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Abstract 

Offline aridity and drought diagnostics typically project widespread terrestrial drying under 

climate change, whereas fully coupled Earth system models (ESMs) often simulate modest or 

regionally heterogeneous changes—and in some regions increasing—runoff. This long-standing 

divergence has been attributed largely to missing vegetation physiological effects and the neglect 

of sub-annual climate variability in offline diagnostic frameworks. Here we show that a more 

fundamental issue is the violation of the diagnostic framework’s structural requirement that 

potential evapotranspiration (PET) and precipitation (P) act as independent climatic constraints. 

Using Penman and Penman–Monteith formulations, each with and without thermodynamic 

deflation via the complementary evaporation principle (CEP), we demonstrate that land–

atmosphere feedbacks embedded in conventional PET estimates induce strong negative P–PET 

correlations (−0.45 ± 0.29; mean ± standard deviation) across land surfaces, which collapse 

toward near zero (−0.02 ± 0.42) after CEP deflation. Preserving PET–P independence 

substantially reduces inflation of the aridity index and brings offline diagnostic ET trends closer 

to ESM projections under a strong-emission scenario (from +0.61 to +0.39 mm yr-2; ESM mean: 

+0.28 mm yr-2). These results indicate that structural inconsistencies—rather than missing 

physiological processes alone—play a central role in the mismatch between offline diagnostics 

and ESM hydrology. Ensuring that PET is not inflated by land–atmosphere feedbacks is 

therefore essential for theoretically valid offline hydrologic assessments under a warming 

climate. 

Keywords: Land–atmosphere feedbacks, Atmospheric evaporative demand, Budyko framework, 

Aridity index, Complementary evaporation principle 
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Introduction 

Since the late 2010s, a persistent and unresolved question in hydrologic and climate-change 

sciences has been why runoff projections from Earth system models (ESMs) diverge from the 

signals implied by offline aridity and drought diagnostics1–6. Whereas ESMs simulate 

hydrological responses through fully coupled soil–vegetation–atmosphere interactions, offline 

indices typically combine precipitation (P) with an estimate of atmospheric evaporative demand 

—commonly expressed as potential evapotranspiration (PET)—to diagnose long-term water 

availability. These two approaches often yield contrasting interpretations: ESMs tend to project 

relatively modest or spatially heterogeneous changes in runoff, whereas offline metrics—

especially those based on Penman-type or temperature-driven PET formulations—frequently 

suggest widespread and intensifying terrestrial drying5–11. 

This discrepancy has been commonly attributed to several factors. First, vegetation 

responds physiologically to both elevated atmospheric CO2 concentration ([CO2]) and rising 

dryness—often quantified using vapor pressure deficit (VPD)—by reducing stomatal 

conductance12–14. These reductions suppress actual evapotranspiration (ET), while PET continues 

to rise in most climate projections, causing aridity-based frameworks to overestimate land-

surface drying and predict excessive declines in runoff3,4,15. Second, structural simplifications in 

the offline indices—such as their reliance on mean-state variables—overlook sub-annual 

variability (e.g., rainfall intermittency and seasonal distributions), which strongly shapes surface 

water balances2. Third, vegetation–climate feedbacks can influence not only ET but also P itself 

through changes in boundary-layer structure and convection. This further complicates the 

interpretation of drying trends in offline frameworks16. 
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Although disabling physiological and variability-related processes in ESMs brings their 

behavior closer to offline diagnostics, it does not fully eliminate the divergence between the two 

approaches2,17. This persistent mismatch suggests that deeper structural issues remain 

unaddressed. Notably, offline diagnostic frameworks that use the aridity index (Φ = PET/P) to 

estimate ET or runoff—including Budyko-type equations18—implicitly assume that P and PET 

represent water supply and atmospheric demand independently.  

