducive to fewer EHDD occurrences. This contrast underscores the
strong influence of atmospheric circulation patterns on the CNN’s ability to
accurately distinguish regional EHDDs over South China.

The LRP maps provide vital insights into the features crucial for the
CNN when predicting EDCPs. The normalized relevance maps exhibit
physically coherent structures that align with known circulation features.
Under EDCPdays (Fig. 3f, g), high relevance is observed over southern and
central China, and Mongolia, corresponding to regions of positive geopo-
tential height and sea level pressure anomalies (Fig. 3d). These LRP maps
indicate the model’s reliance on enhanced mid- and low-level anticyclonic
circulation in identifying EDCPs. In contrast, under non-EDCP days (Fig.
3h, i), the relevance patterns appearweaker and lack the coherent, organized
mid-and low-latitude anomalies that characterize the composite fields (Fig.
3e). These differences suggest that theCNN learnsmore robust and spatially
coherent circulation signals under EDCP conditions, which are more pre-
dictive of EHDD events.

Causes of changes in regional EHDDs over South China
The frequency of regional EHDDs in South China has shown a notable
increase over the past decades, particularly during the period 2000–2023
(Fig. 1c). Linear trends indicate that the frequency of EDCPs increased by
0.48 days per year from 1979 to 2023 (p < 0.01; Fig. 3c), while regional
EHDDs on EDCP days increased by 0.43 days per year during the same
period (p < 0.01; Fig. 4a). During 2000–2023, the frequency of EDCPs

significant increased at a rate of 1.03 days per year (p = 0.002), in contrast to
the early period of 1979–1999, which exhibited an insignificant trend
(p = 0.48; Fig. 3c). Similarly, regional EHDDs on EDCP days increased
significantly in the late period by 0.52 days per year (p = 0.04) after a pre-
ceding period of no significant change (p = 0.82; Fig. 4a). Further, the
intensity of extreme heat discomfort on EDCP days and the sphere of their
influencewere larger in the late period compared to the early period (Fig. 4b,
c). Humidex values on EDCP days showed significant increases in the
coastal provinces of South China (Fig. 4d–f), regions that also experienced
upward trends in the frequency of EHDDs. Overall, the concurrent
increases in the frequency and humidex intensity of EDCP days have
contributed to the increasing frequency of regional EHDDs. The impact of
EDCPs has been a key driver behind the notable shift towardmore frequent
and intense regional EHDDs in South China over recent decades.

On average, EDCPdays were characterized by heat discomfort due
to a combination of high air temperature and high relative humidity
(Fig. 5a, c). Although relative humidity values are slightly higher on
non-EDCP days by approximately 5% (Fig. 5b vs. a), both EDCP and
non-EDCP days show generally high relative humidity (65–95%).
However, EDCP days exhibit significantly higher temperatures, fre-
quently exceeding 27 °C and in some instances surpassing 29 °C,
whereas non-EDCP days remain distinctly cooler (Fig. 5c, d). In the
late period, EDCPs show increasing humidex intensity and spatial
expansion of EHDDs, which coincide with the region with strong
warming and drying (Fig. 5a, c, right panels), indicating a worsening
trend in heat stress. Further, the lower wind speeds over South China in
the late period intensified the thermal stress on EDCP days (Fig. 5e). In
contrast, non-EDCP days reveal lower air temperature despite a gen-
eral increase in air temperature during the late period (Fig. 5b). Despite
the slight decline in relative humidity overmost regions of South China
across both categories, the effect of rising temperature appears to be the
dominant driver of intensifying EHDD conditions over South China.

