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Abstract

Most operational climate services providers base their seasonal predictions on initialised general
circulation models (GCMs) or empirical statistical techniques. GCMs are widely used but require
substantial computational resources, limiting their capacity. In contrast, statistical methods often
lack robustness due to the short historical records available. Recent works propose machine
learning methods trained on climate model output, leveraging larger sample sizes. Yet, many of
these studies focus on prediction tasks that may be restricted in spatial or temporal extent,
thereby creating a gap with existing operational predictions. Others fail to disentangle the sources
of skill in the context of climate change, where strong trends provide spurious estimates. This
study combines variational inference with transformers to predict global and regional seasonal
anomalies of temperature and rainfall. The model is trained on output from CMIP6 and tested
using ERAS reanalysis data. Temperature predictions demonstrate skill beyond the climatology
and climate-change trend and even outperform the numerical state-of-the-art system SEASS5 in
some ocean and land areas. Precipitation forecasts show more limited skill, with fewer regions
outperforming climatology and fewer surpassing SEAS5. Furthermore, the consistency found in
both teleconnections and skill spatial patterns against SEAS5 suggests that both systems build on
similar sources of predictability.



Introduction

In contrast to weather forecasts, which predict daily atmospheric conditions for up to two weeks,
seasonal climate predictions provide estimates of seasonal statistics months in advance. To
address the inherent unpredictability of the atmosphere! and the resulting stochasticity of the
Earth system, seasonal climate predictions leverage ocean and land surface forcings in
conjunction with ensemble predictions that provide probabilistic information?. Thus, seasonal
outlooks commonly deliver probabilities of wetter/drier or warmer/colder than average
conditions. This information has proven valuable for many climate-sensitive sectors, including
agriculture®*, renewable energy production®~ or public health®. Consequently, over the past few
decades, seasonal climate prediction has transformed from a research effort into an operational
service”!%, Nonetheless, the practical value of seasonal predictions relies on their skill and

resolution, and for many applications, those might not reach user requirements?’,

Current operational climate services providers base their seasonal predictions on dynamical
models, statistical methods, or a hybrid combination. Dynamical models are based on coupled
(atmosphere, land, ocean, and sea-ice) General Circulation Models (GCMs), which embody the
most complete representation of climate system dynamics known. These models are typically
initialised to our best estimate of the observed climate state!?, integrating the diverse mix of
observations available into a consistent set of fields through a process known as data assimilation.
Those fields provide an initial state of the Earth system and serve as a starting point for a
simulation covering the desired prediction period, typically up to eight months for seasonal
predictions. Simulating the Earth system at a global scale over long periods and multiple ensemble
members requires vast computational resources, limiting the model’s spatial resolution®3. Such
limitation cascades into many physical processes not being explicitly resolved and subject to
parametrization, resulting in biased dynamics. These biases add to an imperfect definition of the
initial state, partly due to an erratic spatial and temporal distribution of current observations41>.
This combination of factors results in seasonal predictions presenting strong drifts and biases,

deteriorating prediction quality%1®,



On the other hand, statistical or empirical prediction methods benefit from efficiently leveraging
the relationships learned from past observational records. They explicitly capture the interactions
between predictors and predictands, offering a more direct approach than dynamical models,
which derive such relationships through iterative simulation at finer temporal scales. Statistical
methods range from simple persistence models to sophisticated statistical techniques'’, including
machine or deep learning algorithms®®. These approaches can yield skilful forecasts comparable
to dynamical models. Still, statistical models are not exempt from errors and require careful
application due to short observational records and climate non-stationarity, which often
compromises the independent and identically distributed (i.i.d.) assumption, paramount for many

of these methods.

The limited temporal extent of current observational datasets poses a greater challenge when
involving large machine learning (ML) algorithms. Training these algorithms with a limited dataset
results in almost certain overfitting due to the imbalance between trainable parameters and
available training samples. Unlike weather forecasting, where high-frequency temporal variability
yields multiple independent samples over short periods, seasonal processes operate on monthly
to annual scales. At these timescales, interannual processes dominate, resulting in as few as one
independent sample per year. Consequently, seasonal forecasting applications have far fewer
data points, up to two orders of magnitude less than weather applications trained over the same
period®21, This limitation partly explains the explosion in studies applying large deep learning
models to weather forecasting??2%, contrasting with the few works tackling seasonal climate

predictions.

To address such limitations, most ML applications for seasonal predictions rely on climate model
output to train their data-driven models?>27.28, The underlying assumption is that climate models
can, to a certain extent, simulate the climate system and its interannual variability, making the
thousands of simulated years a valid training set. Beyond deep learning, this logic has also
motivated works in the climate community where analogues from climate model output
assemble seasonal to decadal predictions from initial conditions?*~32, Some even employ deep
learning to select the best analogues®3. Training with climate model output effectively increases

the number of samples from tens to thousands when using multiple simulations. This approach



also delivers data from various multi-decadal periods, as the simulations cover hundreds of years,
and allows learning from unobserved regime shifts or trends, such as the one forced by global
warming. Data that captures regime shifts and unseen scenarios is crucial for most ML algorithms,
which typically struggle with extrapolation and are highly sensitive to regime shifts due to their
reliance on the i.i.d. assumption3#3>, However, as previously mentioned, predictions based on
numerical climate models (GCMs) present known drifts and biases and misrepresent or fail to
resolve critical physical processes, resulting in poor simulation of some key teleconnections that
contribute to predictability. Consequently, ML models trained on climate model output are
potentially limited by the climate model’s ability to simulate the processes relevant to the

seasonal prediction task of interest.

Current applications of deep learning algorithms trained on climate model output include the
prediction of El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (I0D)?72, the
prediction of Arctic sea-ice'®, the occurrence of drought events in the US?°, or the prediction of
European summer heatwaves®” and droughts?®. Most studies rely on classical machine learning
methods or simpler deterministic neural networks and focus on specific prediction tasks that tend
to collapse spatial information for simplicity. Providing global probabilistic predictions with data-
driven models is essential for a robust comparison against current state-of-the-art dynamical
prediction systems!’. As an example, this study3® uses a probabilistic method to predict (Oct-Mar)
precipitation and temperature anomalies based on the previous July’s upper ocean thermal
status. However, how skill varies across seasons remains to be explored, especially at lead times
closer to the initial state, which is of particular interest to users. In addition to that, in the context
of global warming where strong trends provide added predictability on top of interannual
fluctuations3>9, it is essential to disentangle both sources of predictability to properly assess the

added value of the tested prediction systems!14%42,

This study evaluates the effectiveness of an intrinsically probabilistic deep learning method for
predicting global three-month seasonal anomalies (lead months 1-3) of temperature and
precipitation fields throughout the year. The model is trained using the output of CMIP6 and
validated against ERA5 reanalysis data. It explicitly decomposes the contribution of climate

change-induced trends during both training and validation. Thus, the approach combines



variational inference with vision transformers to explicitly predict interannual seasonal
anomalies. To the best of our knowledge, this is the first application of vision transformers for
seasonal prediction. Additionally, we apply this methodology in a regional context, specifically
focusing on Europe, where we compare the effects and robustness of targeting different spatial
domains and resolutions. Finally, to gain understanding of the sources of predictability, we also
assess the skill and teleconnection patterns that emerge from two primary modes of variability
at the seasonal timescale: the El Nifio-Southern Oscillation (ENSO) and the North Atlantic
Oscillation (NAO).