The Budyko framework provides a simple yet widely used way to describe catchment-

scale water balance by relating the ET ratio (ET/P) to Φ. In this framework, long-term mean ET 

is constrained by two independent climatic limits (i.e., P and PET) with catchment characteristics 

summarized by one or a small number of parameters18. Classical and modern formulations, 

including the perturbation analyses19, therefore treat P, PET, and land-surface properties as 

separate, non-interacting drivers of ET. This structural independence assumption is central to the 

analytical convenience of Budyko-type models20. However, it has rarely been validated and is 

often violated in practice, especially when PET is derived from atmospheric variables that 

themselves respond to soil-moisture and land-surface conditions21–23. As a result, violations of 

the independence assumption can propagate through Φ-based diagnostics and lead to biased 

estimates of drying and runoff changes under a warming climate. Correcting the evaporative 

demand to reduce its dependence on P has been shown to significantly alter the runoff sensitivity 

to climatic and land-surface controls24, underscoring the importance of preserving the theoretical 

assumptions built into Budyko-type models. 

Still, it remains unclear whether the primary sources of divergence between Φ-based 

estimates and ESM-simulated ET stem from the omission of key physiological and land–

atmosphere feedback processes or from limitations of the offline diagnostic framework itself. By 
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correcting PET to account for both physiological responses and atmospheric feedbacks, we can 

assess how much of the gap between offline and ESM-based hydrologic estimates can be closed 

and thereby quantify the relative contributions of structural versus process-based deficiencies. 

 

Results 

Structural corrections to evaporative demand 

In Budyko-type equations, atmospheric evaporative demand is conceptually defined as the 

“possible maximum ET” that would occur under prevailing climate conditions in the absence of 

surface moisture limitation25. A common approach to estimating this hypothetical amount is the 

open-water Penman equation26, which combines two physical perspectives: an aerodynamic 

control, representing vapor removal by turbulent exchange; and a radiative control, representing 

the conversion of available net radiation into latent heat flux. However, its derivation implicitly 

assumes a uniformly wet, non-vegetated surface with fixed aerodynamic properties and no 

stomatal regulation. This represents an idealized upper bound that is unlikely to be realizable 

over vegetated land surfaces, where canopy structure, roughness length, and plant physiology 

can modify energy and vapor exchange27. 

Most land surfaces are at least partially vegetated with plants capable of accessing 

subsurface moisture and regulating water fluxes through stomatal conductance. The conventional 

Penman–Monteith formulation expands Penman’s energy–aerodynamic combination by 

including a surface (canopy) resistance term, but its practical use has been limited by the 

difficulty of generalizing canopy-scale conductance28,29. Motivated by the discrepancies between 

offline projections and ESM hydrology, Yang et al. (ref.3) introduced a generic linear 

representation of stomatal closure under elevated [CO2], and Liu et al. (ref.15) further embedded 
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an optimal stomatal model30 into the Penman–Monteith equation to explicitly represent the 

coupled effects of [CO2], VPD, and leaf area index (LAI) on canopy conductance. Building on 

these developments, a two-source framework partitions PET into soil and vegetation components 

to better capture spatial heterogeneity in roughness and physiological controls31. Together, these 

advances demonstrate that conventional PET formulations tends to overestimate evaporative 

demand under warming, because it ignores physiological suppression of transpiration and the 

dynamic nature of canopy structure. Vegetation-responsive PET models thus provide a more 

physically consistent basis for estimating atmospheric demand over real land surfaces, although 

they remain influenced by atmospheric feedbacks when PET is driven directly by uncorrected 

atmospheric variables (temperature and VPD). 

When the open-water Penman and vegetation-responsive Penman–Monteith formulations 

are forced with ERA532 atmospheric inputs, the resulting PET estimates—hereafter PETOW and 

