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Abstract 

 

Most operational climate services providers base their seasonal predictions on initialised general 

circulation models (GCMs) or empirical statistical techniques. GCMs are widely used but require 

substantial computational resources, limiting their capacity. In contrast, statistical methods often 

lack robustness due to the short historical records available. Recent works propose machine 

learning methods trained on climate model output, leveraging larger sample sizes. Yet, many of 

these studies focus on prediction tasks that may be restricted in spatial or temporal extent, 

thereby creating a gap with existing operational predictions. Others fail to disentangle the sources 

of skill in the context of climate change, where strong trends provide spurious estimates. This 

study combines variational inference with transformers to predict global and regional seasonal 

anomalies of temperature and rainfall. The model is trained on output from CMIP6 and tested 

using ERA5 reanalysis data. Temperature predictions demonstrate skill beyond the climatology 

and climate-change trend and even outperform the numerical state-of-the-art system SEAS5 in 

some ocean and land areas. Precipitation forecasts show more limited skill, with fewer regions 

outperforming climatology and fewer surpassing SEAS5. Furthermore, the consistency found in 

both teleconnections and skill spatial patterns against SEAS5 suggests that both systems build on 

similar sources of predictability. 
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Introduction  

  

In contrast to weather forecasts, which predict daily atmospheric conditions for up to two weeks, 

seasonal climate predictions provide estimates of seasonal statistics months in advance. To 

address the inherent unpredictability of the atmosphere1 and the resulting stochasticity of the 

Earth system, seasonal climate predictions leverage ocean and land surface forcings in 

conjunction with ensemble predictions that provide probabilistic information2. Thus, seasonal 

outlooks commonly deliver probabilities of wetter/drier or warmer/colder than average 

conditions. This information has proven valuable for many climate-sensitive sectors, including 

agriculture3,4, renewable energy production5–7 or public health8. Consequently, over the past few 

decades, seasonal climate prediction has transformed from a research effort into an operational 

service9,10. Nonetheless, the practical value of seasonal predictions relies on their skill and 

resolution, and for many applications, those might not reach user requirements11.  

  

Current operational climate services providers base their seasonal predictions on dynamical 

models, statistical methods, or a hybrid combination. Dynamical models are based on coupled 

(atmosphere, land, ocean, and sea-ice) General Circulation Models (GCMs), which embody the 

most complete representation of climate system dynamics known. These models are typically 

initialised to our best estimate of the observed climate state12, integrating the diverse mix of 

observations available into a consistent set of fields through a process known as data assimilation. 

Those fields provide an initial state of the Earth system and serve as a starting point for a 

simulation covering the desired prediction period, typically up to eight months for seasonal 

predictions. Simulating the Earth system at a global scale over long periods and multiple ensemble 

members requires vast computational resources, limiting the model’s spatial resolution13. Such 

limitation cascades into many physical processes not being explicitly resolved and subject to 

parametrization, resulting in biased dynamics. These biases add to an imperfect definition of the 

initial state, partly due to an erratic spatial and temporal distribution of current observations14,15. 

This combination of factors results in seasonal predictions presenting strong drifts and biases, 

deteriorating prediction quality11,16.  
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On the other hand, statistical or empirical prediction methods benefit from efficiently leveraging 

the relationships learned from past observational records. They explicitly capture the interactions 

between predictors and predictands, offering a more direct approach than dynamical models, 

which derive such relationships through iterative simulation at finer temporal scales. Statistical 

methods range from simple persistence models to sophisticated statistical techniques17, including 

machine or deep learning algorithms18. These approaches can yield skilful forecasts comparable 

to dynamical models. Still, statistical models are not exempt from errors and require careful 

application due to short observational records and climate non-stationarity, which often 

compromises the independent and identically distributed (i.i.d.) assumption, paramount for many 

of these methods.  