To identify the causes of changes in relative humidity and air
temperature, differences in atmospheric circulation patterns between
the late and early periods were analyzed. During EDCP days, the
WNPSH shows a northwestward extension relative to climatology,
while in the late period, compared to the early period, the WNPSH
exhibits a westward extension (Fig. 6a vs. b). These features jointly
indicate that the WNPSH has shifted both westward in recent decades
and northward during EDCP events. Meanwhile, results reveal a
strengthening of mid-latitude high-pressure anomalies during the
2000–2023 period, particularly during EDCP days (Fig. 6a, b). On
EDCP days, stronger blocking high anomalies at mid-latitudes were
observed in the late period compared to the early period (Fig. 6b, d).
The intensity of these blocking high shows a significant increase and is
strongly correlated with the frequency of regional EHDDs, with a

Fig. 2 | Architecture of the convolutional neural
network (CNN) framework. Schematic repre-
sentation of the CNN model used to identify
extreme discomfort circulation patterns (EDCPs).
The framework includes input preprocessing, con-
volutional and pooling layers, fully connected layers,
and the output classification layer. The network is
trained on historical atmospheric reanalysis data to
detect the circulation patterns most strongly asso-
ciated with extreme heat discomfort days (EHDDs)
in South China.
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correlation coefficient of 0.6 during the late period, whereas no clear
trend is found during the early period (Fig. 6f). These blocking high
anomalies favored anticyclonic anomalies co-occur with stronger
anticyclonic anomalies over South China that associated with the
northwestward extension of the WNPSH in low latitudes (Fig. 6d).
Such circulation anomalies can obstruct the typical movement of
weather systems and promote atmospheric stagnation, leading to
persistent subsidence that inhibits cloud formation, enhances solar
radiation, and thereby amplifies surface warming40–44. In addition,
blocking highs in mid-latitudes of East Asia can hinder the southward
intrusion of cooler air, trapping heat near the surface and contributing
to the buildup of extreme temperatures in South China40,43. These co-
occurring circulation features match those identified as important by
the CNNmodel for predicting EDCPs (Fig. 3h, i), supporting their role
in increasing EDCP occurrences. Taken together, the notable
strengthening of mid-latitude blocking high activity since 2000 may be
amajor contributor to the rising frequency of regional EHDDs in South
China (Fig. 6f), while both intensified blocking highs and global

warming jointly contribute to the observed rise in EHDDs intensity
across the region.

Discussion
In recent decades, South China has experienced a significant increase in
regional EHDDs during warm seasons, marking a notable shift from rela-
tively stable conditions pre-2000 toward a pronounced intensification of
extreme heat discomfort events that affect millions of residents across the
region. While no significant trend was observed from 1979 to 1999, the
subsequent period from 2000 to 2023 demonstrates dramatic changes, with
a significant upward trend in both frequency and spatial extent of these
events. Spatially, increases were initially confined to the coastal area of
Guangdong, but later expanded to multiple provinces, including Guang-
dong, Guangxi, Jiangxi, Hunan, and Hainan.

CNN analysis of atmospheric circulation patterns associated with
regional EHDDs identifies the northwestward extension of theWNPSHas a
primary driver. The northwestward extension induces an anomalous
anticyclone over SouthChina, leading to aweakened summermonsoonand

Fig. 3 | Neural network classification and circulation characteristics of extreme
discomfort circulation patterns (EDCPs). a Joint distribution of the number of
extreme heat discomfort grids and the predicted EDCP probability for each day.
Color shading (log10 scale) indicates the number of days in each bin; individual days
are shown as dots. The vertical dashed line marks the 30% threshold used to define
regional extreme heat discomfort days (EHDDs). b Fraction of days classified as
EDCPs for different levels of EHDD-affected grid cell counts. c Time series of
regional EHDD frequency (gray line) and EDCP frequency, with linear trends