Results

Forecasts assessment

The presented approach (illustrated in Figure 1) uses a conditional Variational Autoencoder (cVAE
43.44) architecture to predict seasonal climate anomalies. The model takes monthly means of five
essential climate variables from the preceding six months as input: 2-meter air temperature (tas),
precipitation (pr), sea surface temperature (tos), and geopotential height at 500hPa and 300hPa
levels (zg500, zg300), and predicts their 3-month seasonal averages, on lead months 1 to 3 (i.e.,
for a prediction that leverages information up to November 1st, a seasonal mean for DJF is
predicted). Two vision transformers* encode the input and target states into a latent space,
capturing the underlying climate patterns. Transformers are based on a general-purpose inductive
bias that separates the interaction range from the network’s depth. This separation enables the
modelling of both distant and local connections without requiring a complex hierarchy of
convolutional neural network (CNN)* operations. As a result, Vision Transformers (ViTs) can more
explicitly capture both local and long-range climate interactions. To decode and generate the
probabilistic predictions, we employ a CNN that processes multiple samples from the latent space
to create an ensemble forecast. The model explicitly predicts the interannual variability
component, while a separate locally estimated scatterplot smoothing (LOESS) regression handles
the long-term trend. The output of these components is later combined to produce the final
forecast. This setup represents an example of using simple statistical methods to capture

predictable signals while leveraging neural networks to model complex deviations. The model



was trained using Coupled Model Intercomparison Project Phase 6 (CMIP6)* data and tested
against the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5)%

dataset. Further details about the methodology can be found in the Methods section.

Examples of predicted global temperature (Figures S1 and S2) and precipitation (Figures S3 and
S4) anomalies are provided in the supplementary information. Figures S1 and S3 show the
anomalies of each individual ensemble member for the 2020 SON prediction, while Figures S2
and S4 show anomalies’ ensemble medians for the 2002-2021 period (also SON). Variability
among members is minimal over oceans and equatorial areas, where seasonal predictability is
strongest, while inter-ensemble variability over land and in the extratropics is much more
pronounced. The ensemble medians across different years reveal the increasing effects of global
warming on temperature predictions, and the fingerprint of El Nifio (2002, 2009, 2015, 2020) and

La Nifia years (2007, 2010) is evident in global sea surface temperatures and rainfall patterns.

Seasonal climate predictions are influenced by multiple processes operating at different time
scales with varying degrees of predictability. Predictability at the seasonal time scale is affected
not only by interannual fluctuations but also by longer-term modulations such as trends driven
by greenhouse gas emissions or lower-frequency decadal oscillations. These longer-term
processes may have different levels of predictability at the interannual scale. However, seasonal
predictions aim to provide information on seasonal anomalies at the interannual level, going
beyond trends or decadal oscillations. Thus, disentangling all these different signals in our

validation procedure is crucial to understanding the value of the seasonal predictions, if any.

Figure 2 shows the Anomaly Correlation Coefficient (ACC), computed between our predictions
and ERAS reanalysis for both de-trended temperature (trended results are shown in Figure S11)
and precipitation seasonal anomalies. The predictions were initialized one month before the start
of the season, i.e. the DJF prediction used climate information up to November 1st. Overall, the
ACC validation against ERAS reveals a generally higher skill for temperature predictions compared
to precipitation, with most of the skill concentrated in the tropics and limited skill in the

extratropical regions. Both outcomes are in line with numerical forecasts*>°°, suggesting that the



signal to noise ratio is not altered in the cVAE prediction, and that the ML model taps into similar

underlying teleconnections.

Temperature forecasts exhibit stronger correlations over oceanic regions, with particularly robust
signals in the equatorial Pacific across seasons, peaking in the SON and DJF seasons. Beyond the
ENSO signature in the equatorial Pacific is the Pacific Decal Oscillation (PDO) signature that
extends into the extra-tropical north-Pacific Sea. Significant correlations in temperature are
observed over land areas in Central America, Brazil, Australia, central and north (DJF) Africa, South
Africa (DJF), and southeast central Asia. Although more limited, Europe also shows positive
correlations (MAM, SON & DJF). Precipitation forecasts, are generally less skilful, positive ACC
patterns are spatially less extent compared temperature predictions, but still show high
correlations (above 0.7) in Indonesia (SON, DJF, MAM) and the Caribbean (JJA), with moderate
correlations (0.5-0.7) in northern South America (SON, DJF), Australia (SON), the Horn of Africa
(SON), and the US (SON, DJF & JJA). Weaker (0.3-0.5) precipitation correlations are observed in
similar regions for other seasons, including parts of Europe, India, the central Atlantic coast of
Africa, and southern South America. Results for an extended period 1985-2021 are shown in the
Supplementary information (Figures S11, S12 & S14). These results are not directly assessed in
the main manuscript as the time period employed overlaps with the reference period defined to
compute the standardization and de-trending. Overall, our method captures predictable signals
that are physically realistic and consistent with findings reported in the literature!%’,

demonstrating the potential of the methodology for seasonal forecasting applications.

The generative nature of variational methods enables the production of multiple deterministic
predictions, forming an ensemble of plausible outcomes. This ensemble facilitates the derivation
of a more robust deterministic signal. Inferencing a complete hindcast (1950-2021), 100
members, for all variables and a single season takes seconds on a single H100 GPU. We make an
initial assessment of the ensemble and the impact of its size on the model’s performance, shown
in Figure 3. We observe that increasing the ensemble size from 1 to 100 members enhances
forecast skill, with the ACC improving from 0.07 to 0.51. The model reaches near-optimal
performance with an ACC of 0.49 using just 20 ensemble members, indicating a balance between

computational efficiency and forecast accuracy. Larger ensemble sizes provide a more explicit



representation of forecast uncertainty, while individual members reflect realistic temporal
variability, closely following observed climate variability. The model effectively captures key
aspects of ensemble forecasting systems while offering substantial computational benefits. The
ability of generating diverse ensembles while obtaining peak correlations with moderate

ensemble sizes are desirable properties for climate prediction.

Validation against benchmarks

Supplementary Figures S9 to S14 show differences in the anomaly correlation coefficient (ACC)
between SEAS5 and our approach. However, we acknowledge that ACC differences can be
problematic due to the bounded nature of correlations (-1 to 1) and the resulting skewed
sampling distribution®?, which enforces the use of Fisher's z-transform for proper statistical
analysis. Additionally, correlation measures only capture linear associations between forecasts
and observations, neglecting important factors such as biases and non-linear relationships. For
these reasons, we prefer the use of skill scores in our benchmark comparisons. Nonetheless,
readers interested in an ACC analysis can refer to supplementary Figures S9 to S14, which produce
gualitatively similar conclusions to those obtained using skill scores, considering the differences

between the metrics.

We compare our model with the climatological forecast (CLIM) and the ECMWF’s seasonal
prediction system (SEAS5). The period covering 1981-2000 has been used as the reference period
for the climatology and anomalies. As stated in the previous section, lead months 1 to 3 are
considered, which is equivalent to taking the SEASS5 prediction initialised on November 1st,
targeting DJF. Figure 4 shows the forecast skill scores for near-surface air temperature (tas)
predictions from 2001-2021. We present the results for four seasons (DJF, MAM, JJA, SON) across
columns and using two skill metrics: the root-mean-square error skill score (RMSS) and the
continuous ranked probability skill score (CRPSS). While the RMSS measures the deterministic
performance of the ensemble median, the CRPSS offers a better view of the probabilistic
performance of the ensemble distribution. Skill scores range from -2 (dark pink), where negative
values indicate no skill, to 0.5 (dark blue), indicating high skill above the reference. Figure 5 shows

the results of precipitation predictions using the same two metrics. Black dots indicate whether



the positive skills are statistically significant at the 95% confidence interval (more details in
Methods). Again, results for an extended period 1985-2021 and without de-trending are shown

in the Supplementary information (Figures S15-18).

Overall, the skill metrics relative to the climatological forecast exhibit similar patterns to those in
Figure 2, showing consistent performance across seasons. Temperature fields demonstrate higher
and more spatially extensive skill compared to precipitation predictions. Similarly, for
temperature, we observe a predominately more robust signal over the oceans compared to land
regions and a clear ENSO and PDO signature. Precipitation forecasts also show a similar signal
compared to the one in Figure 2. We find strong performance (Skill score above 0.2) compared to
climatology in regions such as northern South America (DJF & MAM), Australia (MAM & SON),
eastern (DJF & MAM) and southern Africa (DJF), as well as parts of the U.S. (DJF, MAM & SON)
and the Arctic (DJF & SON). However, performance varies by season and region, with limited skill

in Europe.