  

The limited temporal extent of current observational datasets poses a greater challenge when 

involving large machine learning (ML) algorithms. Training these algorithms with a limited dataset 

results in almost certain overfitting due to the imbalance between trainable parameters and 

available training samples. Unlike weather forecasting, where high-frequency temporal variability 

yields multiple independent samples over short periods, seasonal processes operate on monthly 

to annual scales. At these timescales, interannual processes dominate, resulting in as few as one 

independent sample per year. Consequently, seasonal forecasting applications have far fewer 

data points, up to two orders of magnitude less than weather applications trained over the same 

period19–21. This limitation partly explains the explosion in studies applying large deep learning 

models to weather forecasting22–26, contrasting with the few works tackling seasonal climate 

predictions.  

  

To address such limitations, most ML applications for seasonal predictions rely on climate model 

output to train their data-driven models20,27,28. The underlying assumption is that climate models 

can, to a certain extent, simulate the climate system and its interannual variability, making the 

thousands of simulated years a valid training set. Beyond deep learning, this logic has also 

motivated works in the climate community where analogues from climate model output 

assemble seasonal to decadal predictions from initial conditions29–32. Some even employ deep 

learning to select the best analogues33. Training with climate model output effectively increases 

the number of samples from tens to thousands when using multiple simulations. This approach 
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also delivers data from various multi-decadal periods, as the simulations cover hundreds of years, 

and allows learning from unobserved regime shifts or trends, such as the one forced by global 

warming. Data that captures regime shifts and unseen scenarios is crucial for most ML algorithms, 

which typically struggle with extrapolation and are highly sensitive to regime shifts due to their 

reliance on the i.i.d. assumption34,35. However, as previously mentioned, predictions based on 

numerical climate models (GCMs) present known drifts and biases and misrepresent or fail to 

resolve critical physical processes, resulting in poor simulation of some key teleconnections that 

contribute to predictability. Consequently, ML models trained on climate model output are 

potentially limited by the climate model’s ability to simulate the processes relevant to the 

seasonal prediction task of interest.  

  

Current applications of deep learning algorithms trained on climate model output include the 

prediction of El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD)27,36, the 

prediction of Arctic sea-ice19, the occurrence of drought events in the US20, or the prediction of 

European summer heatwaves37 and droughts28. Most studies rely on classical machine learning 

methods or simpler deterministic neural networks and focus on specific prediction tasks that tend 

to collapse spatial information for simplicity. Providing global probabilistic predictions with data-

driven models is essential for a robust comparison against current state-of-the-art dynamical 

prediction systems17. As an example, this study38 uses a probabilistic method to predict (Oct-Mar) 

precipitation and temperature anomalies based on the previous July’s upper ocean thermal 

status. However, how skill varies across seasons remains to be explored, especially at lead times 

closer to the initial state, which is of particular interest to users. In addition to that, in the context 

of global warming where strong trends provide added predictability on top of interannual 

fluctuations39,40, it is essential to disentangle both sources of predictability to properly assess the 

added value of the tested prediction systems11,41,42.  

  

This study evaluates the effectiveness of an intrinsically probabilistic deep learning method for 

predicting global three-month seasonal anomalies (lead months 1-3) of temperature and 

precipitation fields throughout the year. The model is trained using the output of CMIP6 and 

validated against ERA5 reanalysis data. It explicitly decomposes the contribution of climate 

change-induced trends during both training and validation. Thus, the approach combines 
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variational inference with vision transformers to explicitly predict interannual seasonal 

anomalies. To the best of our knowledge, this is the first application of vision transformers for 

seasonal prediction. Additionally, we apply this methodology in a regional context, specifically 

focusing on Europe, where we compare the effects and robustness of targeting different spatial 

domains and resolutions. Finally, to gain understanding of the sources of predictability, we also 

assess the skill and teleconnection patterns that emerge from two primary modes of variability 

at the seasonal timescale: the El Niño-Southern Oscillation (ENSO) and the North Atlantic 

Oscillation (NAO).  