(days yr−1) in EDCP frequency for the early (1979–1999; light orange dashed line)
and late periods (2000–2023; orange dashed line). d, e Composite anomaly maps of
atmospheric variables for EDCP (d) and non-EDCP (e) days. f–i Layer-wise rele-
vance propagation (LRP) composite maps highlighting relevant input regions for
CNN-predicted EDCP and non-EDCP events. Dotted areas in d and e indicate
regions where changes are not statistically significant at the 95% confidence level
(two-tailed Student’s t test). The gray contours in d and e indicate the 5870-m
geopotential height.
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increased surface air temperatures. The combination of stagnant winds,
high temperatures, and the naturally high humidity of the region creates
conditions conducive to extreme heat discomfort. Despite advancements in
understanding circulation patterns associated with regional EHDDs, some
extreme heat discomfort events with “atypical” circulation patterns remain
challenging for current models to capture (Supplementary Fig. 6). This
limitation may be attributed to variations in the spatial distribution of
regional extreme heat discomfort events or the intricate balance among
temperature, humidity, and wind factors influencing heat discomfort levels.
Addressing these challenges in future research is essential to improve the
CNN model’s ability to better predict and analyze these atypical events.

During 2000–2023, blocking highs anomalies at mid-latitudes have
become increasingly prevalent, resulting in enhanced high-pressure
anomalies over the East Asian continent that favor the occurrence of
EDCPs.The synergistic effect of thenorthwestwardextensionof theWNPSH
and mid-latitude blocking highs has emerged as the dominant driver of the
increased frequency of regional EHDDs in South China since 2000. The
intensification of mid-latitude blocking high events appears to be associated
with broader climate change patterns45,46, such as Arctic amplification and

sea-ice decline47–51. Francis and Vavrus51 suggest that Arctic amplification
weakens the equator-to-pole temperature gradient, thereby slowing the
westerly jet streamand increasing the frequency of strong blocking events.Of
particular significance is the shift in the trendofRussianArctic sea-ice around
the year 2000−from a period of no significant trend to a period of rapid
decline, which has coincided with increasingly persistent and stronger
summer blocking events over eastern Siberia due to smaller meridional
potential vorticity gradients under reduced sea-ice conditions47–49. Another
prominent factorpotentially contributing to the increased regionalEHDDs in
South China is the Pacific decadal oscillation. The mid-1990s phase shift of
the Pacific decadal oscillation from positive to negative, along with the phase
shift of the Atlantic multidecadal oscillation from negative to positive, has
been linked to an intensified northern branch wave train over Eurasia. This
strengthened wave train enhances geopotential height anomalies over the
Ural Mountains and eastern Siberia, forming favorable conditions for the
occurrence of blocking high at mid-latitudes during summer52–55. Under-
standing these connections provides valuable insight into the mechanisms
driving extreme heat discomfort events in SouthChina, with implications for
improving prediction and preparedness for heat-related health risks.

Fig. 4 | Changes in extreme heat discomfort characteristics associated with EDCP
days in South China. a Time series of regional extreme heat discomfort days
(EHDDs) during EDCP days, with linear trends (days yr−1) for the full period (black
dashed line), early period (1979–1999; gray solid line), and late period (2000–2023;
orange solid line). bDistribution of daily humidex values during EDCP days for the
early and late periods. cDistribution of the number of daily affected grid cells during

EDCP days for the early and late periods. d Linear trend in mean humidex during
EDCP days for 1979–2023. e Climatological mean humidex during EDCP days
(1979–2023). f Difference in mean humidex between the late and early periods
(2000–2023 minus 1979–1999). Dotted areas in e and f indicate regions with sta-
tistically significant changes at the 95% confidence level (two-tailed Student’s t test).
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In addition to these large-scale circulationdrivers, the role of long-term
global warming cannot be overlooked. Both EDCP days and non-EDCP
days exhibit significant warming, emphasizing the critical role of long-term
global warming in driving temperature increases (Fig. 5c, d). The positive
trend in air temperature is attributable not only to greenhouse gas-induced
warming but also to intensified urbanization at the regional scale56,57. These
anthropogenic influences may act in concert with circulation anomalies to
exacerbate the frequency and intensity of EHDDs in the region. While our
findings suggest a strong dynamical connection between mid-latitude
blocking highs, theWNPSH, and EHDDs in SouthChina, the attribution of
EHDDs to specific circulation patterns may also be influenced by con-
current global warming trends. Future studies employing climate model
experiments are needed to rigorously assess the underlying causal
mechanisms.