We find fewer regions showing improvements when comparing our model’s performance against
SEASS (third and fourth rows of Figures 4 and 5). This is expected, as SEAS5 is the current state-
of-the-art dynamical forecasting system, making it a more challenging benchmark to surpass
compared to climatology. Generally, we find that SEAS5 outperforms our approach in many
oceanic areas. Nevertheless, our model performs better in some land regions, which are
particularly relevant for user applications. Regarding temperature forecasts, our approach shows
season-dependent improvements over SEASS in parts of the United States (MAM & JJA), the
southern portion of South America (DJF, MAM & JJA), north Africa (MAM & DJF), Europe (JJA, SON
& DJF), and Eurasia (particularly in the SON season). In contrast, our precipitation forecasts are
clearly outperformed by SEAS5 in most regions. Yet, we find season-dependent enhancements in
some extra-tropical regions, i.e., Europe (JJA), Eurasia (SON), parts of North America (SON), and

the most southern part of South America (MAM & JJA).

It should be noted that the added value from our predictions is only realised when there is an
improvement over both SEAS5 and the climatological forecast. If this improvement is not

achieved jointly, our data-driven approach may converge to a simple climatological forecast. To



complement our results, we included in the Supplementary information Figures S19-24 a set of
scorecards comparing CRPS values for the climatological forecast (clim), our approach (cVAE) and
SEAS5. We computed the CRPS over the IPCC ARG reference regions>3. We split the results over

land and ocean regions.

Overall, the climatology is rarely the best performer, validating the value of our system where it
has higher skill compared to SEASS. Similarly, we also find that skill exceeds the climatology mainly
for temperature, and much less for precipitation, i.e., the lower signal to noise ratio in rainfall
anomalies implies a less robust distinction (in terms of skill) between prediction systems. SEAS5
clearly outperforms our approach over oceanic regions, while on land areas the cVAE seems more
competitive. More in detail, temperature forecasts (Figure S20) show seasonal-dependent skill
improvements in parts of the United States (WNA, CNA, ENA, NCA), northwest Africa (SHA), the
Arctic (GIC), and scattered locations in the rest of Africa (WAF, CAF, NEAF & SEAF) and South
America (SES, SSA, SWS). The cVAE precipitation forecasts (Figure S22) are only improved in few
extratropical regions, including small parts of Europe (WCE, MED, NEU), Eurasia (WSB, ESB), the

US (NCA), and South America. However, such improvements are often marginal (Figure 5).

European regional use-case

Once we tested the approach globally and verified that the model reproduces well-known
patterns at the seasonal time scale, we verified the model with a Europe-centric context. As
shown in Figure 1 (panel D), three configurations are tested, where models with the same inputs
X have three different targets Y: Global predictions at a spatial resolution of 5°, regional also at
5°and regional at 1°. The main objective is to assess whether targeting a more constrained region
can yield improvements, as the model does not need to optimize its parameters for predicting
the whole globe. Similarly, due to a smaller target domain, we can increase the spatial resolution
of the target variable while maintaining the comparable computational cost needed for the
original model (Global 5°). Thus, we assess whether we find benefits from increasing the spatial
resolution of the predictions. Additionally, we test whether the patterns are consistent across the

different configurations.



The supplementary information (Figures S5-S8) includes examples of predicted European
temperature and precipitation patterns for the regional 1° configuration. Temperature forecasts
reveal strong climate change forcing signals in both the individual ensemble members and the
ensemble median, indicating that external forcing dominates over interannual signals in this
region. Precipitation predictions exhibit north-south and east-west dipole patterns resembling
those associated with different atmospheric regimes®*, such as the Arctic Oscillation (AO), the
North Atlantic Oscillation (NAO), the Eastern Atlantic pattern (EA) or the Scandinavian blocking
(SB). However, the significant variability among ensemble members highlights the model's

difficulty in identifying a preferred pattern under these low-predictability conditions.

The CRPSS for temperature predictions over Europe (Figure 6) shows varying degrees of skill
compared to both climatology and SEASS. As a first assessment, we can see across the different
models and seasons higher skill values against SEAS5 than the climatology, indicating the poor
performance of SEAS5 in Europe. We also observe consistent patterns across model
configurations, with the Regional 1° offering the most detailed spatial representation of skill,
highlighting statistically significant improvements in specific regions while still aligning with
patterns observed at coarser resolutions. Across the different configurations we observe how the
model manages to improve the predictions over SEAS5 and the climatology for large parts of the
Central and Western Mediterranean (across seasons), and some parts of Northern and Central
Europe (MMA and JJA). As mentioned in the previous section, improvements over SEAS5 and the

climatology are needed to add value to user-centred applications.

For precipitation forecasts, we find, in general terms (i.e., across seasons and regions), lower
precipitation skills against the climatological forecasts than those obtained against SEAS5 (Figure
7), indicating the low performance in Europe of current state-of-the-art prediction systems. Yet,
our approach surpasses SEAS5’s skill slightly for different regions and seasons. We observe slight
improvements both against the climatology and SEAS5 over parts of central to eastern Europe
(DJF and JJA), parts of the British Isles and northern Europe. Again, we observe how the general
patterns are maintained against the different configurations, with the 1° configuration

highlighting a more detailed but coherent spatial representation of skill and significance. Again,



results for an extended period 1985-2021 are shown in the Supplementary information (Figures

$25-26).

The robustness of the results across various spatial configurations (Global 5°, Regional 5°, and
Regional 1°) represents an interesting finding. The skill patterns remain consistent regardless of
the domain’s resolution or setup. In addition, we observe that in most cases, the skill is either
retained or improved by going regional or increasing the spatial resolution. Therefore, the choice
of the most suitable configuration ultimately depends on user needs and computational

constraints.

Teleconnections assessment

As a preliminary assessment of the sources of predictability in our model, we investigate the
teleconnection patterns that emerge from two primary modes of variability at the seasonal
timescale: the El Niflo-Southern Oscillation (ENSO) and the North-Atlantic Oscillation (NAO). We
compare such patterns against the ones found in SEAS5 and ERAS. For ENSO, we compute the
temporal Pearson correlation (2001-2021) between the DJF SST Nifio 3.4 index and DJF
temperature, precipitation and 500hPa geopotential fields. For SEAS5 and our method (cVAE), the
correlation is also computed along the ensemble dimension, i.e., the ensemble and time
dimensions are concatenated into a grid-point-by-grid-point one-dimensional time series. A
bootstrap procedure is applied with a fixed sample size to account for the varying dataset sizes,
as forecasting systems often have a diverse number of ensemble members. The bootstrap
approach also provides a range of uncertainty from which significance can be tested.
Supplementary information Figure S27 shows a time series with the predicted ENSO index for the
various systems against ERA5. We notice a slight reduction (0.96 cVAE vs 0.99 SEASS) in the

correlation against ERA5 and an overall wider uncertainty range for the generative model.

Examining the correlation maps in Figure 8, we find, in general terms, similar spatial patterns
among the three datasets, with SEAS5 exhibiting weaker correlations (especially for precipitation)
compared to ERAS or the cVAE, which displays an over-amplified response. Linking these results

with the CRPSS plots shown in Figures 4 & 5, we observe that for temperature fields, a



north/south dipole of positive/negative correlations over South America found in ERAS is more
closely represented in the cVAE compared against SEASS5, consistent with the CRPSS increase
referenced against SEAS5. Similarly, higher correlations in the Horn of Africa and South Africa are
found, consistent with ERAS5 and the positive CRPSS against SEAS5 (whose correlation pattern is
not aligned with ERA5). Regionally negative skill score values can also be explained by examining
the weak to missing Nino3.4 temperature responses in the Indian Ocean, the equatorial Atlantic,
and the PNA region (also noticeable in 2T and ZG500). Regarding precipitation fields, we also find
several correlation patterns from the cVAE that are closer to those found in ERA5, leading to an
increase in CRPSS. These include parts of central and south-east Africa, Southeastern South
America and the Philippines. Yet, incoherent correlation patterns, between the cVAE and ERAS5,
such as those found in parts of East Indonesia and Central and North-East South America, are

associated with significant negative CRPSS values.