  

Results  

  

Forecasts assessment  

  

The presented approach (illustrated in Figure 1) uses a conditional Variational Autoencoder (cVAE 

43,44) architecture to predict seasonal climate anomalies. The model takes monthly means of five 

essential climate variables from the preceding six months as input: 2-meter air temperature (tas), 

precipitation (pr), sea surface temperature (tos), and geopotential height at 500hPa and 300hPa 

levels (zg500, zg300), and predicts their 3-month seasonal averages, on lead months 1 to 3 (i.e., 

for a prediction that leverages information up to November 1st, a seasonal mean for DJF is 

predicted). Two vision transformers45 encode the input and target states into a latent space, 

capturing the underlying climate patterns. Transformers are based on a general-purpose inductive 

bias that separates the interaction range from the network’s depth. This separation enables the 

modelling of both distant and local connections without requiring a complex hierarchy of 

convolutional neural network (CNN)46 operations. As a result, Vision Transformers (ViTs) can more 

explicitly capture both local and long-range climate interactions. To decode and generate the 

probabilistic predictions, we employ a CNN that processes multiple samples from the latent space 

to create an ensemble forecast. The model explicitly predicts the interannual variability 

component, while a separate locally estimated scatterplot smoothing (LOESS) regression handles 

the long-term trend. The output of these components is later combined to produce the final 

forecast. This setup represents an example of using simple statistical methods to capture 

predictable signals while leveraging neural networks to model complex deviations. The model 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

was trained using Coupled Model Intercomparison Project Phase 6 (CMIP6)47 data and tested 

against the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5)48 

dataset. Further details about the methodology can be found in the Methods section.  

 

Examples of predicted global temperature (Figures S1 and S2) and precipitation (Figures S3 and 

S4) anomalies are provided in the supplementary information. Figures S1 and S3 show the 

anomalies of each individual ensemble member for the 2020 SON prediction, while Figures S2 

and S4 show anomalies’ ensemble medians for the 2002-2021 period (also SON). Variability 

among members is minimal over oceans and equatorial areas, where seasonal predictability is 

strongest, while inter-ensemble variability over land and in the extratropics is much more 

pronounced. The ensemble medians across different years reveal the increasing effects of global 

warming on temperature predictions, and the fingerprint of El Niño (2002, 2009, 2015, 2020) and 

La Niña years (2007, 2010) is evident in global sea surface temperatures and rainfall patterns.  

 

Seasonal climate predictions are influenced by multiple processes operating at different time 

scales with varying degrees of predictability. Predictability at the seasonal time scale is affected 

not only by interannual fluctuations but also by longer-term modulations such as trends driven 

by greenhouse gas emissions or lower-frequency decadal oscillations. These longer-term 

processes may have different levels of predictability at the interannual scale. However, seasonal 

predictions aim to provide information on seasonal anomalies at the interannual level, going 

beyond trends or decadal oscillations. Thus, disentangling all these different signals in our 

validation procedure is crucial to understanding the value of the seasonal predictions, if any.  

  

Figure 2 shows the Anomaly Correlation Coefficient (ACC), computed between our predictions 

and ERA5 reanalysis for both de-trended temperature (trended results are shown in Figure S11) 

and precipitation seasonal anomalies. The predictions were initialized one month before the start 

of the season, i.e. the DJF prediction used climate information up to November 1st.  Overall, the 

ACC validation against ERA5 reveals a generally higher skill for temperature predictions compared 

to precipitation, with most of the skill concentrated in the tropics and limited skill in the 

extratropical regions. Both outcomes are in line with numerical forecasts49,50, suggesting that the 
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signal to noise ratio is not altered in the cVAE prediction, and that the ML model taps into similar 

underlying teleconnections. 

  

Temperature forecasts exhibit stronger correlations over oceanic regions, with particularly robust 

signals in the equatorial Pacific across seasons, peaking in the SON and DJF seasons. Beyond the 

ENSO signature in the equatorial Pacific is the Pacific Decal Oscillation (PDO) signature that 

extends into the extra-tropical north-Pacific Sea. Significant correlations in temperature are 

observed over land areas in Central America, Brazil, Australia, central and north (DJF) Africa, South 

Africa (DJF), and southeast central Asia. Although more limited, Europe also shows positive 

correlations (MAM, SON & DJF). Precipitation forecasts, are generally less skilful, positive ACC 

patterns are spatially less extent compared temperature predictions, but still show high 

correlations (above 0.7) in Indonesia (SON, DJF, MAM) and the Caribbean (JJA), with moderate 

correlations (0.5-0.7) in northern South America (SON, DJF), Australia (SON), the Horn of Africa 

(SON), and the US (SON, DJF & JJA). Weaker (0.3-0.5) precipitation correlations are observed in 

similar regions for other seasons, including parts of Europe, India, the central Atlantic coast of 

Africa, and southern South America. Results for an extended period 1985-2021 are shown in the 

Supplementary information (Figures S11, S12 & S14). These results are not directly assessed in 

the main manuscript as the time period employed overlaps with the reference period defined to 

compute the standardization and de-trending51. Overall, our method captures predictable signals 

that are physically realistic and consistent with findings reported in the literature11,17, 

demonstrating the potential of the methodology for seasonal forecasting applications.  