PETVeg for open-water and vegetated cases, respectively—are frequently inflated over water-

limited surfaces (Fig. 1). Under dry conditions, suppressed latent heat flux shifts the surface-

energy balance toward sensible heating, raising near-surface air temperature and VPD33. This 

land–atmosphere feedback is widely documented by surface observations and theoretical 

frameworks for unsaturated landscapes34–37. Conversely, thermal imaging confirms that the 

surface temperatures over extensive saturated areas remain nearly constant with increasing 

distance from moisture discontinuities38. Thus, if the land surface were hypothetically 

saturated—as implied by the definition of possible maximum ET—the feedback-driven inflation 

would disappear, resulting in lower temperature and VPD. This “wet-surface reversal” underpins 

the complementary-evaporation principle (CEP)21,22, which partially restores the Budyko 

assumption that PET is analytically independent of P (Methods). 
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The CEP framework provides a thermodynamic adjustment that deflates PET in both 

formulations—hereafter WETOW and WETVeg (Fig. 1d–e). Across water-limited areas, this 

deflation is larger than the PET reduction achieved when only [CO2]- and VPD-driven stomatal 

responses are applied (Fig. 1c,g). Because CEP lowers VPD over a hypothetically saturated 

surface, the associated decline in stomatal conductance is smaller; with less physiological stress, 

transpiration does not need to be suppressed to the same extent (Fig. 1f). 

The correlation maps between PET and P reveal that land–atmosphere feedbacks embed a 

pronounced dependence of evaporative demands on water supply across much of the globe (Fig. 

2a–b). After applying the CEP correction, these correlations weaken noticeably—or even reverse 

in some regions—for the deflated estimates WETOW and WETVeg (Fig. 2d–e). Residual negative 

correlations likely arise from a purely radiative pathway: wetter years tend to be cloudier, 

reducing incoming short-wave radiation and thus lowering PET. Conversely, the positive 

correlations that appear over several (semi-)arid regions may reflect cases where higher warm-

season surface radiation promotes boundary-layer instability and convective rainfall, consistent 

with the mechanism described by Seneviratne et al. (ref39). Globally, the Pearson correlation 

between P and the uncorrected PET averages -0.45 ± 0.29 (mean ± standard deviation) for 

PETOW and -0.34 ± 0.29 for PETVeg. After CEP deflation, these values shift substantially toward 

zero— -0.14 ± 0.42 for WETOW and -0.02 ± 0.42 for WETVeg—indicating that CEP mitigates 

much of the spurious P–PET coupling and moves the estimates closer to the Budyko 

framework’s requirement. 

Historical trends of Φ and offline ET estimates 

Over 1981–2020, the global annual Φ based on uncorrected PET (ΦP-OW and ΦP-Veg) has 

risen significantly faster than its CEP-deflated counterpart (ΦW-OW and ΦW-Veg) (Fig. 3a). By 
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lowering the climatological mean of Φ and reducing its long-term slope, the CEP adjustment 

highlights how land–atmosphere feedbacks embedded in PET formulations can overstate the rate 

of surface drying. Because land–atmosphere coupling is projected to intensify under continued 

warming40,41, ΦP-OW values are likely to experience progressively larger inflation. Imposing 

stomatal constraints (ΦP-Veg)—representing reduced conductance under elevated [CO2] and 

higher VPD—significantly moderates the inflated trend in ΦP-OW (p < 0.05). Applying CEP 

deflation (ΦW-OW, ΦW-Veg) further dampens this trend (p < 0.05). After CEP is applied, however, 

additional stomatal adjustments exert insignificant influence on the trend (p > 0.3), because the 

hypothetically saturated surface implicitly maintains a low VPD, leaving little room for further 

physiological suppression. 

Despite their significantly different trends, all four Φ series allow a commonly used 

Budyko‐type model to reproduce ERA5’s long‐term ET trajectory with comparable accuracy 

(Fig. 3b). The Turc–Mezentsev equation42 is a frequently used parametric function that converts 

Φ into the ET ratio through a single land-specific exponent n (Methods). For each Φ series, we 

calibrate the exponent n on a pixel‐by‐pixel basis to match the 1985–2014 climatological mean 

ET (Supplementary Fig. S1). The resulting n values exhibit a clear breakpoint at Φ0 ≈ 1 in log–

log space (Supplementary Fig. S2). For Φ < Φ0 (i.e., P > PET), surplus P produces saturation-

excess overland flow while ET remains capped at PET, driving n downward with decreasing Φ24. 

Conversely, for Φ > Φ0, n correlates negatively with Φ, reflecting dominant infiltration-excess 

overland flow in drier climates43, which diverts water to runoff and reduces the ET ratio. 