A similar analysis is performed for the NAO. To define the NAO index, the 1st EOF of ERA5 500hPa
fields over the North Atlantic sector (30°- 88.5°N, 80°W - 40°E) is used (Supplementary Figure
S28). The 500hPa fields of the different systems are projected into such EOF, obtaining a NAO
index for each system. Supplementary Figure S29 shows a time series with the predicted NAO
index for the various systems against ERA5. We observe a slight increase (0.31 cVAE vs 0.22 SEAS5)
in correlation against ERA5 and an overall similar uncertainty range. Regarding the correlation
maps in Figure 9, we find, in general terms, a stronger signal captured by the cVAE compared
against SEASS. For temperature, a stronger dipole between the east coast of the US and the
Labrador Sea, and similarly between the north of Europe and North Africa. More in detail, we find
an extension of the correlation pattern into the Mediterranean and north/west of the black sea,
consistent with skill improvements compared to SEAS5 and the climatology. Concerning rainfall,
a tripole structure (observed in ERA5) between the Labrador Sea, Northern Europe, and the
Mediterranean appears to be more closely represented by the cVAE, compared to SEASS. This
aligns with positive skill values when referenced to the climatology and SEAS5 in the
Mediterranean, especially the eastern part. On the contrary, although a better correlation pattern
is found in the Nordic countries, this does not directly translate into skill improvements in our

assessment.



Discussion

This study proposed and evaluated a novel data-driven method for predicting seasonal climate
anomalies. Our methodology combines variational inference with vision transformers to generate
ensembles of global seasonal predictions (lead months 1-3). Global skill scores show that our
temperature predictions surpass the predictability provided by climate forcing trends and even
outperform SEASS in some ocean and land areas, of which the latter are particularly relevant for
potential user applications. Precipitation forecasts exhibit a more limited skill compared to
climatology, and SEASS clearly outperforms our data-driven approach in the equatorial band. Still,
we observe similar spatial patterns of skill for both temperature and precipitation compared to
SEASS5, suggesting that both systems build on similar sources of predictability. The model's
predictive skill beyond trend-based forecasts further validates our methodological approach,
trained on (imperfect) CMIP6 simulations, and its capability in simulating, to some extent,

interannual variability.

We also highlight the advantages of training the prediction model on smaller regions, enabling a
more tailored optimisation of regional-specific features. Our case study focuses on Europe, an
area that often struggles with accurate numerical seasonal predictions and demonstrates
improvements over a global model. Our methodology outperforms SEASS in predicting European
temperatures in multiple sub-regions and seasons. However, precipitation forecasts from both
dynamical and data-driven prediction systems exhibit limited skill. Overall, we find that increasing
spatial resolution or constraining the target region provides benefits without compromising
prediction quality, enabling flexible configuration choices based on user needs and computational
constraints. Furthermore, predictions of the El Nifio-Southern Oscillation (ENSO) and the North
Atlantic Oscillation (NAO) indices show comparable skill and variability to SEAS5, and correlation
maps between both indices and their respective predicted temperature and rainfall fields align
largely with those found in SEAS5 and ERAS. The consistency of both the regional impacts of the
teleconnections and the spatial patterns of skill across different target configurations reinforces
the robustness of our methodology, suggesting that these patterns represent genuine features in

the climate system rather than artefacts of the machine learning model.



Previous research3 has shown that similar variational architectures can provide skilful seasonal
predictions for the October to March seasonal mean (lead months 2-7). As this previous research
pointed out, predicting a longer seasonal average forecast is relatively straightforward compared
to our setup. Part of this is due to longer averages filtering out higher-frequency climate
variability, and the more distant lead time reducing the influence of the initialisation, making
initialised dynamical prediction systems a weaker baseline!?3°, Besides, they highlighted a pitfall
in their strategy of splitting the training and validation datasets, where they apply random
shuffling through the entire set of CMIP simulations. This splitting strategy is prone to introducing
autocorrelations between the training and validation sets due to the persistent impact of low-
frequency climate signals. By addressing a more difficult prediction task, three-month averages
(lead months 1-3), properly splitting distinct simulations in our train and validation split,
accounting for long-term forcing trends in our verification, and studying fundamental modes of

variability and teleconnections, we aim to increase trust in this and similar methodologies

As an example of an alternative data-driven approach, a recent study> published during the
review of this manuscript has leveraged ACE2°° to produce seasonal predictions (also lead months
1-3, but for DJF). While our approach trains a model on climate model output to predict the 3-
month average anomaly in a single step, this alternative setup builds on the success of Al-based
weather forecasts trained on ERAS to predict the evolution of the atmosphere at 6-hour intervals,
thereby remaining stable over long forecast periods. In terms of skill, that study reached similar
conclusions to the ones of this manuscript - ACE2 shows slightly lower but comparable skill to
GloSea®’ (GC3.2 configuration), another state-of-the-art dynamical prediction system. However,
the contribution of trends to the skill obtained is not assessed. ACE2's strength stems from its
training on ERAS reanalysis, which helps avoid model errors and the misrepresentation of certain
teleconnections, both inherent to climate simulations. However, this advantage comes at the cost
of retaining only 10 test samples (2001-2010) outside the training data. Thus, the combination of
a small test set and a training set drawn from years after the testing period (from 2010 onwards)
raises concerns about the model's ability to extrapolate to unseen scenarios and the reliability of

its verification®.



Likewise, important limitations must be acknowledged in our work. Data-driven approaches
that rely on climate model output during training are susceptible to learning biases or model
errors from it, limiting their performance. Combining outputs from different dynamical models
can help compensate some of those model-specific errors. Yet, errors that are systematic across
models will still be learned by our approach and similar ones. Additionally, our method employs
a minimal initialisation and output setup, comprising of monthly and seasonal averages, as well
as a limited variable set. This setup is far from current operational prediction systems based on
dynamical climate models, which utilise an extensive set of 3D atmospheric, land and ocean state
variables for their initialisation. Such differences in the initialisation process could contribute to
SEASS’s higher skill compared to our data-driven approach in some regions/features. In addition,
although the teleconnection assessment presented in this manuscript helps explain some of the
skill patterns observed in our predictions, we acknowledge the limitations of this initial
examination and call for follow-up experiments to understand the learned relationships better

and evaluate spatial-temporal relationships and causality in data-driven climate predictions.

Some of these limitations represent opportunities to enhance our approach. For example,
errors in climate model output can be mitigated through fine-tuning or guidance techniques®?,
performance sub-selection of the different simulations used during the training stage, or by
incorporating improved simulations, such as those from novel high-resolution climate models™.
In this latter case, generative models could be especially valuable for saving substantial
computational resources or even enabling the operationalisation of such predictions. Score-
based® (diffusion)®® or flow-matching® approaches can provide better modelling of the
conditional probabilities predicted, potentially addressing some of the optimisation challenges
inherent in variational inference. Additionally, we acknowledge that the presented methodology
constitutes a prototype, and better initialisation with multiple variables at a higher temporal
frequency is perfectly implementable and could further improve our prediction system, bringing

it closer to state-of-the-art dynamical operational prediction systems.

Thus, this study advances our initial objective of further developing probabilistic deep learning
methods for seasonal prediction, demonstrating that generative models trained on climate

models can achieve comparable skill to current operational dynamical prediction systems. While



challenges remain to further enhance the performance and possibly outperform current state-of-
the-art prediction systems, our results establish a promising foundation for the future

development of data-driven and seasonal prediction systems.

Methods

Problem formulation

The objective is to predict the climate state y ¢ R ©*™anon of 3 future season based on current

and past states xi e R @™ Monfrom the i preceding months. To deal with the stochastic nature of
the atmosphere beyond 12 days®' we intend to forecast not a deterministic value but the

conditional probability distribution p(y™**|x x* ... x"7) of the target season y**! on the current

and previous conditions ¥.