The generative nature of variational methods enables the production of multiple deterministic 

predictions, forming an ensemble of plausible outcomes. This ensemble facilitates the derivation 

of a more robust deterministic signal. Inferencing a complete hindcast (1950-2021), 100 

members, for all variables and a single season takes seconds on a single H100 GPU. We make an 

initial assessment of the ensemble and the impact of its size on the model’s performance, shown 

in Figure 3. We observe that increasing the ensemble size from 1 to 100 members enhances 

forecast skill, with the ACC improving from 0.07 to 0.51. The model reaches near-optimal 

performance with an ACC of 0.49 using just 20 ensemble members, indicating a balance between 

computational efficiency and forecast accuracy. Larger ensemble sizes provide a more explicit 
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representation of forecast uncertainty, while individual members reflect realistic temporal 

variability, closely following observed climate variability. The model effectively captures key 

aspects of ensemble forecasting systems while offering substantial computational benefits. The 

ability of generating diverse ensembles while obtaining peak correlations with moderate 

ensemble sizes are desirable properties for climate prediction.  

  

Validation against benchmarks  

 

Supplementary Figures S9 to S14 show differences in the anomaly correlation coefficient (ACC) 

between SEAS5 and our approach. However, we acknowledge that ACC differences can be 

problematic due to the bounded nature of correlations (-1 to 1) and the resulting skewed 

sampling distribution52, which enforces the use of Fisher's z-transform for proper statistical 

analysis. Additionally, correlation measures only capture linear associations between forecasts 

and observations, neglecting important factors such as biases and non-linear relationships. For 

these reasons, we prefer the use of skill scores in our benchmark comparisons. Nonetheless, 

readers interested in an ACC analysis can refer to supplementary Figures S9 to S14, which produce 

qualitatively similar conclusions to those obtained using skill scores, considering the differences 

between the metrics.  

 

We compare our model with the climatological forecast (CLIM) and the ECMWF’s seasonal 

prediction system (SEAS5). The period covering 1981-2000 has been used as the reference period 

for the climatology and anomalies. As stated in the previous section, lead months 1 to 3 are 

considered, which is equivalent to taking the SEAS5 prediction initialised on November 1st, 

targeting DJF. Figure 4 shows the forecast skill scores for near-surface air temperature (tas) 

predictions from 2001-2021. We present the results for four seasons (DJF, MAM, JJA, SON) across 

columns and using two skill metrics: the root-mean-square error skill score (RMSS) and the 

continuous ranked probability skill score (CRPSS). While the RMSS measures the deterministic 

performance of the ensemble median, the CRPSS offers a better view of the probabilistic 

performance of the ensemble distribution. Skill scores range from -2 (dark pink), where negative 

values indicate no skill, to 0.5 (dark blue), indicating high skill above the reference. Figure 5 shows 

the results of precipitation predictions using the same two metrics. Black dots indicate whether 
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the positive skills are statistically significant at the 95% confidence interval (more details in 

Methods). Again, results for an extended period 1985-2021 and without de-trending are shown 

in the Supplementary information (Figures S15-18).  

  

Overall, the skill metrics relative to the climatological forecast exhibit similar patterns to those in 

Figure 2, showing consistent performance across seasons. Temperature fields demonstrate higher 

and more spatially extensive skill compared to precipitation predictions. Similarly, for 

temperature, we observe a predominately more robust signal over the oceans compared to land 

regions and a clear ENSO and PDO signature. Precipitation forecasts also show a similar signal 

compared to the one in Figure 2. We find strong performance (Skill score above 0.2) compared to 

climatology in regions such as northern South America (DJF & MAM), Australia (MAM & SON), 

eastern (DJF & MAM) and southern Africa (DJF), as well as parts of the U.S. (DJF, MAM & SON) 

and the Arctic (DJF & SON). However, performance varies by season and region, with limited skill 

in Europe.  