Methods
Observational datasets and OHD index
To quantify OHD under extreme heat and humidity, we employ the
humidex index, a widely usedmeasure adopted by previous studies10,58. The
humidex combines air temperature (T, in °C) and dew point temperature
(Tdew, in °C) into a single value representing the perceived temperature. Its
effectiveness has been demonstrated in public health and heat stress studies
across humid regions, including South China59,60. The formulation is
expressed as:

H ¼ T þ 0:5555 6:11e
5417:753 1

273:16� 1
273:16þTdew

� �
� 10

" #
ð1Þ

Here, the coefficient 5417.753 is derived from the Clausius-Clapeyron
relation and reflects the laten heat of vaporization, the universal gas
constant, and the molecular weight of water. The constant 273.16 is the
melting point of ice in Kelvin.

For humidex, we use the gridded daily observational dataset obtained
from CN05.161. Because Tdew is not directly available in CN05.1 dataset, we
calculate it iteratively from air temperature and relative humidity as follow.
First, the saturation vapor pressure (es) is computed based on the air tem-
perature (T, in K) using the formula:

es ¼ 6:1078e
a T�273:16ð Þ

T�b

� �
ð2Þ

where constants a and b adjusted based on the temperature range. For a
T ≥ 258.16 K, a = 17.27, b = 35.86; for T ≤ 233.16 K, a = 21.87, b = 7.66; and
for 233.16 K ≤T ≤ 258.16 K, a and b are interpolated linearly.

Next, the actual vapor pressure (e) is obtained from the relative
humidity (RH, in %) using:

e ¼ esRH
100

ð3Þ

Finally, to determine Tdew, we iteratively decrease T in 0.05 K incre-
ments and recalculate es until e = es. The temperature satisfying this con-
dition is taken as the dew point temperature Tdew.

For atmospheric field, we use the daily fifth-generation ECMWF rea-
nalysis (ERA5) dataset62, including sea level pressure (SLP), zonal and
meridional winds at 10m, relative humidity, air temperature at 2m, geo-
potential height (GPH) at 500-hPa. The analysis focuses on warm months

Fig. 5 | Surface meteorological conditions associated with extreme discomfort
circulation pattern (EDCP) andnon-EDCPdays. aComposite of relative humidity
(shading; %) on EDCP days during the full period, along with differences between
the late and early periods. Dotted areas indicate regions where changes are not

statistically significant at the 95% confidence level (two-tailed Student’s t test).
b Same as a, but for non-EDCP days. c, d Same as (a, b), respectively, but for 2-m air
temperature (°C). e, f Same as (a, b), respectively, but for near-surface wind speed (m
s−1) and near-surface wind vectors (m s−1).
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(May−September) from 1979 to 2023, during which both the CN05.1 and
ERA5 reanalysis datasets are available. The CN05.1 data are used at a
0.25° × 0.25° spatial resolution. For ERA5, SLP and 500-hPa GPH are used
at 1° × 1°, while 10mwind, 2m temperature, and relative humidity are used
at 0.25°˚ × 0.25°. Additionally, theGriddedPopulation of theWorld version
463 dataset provides population counts at a 0.25° × 0.25° resolution for 2000,
2005, 2010, 2015 and 2020 to assess population exposure.

In this study, we focus on SouthChina (15°N to 27°N, 106°E to 125°E).
Heat discomfort is classified as extreme when the humidex exceeds 45,
signifyingdangerous conditionswith an elevated risk of heat stroke. EHDDs
are defined as those humidex values exceeding 45 for a specific grid, and
regional EHDDs occur when 30% or more of grids exceed a humidex value
of 45. Results remain robust across alternative thresholds (35% and 40%),
yielding similar trends in regional EHDDs, classification performance, and
circulation composites (Supplementary Figs. 1–3).