The representation of the target season y is comprised by ¢, variables of 3-month seasonal

averages on a 5°x5° latitude-longitude grid. As stated in*!, this grid-scale is a good compromise

between capturing the large-scale climate signal and smoothing out noise while saving
computational resources. The representation of the initial states x is comprised by ¢,variables of

monthly averages on a 5°x5° latitude-longitude grid. The same methodology can be tested under
different representations, combining different grids and temporal resolutions (both at source and

output) due to its inherent flexibility. Thus, for the regional use case, we increase the spatial

resolution of the target y to 1°.

Variational Inference
To obtain the conditional probability distribution z(y|X) on a target climate state y given a state

¥ of current or past conditions, state-of-the-art climate prediction systems run multiple dynamical

simulations, each with slightly perturbed initial conditions, obtaining an ensemble of plausible
outcomes from which probabilities can be inferred. Analogously, our objective is to learn a

statistical model ps(¥| .4 2) from which multiple predictions can be inferred statistically from a set



of initial conditions and an n-dimensional latent variable zthat adds the stochastic component to

the statistical model.

Learning the conditional probability distribution ps (7]x) from data is not a straightforward

problem®3, Ideally, we would like to minimise the difference between our learned distribution zs
(#1.1) and the observed data distribution ¢, (] .4). This objective can be achieved empirically by
maximising the sum over the log-likelihoods of our data points in the learned distribution®. Yet,

this is computationally intractable as it requires integration over zfor each data point:
Pe(¥1x) = [ pe(y1z,x)pe (z]x)dz (1)

Amortised variational inference®? offers an alternative by narrowing the integration space of z to
values that are likely to generate y. This likelihood is described by 22| ¥;.x)) and is approximated
by an amortised inference distribution gg(z| »;) that is also learned. To jointly optimise the
parameters @ and & a lower-bound of the log-likelihood or evidence lower-bound (ELBO) is
defined:

L(8,9) = —Eq,(z]x, y)[log pe 12, )] + Di1(a,(21y, %) || po(z]x)) (2)

where Egyz11 [log ps (¥| z4)] is the expected log-likelihood of y given z and x, and Dx;
(gA 2l 1) | | po(2] 2)) is the KL divergence between the approximate posterior g4 2| ;1) and the

prior ps (2| x).

Thus, our final objective is to jointly train two neural networks: g4(z| 3, 1) representing the learned
approximate posterior, and ps (| 1) being the learned generative model. g42|3,4) will be

represented by an encoder applied to the target state y and only used during the training phase.
While ps(¥| z2) will be conformed by an encoder on the initial state x and the decoder generating

new predictions ys combining information from the learned latent space and the compact



representation of the initial state x. Minimising this ELBO allows joint optimisation of #and &,

effectively approximating the intractable ps( | 4).

Architecture

The model architecture design is essential for extracting meaningful features that improve
seasonal predictability. The architecture needs to capture both temporal and spatial long-range
interactions influenced by global teleconnections, as well as local interactions that stem from
land-atmosphere processes and persistence. However, due to the limited size of the available
training dataset, keeping the model complexity in check is essential to avoid overfitting. Choosing

the architectural design implies finding a sustainable balance between these factors.

Vision Transformers (ViTs) are a well-suited option for this task*>®, ViTs employ a general-purpose
inductive bias that allows them to model distant and local connections without needing the deep
hierarchy and pooling operations typical of Convolutional Neural Networks (CNNs). Thus, they
decouple the interaction range from the network depth, and this is particularly helpful when
modelling the different types of interactions that occur at seasonal time scales. In addition,
transformers are very suitable for incorporating data with different formats (i.e. time series with
2D or 3D spatial grids). They can also make inferences even under the erratic presence of missing
values. Still, due to their unconstrained non-locality, ViTs are known to need large datasets in
order to train correctly. These reasons partly explain the multiple applications of ViTs found in

weather prediction®%8, contrasting the few to no applications for seasonal prediction.

As illustrated in Figure 1 panel B, our model architecture combines the variational inference
framework of a conditional Variational Autoencoder (cVAE) with ViT encoders for feature

extraction. The ¢4(z| »;,x) approximate posterior is represented by a ViT encoder applied to the
target climate state y. This encoder generates a compact latent representation z, which is then

passed through a Multi-Layer Perceptron (MLP) to produce the variational parameters #and o

that will conform the learned posterior distribution ¢4(z| 3;.x). This network component (depicted

in orange) is only used during training. The ps( | z x) generative model is formed by an additional



ViT encoder applied to the initial climate state x, producing a reduced representation z. This

reduced representation zlatent is then combined with a sample from the posterior distribution

gA z| y,x) and passed through a Convolutional Neural Network (CNN) decoder to generate new

climate predictions yg.

Once the model is trained, deterministic predictions can be generated by sampling values from
the prior distribution z. Each sample zis concatenated with the z;latent representing the initial
state and decoded through the CNN decoder, obtaining a deterministic prediction (or ensemble

member) conditioned on the initial state .x. By repeating this process with multiple samples of 5,

we draw the py(¥|z.x) distribution learned by the model, obtaining an ensemble of predictions

that capture the uncertainty of the system. This architecture allows the model to extract
meaningful features from the input data while maintaining a constrained overall size. By jointly
optimizing the encoder (g4) and decoder (z4) networks using minimizing loss objective, the model
learns to generate diverse, physically consistent ensemble predictions while capturing the

underlying uncertainty in the data.

Datasets

We use four different climate models (see Table 1) from the Coupled Model Intercomparison
Project 6 (CMIP6*’) to obtain a sufficiently large training set. The historical and SSP2-4.5 scenarios
are concatenated for each realisation into a continuous time series spanning 1880 to 2080. These
specific models were chosen as they meet the criteria for the number of realisations and output
variables. All the models’ output was obtained from the Earth System Grid Federation (ESGF) and

gathered and pre-processed to joint spatial resolution and units using ESMValtool®°.

Split Source Time Period Models

CanESM5 r(6:25)i1p1fl, CanESM5 r(6:25)i1p2f1,

Training CMIP6 (Hist. + SSP245) 1880-2080 | MIROC-ES2L _r(6:25)i1p1f2, MIROC6 r(6:25)i1p1fl &
MPI-ESM1-2-LR r(6:25)i1p1fl




CanESM5 r(1:5)i1p1fl, CanESMS5 r(1:5)i1p2f1,

Validation CMIP6 (Hist. + SSP245) 1880-2080 | MIROC-ES2L _r(1:5)i1p1f2, MIROC6 _r(1:5)i1p1fl & MPI-ESM1-
2-LR r(1:5)i1p1fl

Test ERAS 1950 - 2021

Table 1. Datasets description information

For the evaluation of the data-driven models, we use the ERA5% reanalysis covering 1950 to
2021. ERAS is produced using 4D-Var data assimilation combined with the ECMWF Integrated
Forecast System (IFS) CY41R2. Again, ERAS data was pre-processed to a common spatial grid and
units using ESMValtool.

We also use the ECMWF’s seasonal climate prediction SEAS5 as a dynamical benchmark against
the data-driven models. SEASS is based on the Integrated Forecast System (IFS) atmospheric
component coupled to the Nucleus for European Modelling of the Ocean (NEMO) ocean model
and the dynamic Louvain-la-Neuve Sea Ice Model (LIM2). SEAS5 operational seasonal forecasts
are initialised on the first day of each month, and 51 ensembles are initialised covering up to
seven months in the future. Additionally, a set of hindcasts (1981 to 2017) are also produced with
the same configuration but with a reduced ensemble (25 realisations). As a benchmark, we
concatenate both hindcast and forecasts into a continuous set of forecasts covering the period
1981 to 2021 with an ensemble of 25 realisations. The SEAS5 data was obtained from the
Copernicus Climate Data Store (CDS) API.

Data preprocessing

We perform an initial homogenization of all the climate model output and reanalysis data to a
common spatio-temporal resolution and units. For both inputs and outputs, monthly means at 5°

or 1° horizontal resolution are used (depending on the prediction task).