  

We find fewer regions showing improvements when comparing our model’s performance against 

SEAS5 (third and fourth rows of Figures 4 and 5). This is expected, as SEAS5 is the current state-

of-the-art dynamical forecasting system, making it a more challenging benchmark to surpass 

compared to climatology. Generally, we find that SEAS5 outperforms our approach in many 

oceanic areas. Nevertheless, our model performs better in some land regions, which are 

particularly relevant for user applications. Regarding temperature forecasts, our approach shows 

season-dependent improvements over SEAS5 in parts of the United States (MAM & JJA), the 

southern portion of South America (DJF, MAM & JJA), north Africa (MAM & DJF), Europe (JJA, SON 

& DJF), and Eurasia (particularly in the SON season). In contrast, our precipitation forecasts are 

clearly outperformed by SEAS5 in most regions. Yet, we find season-dependent enhancements in 

some extra-tropical regions, i.e., Europe (JJA), Eurasia (SON), parts of North America (SON), and 

the most southern part of South America (MAM & JJA).  

  

It should be noted that the added value from our predictions is only realised when there is an 

improvement over both SEAS5 and the climatological forecast. If this improvement is not 

achieved jointly, our data-driven approach may converge to a simple climatological forecast. To 
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complement our results, we included in the Supplementary information Figures S19-24 a set of 

scorecards comparing CRPS values for the climatological forecast (clim), our approach (cVAE) and 

SEAS5. We computed the CRPS over the IPCC AR6 reference regions53. We split the results over 

land and ocean regions. 

 

Overall, the climatology is rarely the best performer, validating the value of our system where it 

has higher skill compared to SEAS5. Similarly, we also find that skill exceeds the climatology mainly 

for temperature, and much less for precipitation, i.e., the lower signal to noise ratio in rainfall 

anomalies implies a less robust distinction (in terms of skill) between prediction systems. SEAS5 

clearly outperforms our approach over oceanic regions, while on land areas the cVAE seems more 

competitive. More in detail, temperature forecasts (Figure S20) show seasonal-dependent skill 

improvements in parts of the United States (WNA, CNA, ENA, NCA), northwest Africa (SHA), the 

Arctic (GIC), and scattered locations in the rest of Africa (WAF, CAF, NEAF & SEAF) and South 

America (SES, SSA, SWS).  The cVAE precipitation forecasts (Figure S22) are only improved in few 

extratropical regions, including small parts of Europe (WCE, MED, NEU), Eurasia (WSB, ESB), the 

US (NCA), and South America.  However, such improvements are often marginal (Figure 5).  

 

European regional use-case  

  

Once we tested the approach globally and verified that the model reproduces well-known 

patterns at the seasonal time scale, we verified the model with a Europe-centric context. As 

shown in Figure 1 (panel D), three configurations are tested, where models with the same inputs 

𝑋 have three different targets 𝑌: Global predictions at a spatial resolution of 5°, regional also at 

5° and regional at 1°. The main objective is to assess whether targeting a more constrained region 

can yield improvements, as the model does not need to optimize its parameters for predicting 

the whole globe. Similarly, due to a smaller target domain, we can increase the spatial resolution 

of the target variable while maintaining the comparable computational cost needed for the 

original model (Global 5°). Thus, we assess whether we find benefits from increasing the spatial 

resolution of the predictions. Additionally, we test whether the patterns are consistent across the 

different configurations.  
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The supplementary information (Figures S5-S8) includes examples of predicted European 

temperature and precipitation patterns for the regional 1° configuration. Temperature forecasts 

reveal strong climate change forcing signals in both the individual ensemble members and the 

ensemble median, indicating that external forcing dominates over interannual signals in this 

region. Precipitation predictions exhibit north-south and east-west dipole patterns resembling 

those associated with different atmospheric regimes54, such as the Arctic Oscillation (AO), the 

North Atlantic Oscillation (NAO), the Eastern Atlantic pattern (EA) or the Scandinavian blocking 

(SB). However, the significant variability among ensemble members highlights the model's 

difficulty in identifying a preferred pattern under these low-predictability conditions. 