Assuming a quasi–steady state, we then simulate annual ET for 1981–2020 by applying 

each Φ series—with its calibrated n—to the Turc–Mezentsev equation. Here, n is allowed to vary 

each year according to its statistical sensitivity to changes in Φ. When these simulations are 
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compared against ERA5’s annual ET (independent of the calibration period), predictive 

performance slightly improves as we move from uncorrected to CEP-deflated PET formulations 

(Supplementary Fig. S3). The anomaly correlations between ERA5’s global mean ET and the Φ-

based predictions are 0.81 for ΦP-OW, 0.78 for ΦP-Veg, 0.84 for ΦW-OW, and 0.79 for ΦW-Veg. 

Across land surfaces, the mean biases of the simulated ET anomalies range from 2.9 ± 28 mm yr-

1 (ΦP-OW) and 4.3 ± 27 mm yr-1 (ΦP-Veg) to 1.7 ± 25 mm yr-1 (ΦW-OW) and 3.4 ± 25 mm yr-1 (ΦW-

Veg), indicating that CEP deflation systematically reduces ET anomaly biases, whereas 

incorporating physiological responses alone yields little additional improvement. 

Nonetheless, all four simulated ET series exhibit statistically indistinguishable long-term 

trends (p > 0.35), suggesting that the choice of PET formulation has little impact on 

reconstructing historical ET trends. This similarity arises because land–atmosphere feedback 

effects are implicitly absorbed into the calibrated exponent n for each formulation. However, as 

climate conditions increasingly diverge from historical patterns, the influence of feedbacks 

inherent in the uncorrected PET estimates, when compared with the CEP-deflated WET 

estimates, becomes progressively more evident.  

Global ET trends under a warming scenario: Budyko diagnostics vs. ESM projections  

Figure 4 compares century-scale trajectories of both Φ and resulting ET anomalies from four 

Budyko‐based formulations against the multi‐model mean of ten Coupled Model 

Intercomparison Project Phase 6 (CMIP6)44 model projections (Table S1) under the business-as-

usual Shared Socioeconomic Pathway (SSP) 5-8.5 scenario45. For the late-century period (2071–

2100), correlations between P and the uncorrected PET estimates (PETOW, PETVeg) remains high, 

but they weaken markedly once CEP deflation is applied (WETOW, WETVeg), consistent with the 

historical behavior (Supplementary Fig. S4). Notably, the decline in P–PETVeg correlation is 
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even more pronounced than in the ERA5 analysis, implying that the physiological influence 

strengthens as warming and VPD intensify. 

The Turc–Mezentsev equation continues to reproduce ESM-simulated ET reasonably 

well, with modest improvement from CEP deflation (Supplementary Fig. S5). The smaller gain 

in WETVeg relative to WETOW likely reflects the deep uncertainty in representing physiological 

responses within evaporative-demand formulations (ref.46). Nonetheless, both CEP-deflated 

estimates improve Budyko–ESM agreement more in 2071–2100 than in the ERA5 analysis, due 

partly to amplified feedback-driven inflation under future warming. Across land surfaces for 

2071–2100, the ensemble-mean biases of Budyko-derived ET anomalies are 35.0 ± 46.5 mm yr⁻¹ 

for PETOW and 18.5 ± 42.0 mm yr⁻¹ for PETVeg, decreasing to 21.0 ± 35.7 mm yr⁻¹ for WETOW 

and 10.1 ± 38.3 mm yr⁻¹ for WETVeg. These reductions indicate that both CEP deflation and 

physiological adjustments play increasingly important roles in improving hydrologic consistency 

under late-century climate conditions. 

In Fig. 4a, all four Φ anomaly series fluctuate near zero during 1985–2014 before 

diverging sharply after 2020. The uncorrected open-water formulation (ΦP-OW) exhibits the 

steepest rise (+0.10 % yr-1), followed by the uncorrected vegetated version (ΦP-Veg; +0.05 % yr-1). 