Detection of atmospheric blocking
To examine the role of mid-latitude blocking high in driving EHDDs in
South China during summer, we adopt a 500-hPa GPH-based blocking
detection and intensity quantification approach. Blocking events are

identified using a modified version of the classical Tibaldi and Molteni64

method, which detects persistent high-pressure anomalies in the mid-
troposphere based on meridional GPH gradients. A given longitude λ is
considered to exhibit blocking on a particular day if the following two
gradient conditions are simultaneously satisfied for at least one value of Δ :

GHGN λð Þ ¼ GPH λ;ϕNð Þ�GPH λ;ϕ0ð Þ
ϕN�ϕ0

< � 10m
deglat

GHGS λð Þ ¼ GPH λ;ϕ0ð Þ�GPH λ;ϕSð Þ
ϕ0�ϕS

> 0

8><
>: ð4Þ

Here,ϕN ¼ 75� þ Δ,ϕ0 ¼ 60� þ Δ,ϕS ¼ 40� þ Δ, withΔ ¼ �5�,�2:5�,
0�, 2:5�, 5�. The central (ϕ0) and the southern (ϕS) points are set at 60° and
40° based on previous studies65,66, while the northern point is adjusted to 75°
(instead of the original 80°) to better capture blocking patterns relevant to
the southern focus of this study67. We define a blocking day if blocking is
detected over at least 13 consecutive degrees of longitudewithin the domain
λ 2 80�E; 130�E½ �. The longitudinal range covers the region where strong
positive geopotential height anomalies are frequently observed (Figs. 2d and
6b, d). This spatial extent corresponds approximately to the longitudinal

Fig. 6 | Atmospheric circulation anomalies associated with extreme heat dis-
comfort in South China. aDifferences in 500-hPa geopotential height (shading; m)
between the late and early periods across all summer days. The orange contours
indicate the 5870-m geopotential height during the late period (2000− 2023), while
gray contours denote the 5870-m geopotential height during the early period
(1979− 1999). Dotted areas denote regions where differences are not statistically
significant at the 95% confidence level (two-tailed Student’s t test). b Same as (a), but

for days classified as extreme discomfort circulation pattern (EDCP) days. c, d Same
as (a, b), respectively, but for sea level pressure anomalies (shading; hPa). e Time
series of annual mean blocking high intensity across all summer days, with linear
trend (m yr−1) for the full period (black dashed line), early period (1979–1999; gray
solid line), and late period (2000–2023; orange solid line). f Same as (e), but for
EDCP days.
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range centered on Lake Baikal ( ~ 108°E), and the 13-degree threshold
reflects adaptation to the 1° resolutionofERA5 reanalysis data (compared to
12.5° used in coarser-resolution studies).

The blocking center point (λctr; ϕctr) is identified as the grid point with
the largest zonally andmeridionally averaged500-hPaGPHanomalywithin
a reference region. This reference region is defined by extending 5� east and
west from the easternmost and westernmost boundaries of the blocking
ridge. The blocking intensity (BI) is then computed as68:

BI ¼ 100 ×
GPH λctr; ϕctr

� �
GPHref

� 1:0

 !
ð5Þ

where GPHref is the mean 500-hPa GPH at the upstream (λup) and
downstream (λdown) boundaries of the blocking region, defined as:

GPHref ¼
1
2

GPH λup; ϕ
� �

þ GPH λdown; ϕ
� �h i

ð6Þ

High BI values indicate stronger blocking highs.