  

The CRPSS for temperature predictions over Europe (Figure 6) shows varying degrees of skill 

compared to both climatology and SEAS5. As a first assessment, we can see across the different 

models and seasons higher skill values against SEAS5 than the climatology, indicating the poor 

performance of SEAS5 in Europe. We also observe consistent patterns across model 

configurations, with the Regional 1° offering the most detailed spatial representation of skill, 

highlighting statistically significant improvements in specific regions while still aligning with 

patterns observed at coarser resolutions. Across the different configurations we observe how the 

model manages to improve the predictions over SEAS5 and the climatology for large parts of the 

Central and Western Mediterranean (across seasons), and some parts of Northern and Central 

Europe (MMA and JJA). As mentioned in the previous section, improvements over SEAS5 and the 

climatology are needed to add value to user-centred applications.  

  

For precipitation forecasts, we find, in general terms (i.e., across seasons and regions), lower 

precipitation skills against the climatological forecasts than those obtained against SEAS5 (Figure 

7), indicating the low performance in Europe of current state-of-the-art prediction systems. Yet, 

our approach surpasses SEAS5’s skill slightly for different regions and seasons. We observe slight 

improvements both against the climatology and SEAS5 over parts of central to eastern Europe 

(DJF and JJA), parts of the British Isles and northern Europe. Again, we observe how the general 

patterns are maintained against the different configurations, with the 1° configuration 

highlighting a more detailed but coherent spatial representation of skill and significance. Again, 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

results for an extended period 1985-2021 are shown in the Supplementary information (Figures 

S25-26).  

  

The robustness of the results across various spatial configurations (Global 5°, Regional 5°, and 

Regional 1°) represents an interesting finding. The skill patterns remain consistent regardless of 

the domain’s resolution or setup. In addition, we observe that in most cases, the skill is either 

retained or improved by going regional or increasing the spatial resolution. Therefore, the choice 

of the most suitable configuration ultimately depends on user needs and computational 

constraints.  

  

Teleconnections assessment 

  

As a preliminary assessment of the sources of predictability in our model, we investigate the 

teleconnection patterns that emerge from two primary modes of variability at the seasonal 

timescale: the El Niño-Southern Oscillation (ENSO) and the North-Atlantic Oscillation (NAO). We 

compare such patterns against the ones found in SEAS5 and ERA5. For ENSO, we compute the 

temporal Pearson correlation (2001-2021) between the DJF SST Niño 3.4 index and DJF 

temperature, precipitation and 500hPa geopotential fields. For SEAS5 and our method (cVAE), the 

correlation is also computed along the ensemble dimension, i.e., the ensemble and time 

dimensions are concatenated into a grid-point-by-grid-point one-dimensional time series. A 

bootstrap procedure is applied with a fixed sample size to account for the varying dataset sizes, 

as forecasting systems often have a diverse number of ensemble members. The bootstrap 

approach also provides a range of uncertainty from which significance can be tested. 

Supplementary information Figure S27 shows a time series with the predicted ENSO index for the 

various systems against ERA5. We notice a slight reduction (0.96 cVAE vs 0.99 SEAS5) in the 

correlation against ERA5 and an overall wider uncertainty range for the generative model.  

  

Examining the correlation maps in Figure 8, we find, in general terms, similar spatial patterns 

among the three datasets, with SEAS5 exhibiting weaker correlations (especially for precipitation) 

compared to ERA5 or the cVAE, which displays an over-amplified response. Linking these results 

with the CRPSS plots shown in Figures 4 & 5, we observe that for temperature fields, a 
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north/south dipole of positive/negative correlations over South America found in ERA5 is more 

closely represented in the cVAE compared against SEAS5, consistent with the CRPSS increase 

referenced against SEAS5. Similarly, higher correlations in the Horn of Africa and South Africa are 

found, consistent with ERA5 and the positive CRPSS against SEAS5 (whose correlation pattern is 

not aligned with ERA5). Regionally negative skill score values can also be explained by examining 

the weak to missing Niño3.4 temperature responses in the Indian Ocean, the equatorial Atlantic, 

and the PNA region (also noticeable in 2T and ZG500). Regarding precipitation fields, we also find 

several correlation patterns from the cVAE that are closer to those found in ERA5, leading to an 

increase in CRPSS. These include parts of central and south-east Africa, Southeastern South 

America and the Philippines. Yet, incoherent correlation patterns, between the cVAE and ERA5, 

such as those found in parts of East Indonesia and Central and North-East South America, are 

associated with significant negative CRPSS values.  