Applying CEP deflation alone (ΦW-OW; +0.05 % yr-1) and combining it with physiological 

suppression (ΦW-Veg; +0.02 % yr-1) progressively flattens the trend. Although ΦP-Veg increases 

more rapidly than ΦW-OW in the ERA5‐based analysis (where LAI held fixed), dynamic 

vegetation changes in ESMs—particularly to rising LAI under elevated [CO2]—likely moderate 

the ΦP-Veg projection under SSP5-8.5. 

In Fig. 4b, the linear trends of ET anomalies derived from all four Φ formulations appear 

to be indistinguishable through the historical period (1980–2014), reconfirming that the choice of 
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PET formulation has minimal impact on reconstructing past ET trends. Under SSP5-8.5 by 2100, 

however, the uncorrected PETOW produces a trend of +0.61 mm yr-2—more than double the ESM 

ensemble mean of +0.28 mm yr-2 (p < 0.001). Applying either CEP deflation (WETOW) or 

physiological suppression (PETVeg) individually reduces the Budyko-derived trend to +0.48 mm 

yr-2, bringing it closer to the ESM projections. Combining both corrections (WETVeg) narrows 

the gap further to +0.39 mm yr-2, although a significant overestimation remains (p < 0.001). 

 

Discussion 

Previous studies have primarily attributed the divergence between Φ-based diagnostics and ESM 

projections to missing process representations in PET—most notably, stomatal responses to 

elevated [CO2] and VPD3,12–15—or to the use of mean‐state climate metrics that overlook intra-

annual variability1,2,17,47. Incorporating these physiological and variability-related processes may 

reduce the mismatch between offline diagnostics and ESM outputs, but such corrections would 

still treat PET as an externally imposed, empirically tuned demand term. Crucially, they do not 

resolve the deeper structural assumption underpinning Budyko-type frameworks: PET and P 

represent independent climatic constraints. When PET is computed directly from atmospheric 

variables such as temperature and VPD—which themselves respond to land-surface moisture 

conditions—this independence breaks down. Violations of this assumption introduce a structural 

inconsistency that persists even after physiological processes are incorporated and may be more 

fundamental than the missing processes themselves. 

A recent study by Zhou & Yu (ref.48) provides independent support for this interpretation. 

They quantified PET using two physically distinct formulations—an energy-based PET (PETe) 

and an aerodynamic PET (PETa)—and demonstrated that the divergence between them (PETa > 

PETe) reflects land–atmosphere feedbacks arising from reduced ET. Because Penman-type PET 
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combines both energy and aerodynamic controls, it inherits this feedback-driven inflation, 

leading to a 25–39% overestimation of climate-driven ET increases and a 77–121% exaggeration 

of land-surface suppression effects in Budyko-type analyses. When the physiological effects of 

elevated [CO2] are disabled, Φ constructed with PETe reproduces the ET changes simulated by 

ESMs, indicating that PETe captures the pure radiative forcing of increasing [CO2] without 

contamination from feedback-driven atmospheric drying. In contrast, our CEP method 

reconstructs the wet-surface state by thermodynamically reversing the observed warming and 

drying. Although the two approaches differ conceptually, both converge on the same conclusion: 

inflated PET in water-limited environments originates from land–atmosphere feedbacks, not 

from externally forced atmospheric drying. 

In our analysis, the CEP-deflated PET fields (Fig. 1d–e) exhibit a pronounced latitudinal 

gradient that closely tracks net radiation patterns, as also reported by Zhou & Yu (ref.48), 

whereas uncorrected PET peaks in subtropical “horse-latitude” regions where feedback-driven 

inflation is strongest. Although PET inflation can accelerate local moisture loss and exacerbate 

plant stress22,34,49, this inflation disappears when the surface is saturated at basin scales—

clarifying why the Budyko framework’s “possible maximum ET” is better represented by CEP-

deflated than by uncorrected Penman-type estimates. Correcting this feedback-driven inflation is 

therefore essential for any theoretically valid application of Budyko-type models. 