CNN architecture for identifying extreme discomfort circulation
patterns (EDCPs)
In training a CNN to predict regional EHDDs in South China, we use daily
SLP and 500-hPaGPHanomalies for the geographic domain spanning 5°N
to 50°N and 70°E to 140°E. Including 250-hPa zonal wind as an additional
predictor does not improve performance, and using 500-hPa GPH alone
leads to substantially worse results (Supplementary Fig. 4). Before analysis,
both SLP and 500-hPa GPH anomalies are standardized, and the area-
weighted average trend over the atmospheric domain is removed fromGPH
values to adjust for uniform thermal expansion. The dataset is split into
training (75%) and testing (25%) subsets for model development and eva-
luation. During training, days identified as regional EHDDs are labeled as
class 1, while non-regional EHDDs are labeled as class 0. This classification
approach enables the model to effectively learn the distinguishing circula-
tion features associated with regional extreme heat discomfort. After
training, the trained model processes the standardized SLP and 500-hPa
GPH anomaly patterns as three-dimensional input data to predict the
probability of each day from 1979 to 2023 being associated with a regional
EHDD-related circulation pattern. A prediction probability exceeding 0.5 is
classified as an extreme discomfort circulation pattern (EDCP), while lower
probabilities indicate non-EDCPs. To ensure robustness, we tested alter-
native thresholds (0.4, 0.6) and found consistent classification performance
(Supplementary Fig. 5).

The CNN architecture (Fig. 2) consists of two convolutional layers
aimed at feature extraction and transformation. The first layer utilizes 16
filters, while the second layer employs 32 filters, with both layers featuring a
3 × 3 kernel and using ReLU activation for non-linearities. These layers are
followedby twomaxpooling layerswith 2 × 2kernels,whichare responsible
for feature extraction and dimensionality reduction. The output of the
convolutional and pooling layers is then flattened and processed through
two fully connected dense layers for classification. The first dense layer
contains 32 neurons with ReLU activation, ensuring complex non-linear
feature representation. The second dense layer consists of 2 neurons and
employs softmax activation, which converts the outputs into probabilities
for EDCP classification. To optimize the performance and generalization of
the CNN, the architecture is fine-tuned with several critical hyperpara-
meters, including a learning rate of 2 × 10−4, a batch size of 2048, L2 reg-
ularization rates of 1 × 10−2, 7 × 10−4 and 1 × 10−4, and a dropout rate of 0.1.
Weight initialization is handled with a random normal initializer. More
details on the CNN are shown in the supplementary.

Layer-wise relevance propagation (LRP)
A CNN transforms input features into abstracted, higher-level repre-
sentations, which complicates direct interpretation of how specific input

features contribute to the final prediction. LRP has been widely used in
previous studies35,69,70 as a useful tool to enhance interpretability in deep
learning models. LRP propagates the model’s output backward through
thenetwork layers, redistributing theprediction score to the input features
based on the network’s structure and weights. In doing so, it reveals the
contributions of each input feature to the model’s decision and provides
insights into the mechanisms driving the predictions. Following Daven-
port and Diffenbaugh35 and Montavon, Samek69, we adopt the LRP
technique by setting the parameters α = 1 and β = 0 to explain the pre-
dictions of neural networks. This particular configuration emphasizes
highlighting the relevant features of input data by assigning them positive
relevance scores. Given the variability in model output magnitude across
samples—even within the same predicted class—we normalized the
relevance scores for each sample before compositing. This normalization
step ensures that the relevance maps reflect the relative importance of
input features across space, rather than absolute output strength, and
enables meaningful interpretation of the spatial relevance patterns. By
focusing on normalized relevance within each class (EDCP vs. non-
EDCP), our interpretation highlights how the model prioritizes specific
spatial features for classification.

Data availability
The ERA5 dataset is available from https://cds.climate.copernicus.eu/
datasets/reanalysis-era5-single-levels?tab=overview. The CN05.1 dataset
used in this study is not publicly accessible but can be obtained from the
corresponding author on reasonable request.

Code availability
The code used for data analysis is available upon request.
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