  

A similar analysis is performed for the NAO. To define the NAO index, the 1st EOF of ERA5 500hPa 

fields over the North Atlantic sector (30°- 88.5°N, 80°W - 40°E) is used (Supplementary Figure 

S28). The 500hPa fields of the different systems are projected into such EOF, obtaining a NAO 

index for each system. Supplementary Figure S29 shows a time series with the predicted NAO 

index for the various systems against ERA5. We observe a slight increase (0.31 cVAE vs 0.22 SEAS5) 

in correlation against ERA5 and an overall similar uncertainty range. Regarding the correlation 

maps in Figure 9, we find, in general terms, a stronger signal captured by the cVAE compared 

against SEAS5. For temperature, a stronger dipole between the east coast of the US and the 

Labrador Sea, and similarly between the north of Europe and North Africa. More in detail, we find 

an extension of the correlation pattern into the Mediterranean and north/west of the black sea, 

consistent with skill improvements compared to SEAS5 and the climatology. Concerning rainfall, 

a tripole structure (observed in ERA5) between the Labrador Sea, Northern Europe, and the 

Mediterranean appears to be more closely represented by the cVAE, compared to SEAS5. This 

aligns with positive skill values when referenced to the climatology and SEAS5 in the 

Mediterranean, especially the eastern part. On the contrary, although a better correlation pattern 

is found in the Nordic countries, this does not directly translate into skill improvements in our 

assessment. 
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Discussion 

This study proposed and evaluated a novel data-driven method for predicting seasonal climate 

anomalies. Our methodology combines variational inference with vision transformers to generate 

ensembles of global seasonal predictions (lead months 1-3). Global skill scores show that our 

temperature predictions surpass the predictability provided by climate forcing trends and even 

outperform SEAS5 in some ocean and land areas, of which the latter are particularly relevant for 

potential user applications. Precipitation forecasts exhibit a more limited skill compared to 

climatology, and SEAS5 clearly outperforms our data-driven approach in the equatorial band. Still, 

we observe similar spatial patterns of skill for both temperature and precipitation compared to 

SEAS5, suggesting that both systems build on similar sources of predictability. The model's 

predictive skill beyond trend-based forecasts further validates our methodological approach, 

trained on (imperfect) CMIP6 simulations, and its capability in simulating, to some extent, 

interannual variability. 

We also highlight the advantages of training the prediction model on smaller regions, enabling a 

more tailored optimisation of regional-specific features. Our case study focuses on Europe, an 

area that often struggles with accurate numerical seasonal predictions and demonstrates 

improvements over a global model. Our methodology outperforms SEAS5 in predicting European 

temperatures in multiple sub-regions and seasons. However, precipitation forecasts from both 

dynamical and data-driven prediction systems exhibit limited skill. Overall, we find that increasing 

spatial resolution or constraining the target region provides benefits without compromising 

prediction quality, enabling flexible configuration choices based on user needs and computational 

constraints. Furthermore, predictions of the El Niño-Southern Oscillation (ENSO) and the North 