Moreover, the magnitude—and even the sign—of stomatal responses to elevated [CO2] 

remains highly uncertain46. Meta–analyses and ESM intercomparisons reveal large variability 

across species, biomes, moisture regimes, and nutrient states, suggesting that reductions in 

stomatal conductance may only partially or transiently offset the warming-driven increases in 

PET. This physiological uncertainty, coupled with the structural limitations inherent to offline 
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PET formulations, further underscores that preserving the Budyko requirement of P–PET 

independence is more fundamental than embedding additional process-based adjustments into 

PET itself. 

While Zhou & Yu (ref.48) demonstrate that the PETe-based Budyko framework can 

successfully reproduce the radiative effects of elevated [CO2], their formulation does not 

represent the physiological pathways through which [CO2] alters stomatal conductance and 

transpiration, and thus cannot capture the combined radiative–physiological responses simulated 

in fully coupled ESMs. In contrast, our CEP approach incorporates an optimal-conductance 

model to approximate stomatal and canopy-scale physiological adjustments, though this 

representation remains imperfect and residual correlations between meteorological variables and 

ET cannot be fully eliminated. A limitation common to both studies is reliance on climatological, 

annual-mean relationships; sub-annual variability—which modulates subsurface storage 

dynamics—is not explicitly resolved. Together, these limitations point to the need for further 

development of offline frameworks that more fully capture both physiological responses and 

sub-annual processes represented in ESMs. 

Relying solely on atmospheric variables to diagnose water balance and associate stresses 

becomes increasingly problematic under global warming, especially as terrestrial relative 

humidity continues to decline50–52. The conceptual link between atmospheric aridity and surface 

water balance is complicated not only by uncertain physiological adjustments, but—more 

importantly—by the theoretical misfit of conventional PET formulations in a warming climate. 

Although it does not completely eliminate the statistical coupling between P and PET, CEP-

deflation substantially narrows the gap between offline aridity indices and ESM-simulated ET. 

We highlight that the persistent mismatch between offline diagnostics and ESM projections 
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arises not only from missing processes in PET formulations, but from the fundamental 

theoretical limitations of conventional offline frameworks when their structural assumptions are 

violated.  
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Methods 

Climate reanalysis, Earth system model projections, and [CO2] data 

We obtained monthly meteorological data from ERA5 (1980–2014) and ten CMIP6 ESMs 

(historical: 1980–2014; SSP5-8.5: 2015–2100; Supplementary Table 1). From ERA5, we used 

precipitation (P), actual evapotranspiration (ET), 2m air and dew-point temperatures (Ta, Td), 

surface net radiation (Rn), given as the sum of latent and sensible heat fluxes, 2m wind speed 

(u)—converted from 10m values via a power-law profile—and LAI, all at 0.25°×0.25°. For 

CMIP6 models, VPD was calculated by relative humidity instead of Td, with all other variables 

matched where available. Native CMIP6 outputs were bilinearly regridded to a common 1°×1° 

resolution and aggregated to annual values.  

Vegetated PET estimates (PETVeg and WETVeg) require [CO2] data. We employed the 

gridded datasets produced by Cheng et al. (ref.53). The historical records span from 1980 to 2013; 

the 2014 values were linearly interpolated, and 2015–2020 concentrations were taken as the 

mean of the SSP1-2.6 and SSP5-8.5 pathways, matching the observed global trend 

(Supplementary Fig. S6). For projections (2015–2100), the historical [CO2] series was 

seamlessly extended with the SSP5-8.5 trajectory to maintain consistency with the CMIP6 

forcing scenario. 

Open-water Penman and two-source Penman-Montieth formulations 

The Penman equation is a simplified water demand model assuming an open-water surface with 

a fixed aerodynamic roughness. Using Rn (J m-2 s-1), Ta (K), Td (K), and u (m s-1), it computes 

PET (kg m-2 s-1) as: 

PETOW =
sRn+γ

6.43(1+0.536u)

8.64×107 VPD

λ(s+γ)
,       (1) 
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where s is the slope of the saturation vapor-pressure curve (Pa K-1), γ is the psychrometric 

constant (Pa K-1), λ is the latent heat of vaporization (J kg-1), and VPD is calculated as the 

difference between saturation vapor pressures at Ta and Td (Pa). The factor 8.64×107 ensures that 

PETOW is expressed in kg m-2 s-1. 