The second stage involves the standardisation of the data, including de-trending, anomaly
computation, and normalisation. Data standardisation is a critical aspect of data-driven climate
predictions. On one hand, the standardisation of inputs and outputs can drastically change the

prediction task assigned to the model (i.e. predicting seasonal averages over the trend vs



predicting the forcing influence at the seasonal time scale). Similarly, it can affect the models’
performance, as the standardisation can remove or add information from the climate fields used.
Finally, improper standardisation of the outputs, references, and benchmarks can lead to
misleading claims of performance during the validation*>°!, especially under strong trends*%7°.
At the same time, data standardisation helps in the speed and stability during the training of data-

driven approaches.

De-trending for CMIP6 data is performed removing the forced component (ensemble mean) of
each model independently. For the ERA5 reanalysis, locally estimated scatterplot smoothing
(LOESS)’?, with a fixed time window of 30 years and one degree of freedom, is applied to obtain
a non-linear trend later removed from the data. To avoid overestimates of forecast skill due to the
use of information not available at forecast time®!, we fit LOESS using only values prior to the
forecasting time (retroactively). As shown in Figure 1, de-trending is applied to the target Y during

training, as well as during the validation of the forecasts.

Standardised monthly anomalies are computed by subtracting the mean and normalising by the
standard deviation of the 1981 to 2000 period. As an exemption, precipitation values are fitted to
a gamma distribution instead. All these steps are applied point by point to each climate model
and reanalysis independently, helping to remove significant biases present in both climate models
and the reanalysis output. However, none of the data from the testing period 2001-2021 is

included in this process.

Assessing forecasts quality

In this work, we use a set of verification metrics to quantify the quality of the predictions
developed and we compare the results against the ECMWF state-of-the-art seasonal prediction
system SEASS5. As exposed in 4!, we identify two main objectives. First, to assess whether our
proposed model produces more accurate predictions compared to a reference forecast, in our
case a state-of-the-art dynamical forecasting system. Second, to assess whether the ensemble

spread of our method provides a good estimation of uncertainty on average.



The first objective can be fulfilled by employing deterministic metrics. As a first individual
assessment of the different forecasts, we employ the Spearman correlation (Equation 1)
between the anomalies of the ensemble median of our predictions and the ground truth, also
known as the Anomaly Correlation Coefficient (ACC). It helps quantify the monotonic
relationship between these two. The Spearman correlation is preferred over the Pearson

correlation due to its non-parametric nature and insensitivity to outliers.

6Z?=1(rxi_ryi)2

P = 1- nn2-1) (3)

where 7 is the ranks of the predictions’ ensemble median, 7, the ranks of the ground truth,

and 7zthe number of samples.

In addition, the root mean square error (RMSE) is used to add information of the potential mean
and conditional biases in our predictions (Equation 2). The RMSE can be expressed as a function
of the Spearman correlation and the mean and conditional biases’?, providing a complete

deterministic overview of our predictions.

RMSE = \/%Z{;l(a’c‘f —y2) (4)

where X is the ensemble median of our predictions, 3 are the observations, and 7zthe number
of samples.

Our second objective is better fulfilled using probabilistic metrics, which test whether the spread
in our prediction is adequate to quantitatively represent the range of possibilities for individual
predictions over time. We base our probabilistic validation on the Continuous Ranked Probability

(CRPS), a measure of squared error in the probability space:

CRPS(P,y) = [~ [F(x) — H,(x)]" dx (5)



where £’is the proposed cumulative distribution function (CDF) obtained from the forecast

ensemble ., and /s the Heaviside step function centred at the actual observed value y.

To facilitate the interpretability and comparison of the results, both CRPS and RMSE are expressed

as skill scores referenced against a climatological forecast (clim) or SEAS5:

CRPS RMSE
RMSS =1 —
PRSyef RMSEref

CRPSS =1 — (6,7)

Uncertainty in the validation metrics is evaluated using a non-parametric bootstrapping
approach. The forecasts and reanalysis observations are reshuffled in this method to compute
1000 core values. For the ACC computation, the values obtained are compared to the 95th
significance level against a similar distribution generated using a random time series instead of
the forecast. For the skill score metrics, we reshuffled the forecast, reference forecast, and
reanalysis time series to compute a distribution of skill scores. Then, we assess whether the score

value is significantly greater than zero at the 95th significance level.

Architecture & training configuration

The model processes five key climate variables: 2-meter air temperature (tas), precipitation (pr),
sea surface temperature (tos), and geopotential height at 500hPa and 300hPa levels (zg500,
zg300). For the input state X, these variables represent conditions during the preceding 6 months,
while the target state Y is comprised of the same variables seasonal averaged comprised by lead
months 1 to 3. Topography, land-ocean, and encoded latitude and longitude coordinates are also
concatenated to the input state X. During inference, 150 ensembles are pooled by sampling from

the latent space and conditioned on the inputs.

Our conditional Variational Autoencoder (cVAE) implements dual Vision Transformer (ViT)
encoders to process input and target climate states. Each encoder pathway consists of 8
transformer layers with an embedding dimension of 128 and single-head attention, operating on

patch sizes of 1 to capture fine-grained spatial features. The latent space has a dimension of 128,



enabling a compact representation of climate patterns. The decoder employs four residual blocks

with 32 filters each, using convolutional layers to reconstruct the predicted climate fields.

We train a separate model for each season, concatenating adjacent seasons (1 month) to
increase the training set size. Each model underwent training for 50 epochs with a batch size of
256, using an initial learning rate of 1e™* and weight decay of 0.001 for regularization. Models are
optimized through an information maximization loss function for variational autoencoders, or
InfoVAE objective’3, that constitutes a generalization of the ELBO objective. The reconstruction
term is weighted by the cosine of the latitude to account for differences in grid-cell area. The
weighting parameter (lambda) was set to 1 and the confidence parameter (alpha) to 0.9. This
configuration was selected according to the results obtained in the validation set when sampling

pseudo-randomly different hyper-parameter configurations (not shown).

The basic configuration and hyper-parameters of the model are consistent across the experiments
shown in panel D of Figure 1, with one exception: in the Regional 5° model, the number of blocks
in the decoder is reduced from 4 to 2 due to the limited number of points. The training stage of
the global 5° configuration takes 3.3 hours using 4xH100 NVIDIA GPUs. Training times of similar
magnitude are obtained for the other target configurations. Inferencing a complete hindcast
(1950-2021) for all variables and a single season takes seconds on a single H100 GPU across all
model configurations. Additional details regarding the architecture and hyper-parameters can be

found in the Supplementary Information (Table S1).

Data availability

All the data used are publicly available or restricted to the signed-up users. SEAS5 and ERAS data
were downloaded from the official website of Copernicus Climate Data (CDS) at
https://cds.climate.copernicus.eu/. CMIP6 datasets were downloaded from the Earth System
Grid Federation (ESGF). CMIP6 and ERAS5 datasets were pre-processed using ESMValTool
(https://esmvaltool.org).

Code availability



The code used for data processing, model training, inference, and evaluation is available at

https://gitlab.earth.bsc.es/es/seasgen/.

Acknowledgements

This work was supported by the Al4Drought (ESA AI4SCIENCE; contract number
4000137110/22/1-EF) and CERISE (European Union; grant agreement No101082139). AD holds a
fellowship within the "Generacion D" initiative, Red.es, Ministerio para la Transformacion Digital
y de la Funcidn Publica, for talent attraction (C005/24-ED CV1), funded by the European Union
NextGenerationEU funds, through PRTR. MGD and SM are grateful for support from the Horizon
Europe project EXPECT (Grant 101137656). The authors thank Pierre-Antoine Bretonnier and

Margarida Samso for their assistance in downloading and formatting part of the data.

Author contributions

LI.P, A.D. and M.D. conceived the research idea. LI.P. and A.P. implemented the deep learning code.
LI.P. Implemented the validation pipeline. D.C. contributed to the development of the code. LI.P.
drafted the manuscript with input from all co-authors. All authors discussed the results and

revised the manuscript. M.D., S.M., A.M., J.P, L.R. and A.S. supervised the project.