To capture heterogeneity of land surfaces, we employed the two-source Penman-

Monteith approach31, which partitions PETVeg into vegetated and bare-soil components:  

PETVeg = fcEp,v + (1 − fc)Ep,s,        (2) 

where Ep,v and Ep,s denote the vegetated and bare-soil components, and fc is the vegetation cover 

fraction estimated using the Beer–Lambert law: 

fc = 1 − exp(−kLAI ),         (3) 

with k = 0.56 representing a typical extinction coefficient54. 

Evaporative demand over each component (Ep,v and Ep,s) is then computed using the 

Penman–Monteith equation: 

λEp =
sRn+ρaCpVPD/ra

s+γ(1+rs/ra)
,        (4) 

where ρa is air density (kg m-3), Cp is the specific heat of air (J kg-1 K-1), and ra and rs are the 

aerodynamic and surface resistances (s m-1), respectively.  

For the bare soil component, roughness lengths were set at 2.74 mm (momentum) and 

0.177 mm (heat and vapor), with the zero-plane displacement considered negligible55. For the 

vegetated component, roughness lengths were estimated from empirical relationships with 

vegetation heights56, where vegetation height h (m) was approximated as h = LAI/(fc×24). 

The two-source model neglects rs for bare soil, while the vegetated component is 

assumed to be controlled by the optimal leaf-level conductance30 (gs,l) (mol m-2 s-1) as: 

gs,l = 1.6 (1 +
g1

VPD1/2)
A

[CO2]
,         (5) 
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where g1 is the marginal water-use efficiency parameter (Pa1/2), A is the net assimilation rate 

(μmol m-2 s-1), and [CO2] is in ppm. Canopy-level conductance (gs, mol m-2 s-1) is then scaled 

from gs,l using the active portion of LAI: gs = gs,l(0.5LAI/fc), and rs becomes the reciprocal of gs.  

The associated parameters g1 and A are determined by following the empirical relationships by 

Lin et al. (ref.57) established with climate conditions and assimilation sensitivity to changes in 

[CO2]. 

Deflating PET by a graphical CEP framework 

To remove land–atmosphere feedbacks embedded in conventional PET estimates, we applied the 

isenthalpic CEP framework of Crago & Qualls (ref.21). The CEP method reconstructs the air 

temperature (TPT) and vapor pressure (ePT) that would prevail over a saturated surface, thereby 

excluding the soil- or canopy-driven warming and VPD inflation that typically enhance PET over 

water-limited regions. 

In the temperature–vapor-pressure [T, e] plane (Fig. S7), the ambient air state [Ta, ea] lies 

on an air isoenthalp—a straight line with slope −γ along which all points share the same moist 

enthalpy. To satisfy the surface energy balance, a surface isoenthalp must run parallel to the air 

isoenthalp but be displaced rightward by a thermodynamic offset of 0.622Rn/[pCpf(u)] (K), 

where p is atmospheric pressure (Pa) and f(u) is the wind function: 

 f(u) = {

6.43(1+0.536u)

8.64×107 for PETOW

0.622

RdTara
, for PETVeg

,       (6) 

with Rd = 287 J kg-1 K-1. Every point on the surface isoenthalp represents a feasible combination 

of surface temperature and vapor pressure that converts Rn into turbulent heat fluxes. This line 

intersects the saturation vapor-pressure curve e*(T) at the wet-surface state [Tws, e*(Tws)], which 
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corresponds to the equilibrium surface temperature expected if the surface were completely 

saturated. 

Although air adjacent to a saturated surface is assumed to be saturated, the overlying 

boundary layer is typically subsaturated owing to advective entrainment58. To determine the air 

state that would exist over the hypothetically wet surface, a straight line with slope s′ = sαγ/[s(1–

α) + γ] is drawn from [Tws, e*(Tws)], where the Priestley–Taylor coefficient59 is: 

α =
s+γ

s+0.55γ
.          (7)  

For s′, both s and α are evaluated at Tws
22,60. The intersection of this line with the original air 

isoenthalp yields the wet-environment air state [TPT, ePT], representing the temperature and 

humidity that would occur above the saturated surface in the absence of land-surface drying.  