Competing Interests

The authors declare no competing interests.

References

1. Lorenz, E. N. Deterministic Nonperiodic Flow. https://journals.ametsoc.org/view/journals/atsc/20/2/1520-
0469 1963 020_0130_dnf 2 0_co_2.xml (1963).
2. Palmer, T. N. & Anderson, D. L. T. The prospects for seasonal forecasting—A review paper. Q. J. R. Meteorol.

Soc. 120, 755-793 (1994).



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Challinor, A. J., Slingo, J. M., Wheeler, T. R. & Doblas-Reyes, F. J. Probabilistic simulations of crop yield over
western India using the DEMETER seasonal hindcast ensembles. Tellus Dyn. Meteorol. Oceanogr. 57, 498—
512 (2005).

Pérez-Zandn, N. et al. Lessons learned from the co-development of operational climate forecast services for
vineyards management. Clim. Serv. 36, 100513 (2024).

Garcia-Morales, M. B. & Dubus, L. Forecasting precipitation for hydroelectric power management: how to
exploit GCM'’s seasonal ensemble forecasts. Int. J. Climatol. 27, 1691-1705 (2007).

Lledo, L., Cionni, I., Torralba, V., Bretonniere, P-A. & Samsd, M. Seasonal prediction of Euro-Atlantic
teleconnections from multiple systems. Environ. Res. Lett. 15, 074009 (2020).

Ramon, J., Lledd, L., Bretonniere, P.-A., Samsd, M. & Doblas-Reyes, F. J. A perfect prognosis downscaling
methodology for seasonal prediction of local-scale wind speeds. Environ. Res. Lett.
https://doi.org/10.1088/1748-9326/abe491 (2021) doi:10.1088/1748-9326/abe491.

Thomson, M. C. et al. Malaria early warnings based on seasonal climate forecasts from multi-model
ensembles. Nature 439, 576-579 (2006).

Saha, S. et al. The NCEP Climate Forecast System Version 2. J Clim 27, 2185-2208 (2014).

Johnson, S. J. et al. SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev. 12, 1087-1117
(2019).

Doblas-Reyes, F. J., Garcia-Serrano, J., Lienert, F., Biescas, A. P. & Rodrigues, L. R. L. Seasonal climate
predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev. Clim. Change 4, 245-268 (2013).
Meehl, G. A. et al. Initialized Earth System prediction from subseasonal to decadal timescales. Nat. Rev. Earth
Environ. 2, 340-357 (2021).

Scaife, A. A. et al. Does increased atmospheric resolution improve seasonal climate predictions?
Atmospheric Sci. Lett. 20, €922 (2019).

Materia, S. et al. Impact of Atmosphere and Land Surface Initial Conditions on Seasonal Forecasts of Global
Surface Temperature. https://doi.org/10.1175/JCLI-D-14-00163.1 (2014) d0i:10.1175/JCLI-D-14-00163.1.
Ardilouze, C. et al. Multi-model assessment of the impact of soil moisture initialization on mid-latitude
summer predictability. Clim. Dyn. 49, 3959-3974 (2017).

Weisheimer, A. & Palmer, T. N. On the reliability of seasonal climate forecasts. J. R. Soc. Interface 11,
20131162 (2014).

Eden, J. M., van Oldenborgh, G. J., Hawkins, E. & Suckling, E. B. A global empirical system for probabilistic
seasonal climate prediction. Geosci. Model Dev. 8, 3947-3973 (2015).

Hao, Z., Singh, V. P. & Xia, Y. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Rev.
Geophys. 56, 108-141 (2018).

Andersson, T. R. et al. Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nat. Commun.
202112112, 1-12 (2021).

Gibson, P. B. et al. Training machine learning models on climate model output yields skillful interpretable

seasonal precipitation forecasts. Commun. Earth Environ. 2, 159 (2021).



21.

22.

23.

24,
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Materia, S. et al. Artificial intelligence for climate prediction of extremes: State of the art, challenges, and
future perspectives. WIREs Clim. Change €914 (2024) doi:10.1002/wcc.914.

Bi, K. et al. Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast.
Preprint at https://doi.org/10.48550/arXiv.2211.02556 (2022).

Pathak, J. et al. FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier
Neural Operators. Preprint at https://doi.org/10.48550/arXiv.2202.11214 (2022).

Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416-1421 (2023).
Price, I. et al. GenCast: Diffusion-based ensemble forecasting for medium-range weather. Preprint at
https://doi.org/10.48550/arXiv.2312.15796 (2024).

Kochkov, D. et al. Neural general circulation models for weather and climate. Nature 632, 1060-1066 (2024).
Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573, 568-572 (2019).
Felsche, E. & Ludwig, R. Applying machine learning for drought prediction in a perfect model framework
using data from a large ensemble of climate simulations. Nat. Hazards Earth Syst. Sci. 21, 3679-3691 (2021).
Ding, H., Newman, M., Alexander, M. A. & Wittenberg, A. T. Skillful Climate Forecasts of the Tropical Indo-
Pacific Ocean Using Model-Analogs. https://doi.org/10.1175/JCLI-D-17-0661.1 (2018) do0i:10.1175/JCLI-D-
17-0661.1.

Mahmood, R. et al. Constraining low-frequency variability in climate projections to predict climate on
decadal to multi-decadal timescales —a poor man’s initialized prediction system. Earth Syst. Dyn. 13, 1437—-
1450 (2022).

Donat, M. G., Mahmood, R., Cos, P., Ortega, P. & Doblas-Reyes, F. Improving the forecast quality of near-
term climate projections by constraining internal variability based on decadal predictions and observations.
Environ. Res. Clim. 3, 035013 (2024).

Cos, P., Marcos-Matamoros, R., Donat, M., Mahmood, R. & Doblas-Reyes, F. J. Near-Term Mediterranean
Summer Temperature Climate Projections: A Comparison of Constraining Methods. J. Clim. 37, 4367-4388
(2024).

Rader, J. K. & Barnes, E. A. Optimizing Seasonal-To-Decadal Analog Forecasts With a Learned Spatially-
Weighted Mask. Geophys. Res. Lett. 50, e2023GL104983 (2023).

Belkin, M., Hsu, D., Ma, S. & Mandal, S. Reconciling modern machine learning practice and the bias-variance
trade-off. Proc. Natl. Acad. Sci. 116, 15849-15854 (2019).

Curth, A. Classical Statistical (In-Sample) Intuitions Don’t Generalize Well: A Note on Bias-Variance Tradeoffs,
Overfitting and Moving from Fixed to Random Designs. Preprint at http://arxiv.org/abs/2409.18842 (2024).
Ling, F. et al. Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole.
Nat. Commun. 2022 131 13, 1-9 (2022).

Beobide-Arsuaga, G., Disterhus, A., Miiller, W. A., Barnes, E. A. & Baehr, J. Spring Regional Sea Surface
Temperatures as a Precursor of European Summer Heatwaves. Geophys. Res. Lett. 50, e2022GL100727

(2023).



38.

39.

40.

41.

42.
43,

44,

45.

46.
47.

48.
49.

50.

51.
52.

53.

54.

55.

56.

57.

Pan, B. et al. Improving Seasonal Forecast Using Probabilistic Deep Learning. J. Adv. Model. Earth Syst. 14,
(2022).

Patterson, M., Weisheimer, A., Befort, D. J. & O’Reilly, C. H. The strong role of external forcing in seasonal
forecasts of European summer temperature. Environ. Res. Lett. 17, 104033 (2022).

Tippett, M. K. & Becker, E. J. Trends, Skill, and Sources of Skill in Initialized Climate Forecasts of Global Mean
Temperature. Geophys. Res. Lett. 51, e2024GL110703 (2024).

Goddard, L. et al. A verification framework for interannual-to-decadal predictions experiments. Clim. Dyn.
40, 245-272 (2013).

Risbey, J. S. et al. Common Issues in Verification of Climate Forecasts and Projections. Climate 10, 83 (2022).
Kingma, D. P. &  Welling, M.  Auto-Encoding  Variational Bayes. Preprint  at
https://doi.org/10.48550/ARXIV.1312.6114 (2013).

Kingma, D. P. &  Welling, M. An Introduction to  Variational  Autoencoders.
https://doi.org/10.48550/ARXIV.1906.02691 (2019) doi:10.48550/ARXIV.1906.02691.

Dosovitskiy, A. et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. Preprint
at https://doi.org/10.48550/arXiv.2010.11929 (2021).

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental
design and organization. Geosci. Model Dev. 9, 1937-1958 (2016).

Hersbach, H. et al. The ERA5S global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999-2049 (2020).

Kim, H.-M., Webster, P. J. & Curry, J. A. Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2
retrospective forecast for the Northern Hemisphere Winter. Clim. Dyn. 39, 2957-2973 (2012).

Kumar, A., Chen, M. & Wang, W. Understanding Prediction Skill of Seasonal Mean Precipitation over the
Tropics. https://doi.org/10.1175/JCLI-D-12-00731.1 (2013) doi:10.1175/JCLI-D-12-00731.1.

Risbey, J. S. et al. Standard assessments of climate forecast skill can be misleading. Nat. Commun. 12, (2021).
Fisher, R. A. Frequency Distribution of the Values of the Correlation Coefficient in Samples from an
Indefinitely Large Population. Biometrika 10, 507-521 (1915).

Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model
data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959—-2970 (2020).

Yang, Z. & Villarini, G. Examining the capability of reanalyses in capturing the temporal clustering of heavy
precipitation across Europe. Clim. Dyn. 53, 1845-1857 (2019).

Kent, C. et al. Skilful global seasonal predictions from a machine learning weather model trained on
reanalysis data. Npj Clim. Atmospheric Sci. 8, 314 (2025).

Watt-Meyer, O. et al. ACE2: accurately learning subseasonal to decadal atmospheric variability and forced
responses. Npj Clim. Atmospheric Sci. 8, 205 (2025).

Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system -
Maclachlan - 2015 - Quarterly Journal of the Royal Meteorological Society - Wiley Online Library.
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2396.



58. Kolloff, C. et al. Minimum-Excess-Work Guidance. Preprint at https://doi.org/10.48550/arXiv.2505.13375
(2025).

59. Rackow, T. et al. Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled
to FESOM2.5 and NEMOv3.4. Geosci. Model Dev. 18, 33—69 (2025).

60. Song, Y. et al. Score-Based Generative Modeling through Stochastic Differential Equations. Preprint at
https://doi.org/10.48550/arXiv.2011.13456 (2021).

61. Ho, J., Jain, A. & Abbeel, P. Denoising Diffusion Probabilistic Models. Preprint at
https://doi.org/10.48550/arXiv.2006.11239 (2020).

62. Lipman, Y, Chen, R. T. Q., Ben-Hamu, H., Nickel, M. & Le, M. Flow Matching for Generative Modeling.
Preprint at https://doi.org/10.48550/arXiv.2210.02747 (2023).

63.  Murphy, K. P. Probabilistic Machine Learning : Advanced Topics.

64. Wilks, D. S. Statistical Methods in the Atmospheric Sciences: An Introduction. (Elsevier, Amsterdam, 2019).

65. Vaswani, A. et al. Attention Is All You Need. Preprint at https://doi.org/10.48550/arXiv.1706.03762 (2023).

66. Bodnar, C. et al. Aurora: A Foundation Model of the Atmosphere. Preprint at
http://arxiv.org/abs/2405.13063 (2024).

67. Nguyen, T. et al. Scaling transformer neural networks for skillful and reliable medium-range weather
forecasting. Preprint at https://doi.org/10.48550/arXiv.2312.03876 (2023).

68. Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K. & Grover, A. ClimaX: A foundation model for weather and
climate. Preprint at http://arxiv.org/abs/2301.10343 (2023).

69. Righi, M. et al. Earth System Model Evaluation Tool (ESMValTool) v2.0 — technical overview. Geosci. Model
Dev. 13, 1179-1199 (2020).

70.  Wulff, C. O., Vitart, F. & Domeisen, D. I. V. Influence of trends on subseasonal temperature prediction skill.
Q. J. R. Meteorol. Soc. 148, 1280-1299 (2022).

71. Mahlstein, I., Spirig, C., Liniger, M. A. & Appenzeller, C. Estimating daily climatologies for climate indices
derived from climate model data and observations. https://doi.org/10.1002/2014JD022327
doi:10.1002/2014)D022327.

72.  Murphy, Alan. Skill scores based on the mean square error and their relationships to the correlation
coefficient. Mon. Weather Rev. 116, (1988).

73. Zhao, S., Song, J. & Ermon, S. InfoVAE: Information Maximizing Variational Autoencoders. Preprint at

https://doi.org/10.48550/arXiv.1706.02262 (2018).

Fig. 1. Methodology overview. A, Illustration of the signal decomposition of the target variable Y. B, Schematic
representation of the conditional Variational Autoencoder (cVAE) architecture. Two vision transformers (ViTs)
encode the information from multiple climate fields into the latent space. The compressed latent space

representation is then passed to the CNN decoder that reconstructs the predicted climate fields. C, Final



model assembling, combining the interannual variability prediction from the cVAE model and the regressed

LOESS trend. D, tested model configurations, combining different spatial resolutions and target domains.

Fig. 2. ACC against ERA5 reanalysis. ACC against ERA5 reanalysis (2001-2021), for temperature (2T, top row)
and precipitation rate (PR, bottom row). Seasons are shown in the columns: DJF (December—January—
February), MAM (March—April-May), JJA (June—July—August), and SON (September—October—November).

Black dots indicate statistical significance at the 95% confidence level.

Fig. 3. Ensemble size effect on model’s deterministic performance. Effect of ensemble size on the ACC of the
ensemble median (blue thick line) against ERA5 (red thick line). The figure depicts MAM temperature

anomalies in a grid cell located at 42.5°N, 10.5°E. Blue thinner lines depict the individual ensembles.

Fig. 4. Global temperature skill scores. Forecast skill scores for near-surface air temperature (tas) predictions
from 2001-2021, using 1981-2000 as the reference period of the climatological forecast and anomalies. The
panels show four seasons (DJF, MAM, JJA, SON) across columns and two skill metrics: the root-mean-square
error skill score (RMSS) and the continuous ranked probability skill score (CRPSS). Skill scores range from 0
(pink, indicating no skill) to 0.5 (dark blue, indicating high skill above the reference). Metrics are referenced
(Ref.) against the climatological forecasts (CLIM) or against the ECMWF’s seasonal prediction system (SEAS5).
Black dots indicate statistical significance of the skill score being positive at the 95% confidence level (more

details can be found in the Methods section).

Fig. 5. Global precipitation skill scores. Same as Figure 4 but for precipitation predictions.

Fig. 6. Regional temperature CRPSS. Temperature forecast skill scores across seasons (DJF, MAM, JJA, and
SON) of the three model configurations described in Figure 1, panel D: Global 5°, Regional 5°, and Regional
1°. Metrics are referenced (Ref.) against the climatological forecasts (CLIM) or against the ECMWF’s seasonal
prediction system (SEAS5). Dots indicate statistical significance that the skill score is positive at the 95%

confidence level.

Fig. 7. Regional precipitation CRPSS. Same as Figure 6 but for precipitation predictions.

Fig. 8. Nifio3.4 teleconnections. Pearson correlation between predicted DJF temperature (2T), precipitation
(PR), and 500 hPa geopotential height (ZG500), and the DJF Nifio3.4 index (2001-2021). Black dots indicate

statistical significance at the 95% confidence level.



Fig. 9. NAO teleconnections. Pearson correlation between predicted DJF temperature (2T) and precipitation
(PR) and the DJF NAO index (2001-2021). Black dots indicate statistical significance at the 95% confidence

level.
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