Finally, substituting [TPT, ePT] for [Ta, ea] in the open-water Penman and the two-source 

Penman–Monteith formulations—while retaining the given Rn and u—yields the CEP-deflated 

PET estimates, denoted WETOW and WETVeg. 

Translating Φ into land-surface water balance 

To convert the aridity index (Φ = PET/P) into the ET ratio (ET/P), we employed the Turc–

Mezentsev equation: 

ET

P
= [

1

1+(
PET

P
)

−n]

1/n

,          (8) 

where the dimensionless exponent n summarizes catchment attributes (e.g., topography, soil 

texture, rooting depth, vegetation cover). 

For every ERA5 and CMIP6 grid cell, we inverted Eq. (8) to obtain the baseline exponent 

(nclim)—the value that exactly reproduces the 1985–2014 mean ET ratio. Assuming negligible 

water storage changes, year-to-year departures of n from nclim were allowed to track the 
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sensitivity of n to changes in Φ. This sensitivity was quantified by fitting a piece-wise linear 

relationship in log-log space (Supplementary Fig. S3): 

ln n = {
a0 + a1 ln Φ                     for Φ ≤ Φ0

a0 + a2 (ln Φ − ln Φ0)  for Φ > Φ0
,      (9) 

where Φ0 is the break point between humid and arid regimes and (a0, a1, a2) are regression 

coefficients. The same Φ–n regressions, calibrated separately for each of the ten ESMs 

(Supplementary Table S2), were then applied cell-by-cell to generate a time-varying exponent n 

that reflect annual shifts in Φ while preserving the 30-year climatological mean. 

Annual water-balance estimates computed with by Eq. (8) using varying n remain tightly 

correlated with the CMIP6 models’ explicit ET—maintaining high skill even in the late-century 

window (2071–2100)—while offering a computationally parsimonious alternative for tracing 

evaporative responses to evolving aridity.  
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Fig. 1 Spatial distributions of climatological (1985–2014) evaporative demand estimates and 

their pairwise differences. a,b, Mean annual PETOW and PETVeg, respectively. c, PETOW minus 

PETVeg. d,e, Mean annual WETOW and WETVeg, respectively f, WETOW minus WETVeg. g,h, 

Feedback-driven inflations: PETOW – WETOW (g) and PETVeg – WETVeg (h).  
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Fig. 2 Spatial distributions of the Pearson correlations (r) between annual P and evaporative 

demand estimates and their pairwise differences for 1985–2014. a,b, Correlations between P and 

PETOW, and between P and PETVeg, respectively. c, Differences r(P, PETOW) – r(P, PETVeg). d,e, 

Correlations between P and WETOW, and between P and WETVeg, respectively. f, Differences 

r(P, WETOW) – r(P, WETVeg). g–h, Changes in r due to feedback-driven inflation: r(P, PETOW) – 

r(P, WETOW) (g) and r(P, PETVeg) – r(P, WETVeg) (h).  
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Fig. 3 Annual variations and long-term trends of global aridity index (Φ) and Budyko-framework 

E from the ERA5 forcing. a, Time series of global Φ anomalies (solid lines) relative to the 1985–

2014 climatology, with the linear trends (dashed). b, Time series of Budyko-predicted global ET 

for each evaporative demand formulation alongside with ERA5 global E (black), with 

corresponding linear trends.  
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Fig. 4 Annual variations and long-term trends of global mean Φ and ET anomalies from the 

Budyko-framework and CMIP6 ESM projections. a, Global Φ anomalies (solid lines) relative to 

the 1985–2014 climatology, with ensemble mean linear trends (dashed). b, Budyko-framework-

based global ET for each evaporative demand formulation and the multi-model ensemble ET 

(black), with respective linear trends (dashed lines). Shading shows the inter-model spread 

among ten CMIP6 models. 
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