Atlantic Oscillation (NAO) indices show comparable skill and variability to SEAS5, and correlation 

maps between both indices and their respective predicted temperature and rainfall fields align 

largely with those found in SEAS5 and ERA5. The consistency of both the regional impacts of the 

teleconnections and the spatial patterns of skill across different target configurations reinforces 

the robustness of our methodology, suggesting that these patterns represent genuine features in 

the climate system rather than artefacts of the machine learning model. 
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Previous research38 has shown that similar variational architectures can provide skilful seasonal 

predictions for the October to March seasonal mean (lead months 2-7). As this previous research 

pointed out, predicting a longer seasonal average forecast is relatively straightforward compared 

to our setup. Part of this is due to longer averages filtering out higher-frequency climate 

variability, and the more distant lead time reducing the influence of the initialisation, making 

initialised dynamical prediction systems a weaker baseline11,39.  Besides, they highlighted a pitfall 

in their strategy of splitting the training and validation datasets, where they apply random 

shuffling through the entire set of CMIP simulations. This splitting strategy is prone to introducing 

autocorrelations between the training and validation sets due to the persistent impact of low-

frequency climate signals. By addressing a more difficult prediction task, three-month averages 

(lead months 1-3), properly splitting distinct simulations in our train and validation split, 

accounting for long-term forcing trends in our verification, and studying fundamental modes of 

variability and teleconnections, we aim to increase trust in this and similar methodologies 

As an example of an alternative data-driven approach, a recent study55 published during the 

review of this manuscript has leveraged ACE256 to produce seasonal predictions (also lead months 

1-3, but for DJF). While our approach trains a model on climate model output to predict the 3-

month average anomaly in a single step, this alternative setup builds on the success of AI-based 

weather forecasts trained on ERA5 to predict the evolution of the atmosphere at 6-hour intervals, 

thereby remaining stable over long forecast periods. In terms of skill, that study reached similar 

conclusions to the ones of this manuscript - ACE2 shows slightly lower but comparable skill to 

GloSea57 (GC3.2 configuration), another state-of-the-art dynamical prediction system. However, 

the contribution of trends to the skill obtained is not assessed. ACE2's strength stems from its 

training on ERA5 reanalysis, which helps avoid model errors and the misrepresentation of certain 

teleconnections, both inherent to climate simulations. However, this advantage comes at the cost 

of retaining only 10 test samples (2001-2010) outside the training data. Thus, the combination of 

a small test set and a training set drawn from years after the testing period (from 2010 onwards) 

raises concerns about the model's ability to extrapolate to unseen scenarios and the reliability of 

its verification51. 
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Likewise, important limitations must be acknowledged in our work. Data-driven approaches 

that rely on climate model output during training are susceptible to learning biases or model 

errors from it, limiting their performance. Combining outputs from different dynamical models 

can help compensate some of those model-specific errors. Yet, errors that are systematic across 

models will still be learned by our approach and similar ones.  Additionally, our method employs 

a minimal initialisation and output setup, comprising of monthly and seasonal averages, as well 

as a limited variable set. This setup is far from current operational prediction systems based on 

dynamical climate models, which utilise an extensive set of 3D atmospheric, land and ocean state 

variables for their initialisation. Such differences in the initialisation process could contribute to 

SEAS5’s higher skill compared to our data-driven approach in some regions/features. In addition, 

although the teleconnection assessment presented in this manuscript helps explain some of the 

skill patterns observed in our predictions, we acknowledge the limitations of this initial 

examination and call for follow-up experiments to understand the learned relationships better 

and evaluate spatial-temporal relationships and causality in data-driven climate predictions. 

Some of these limitations represent opportunities to enhance our approach. For example, 

errors in climate model output can be mitigated through fine-tuning or guidance techniques58, 

performance sub-selection of the different simulations used during the training stage, or by 

incorporating improved simulations, such as those from novel high-resolution climate models59. 

In this latter case, generative models could be especially valuable for saving substantial 

computational resources or even enabling the operationalisation of such predictions. Score-

based60  (diffusion)61  or flow-matching62  approaches can provide better modelling of the 

conditional probabilities predicted, potentially addressing some of the optimisation challenges 

inherent in variational inference. Additionally, we acknowledge that the presented methodology 

constitutes a prototype, and better initialisation with multiple variables at a higher temporal 

frequency is perfectly implementable and could further improve our prediction system, bringing 

it closer to state-of-the-art dynamical operational prediction systems. 

Thus, this study advances our initial objective of further developing probabilistic deep learning 

methods for seasonal prediction, demonstrating that generative models trained on climate 

models can achieve comparable skill to current operational dynamical prediction systems. While 
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challenges remain to further enhance the performance and possibly outperform current state-of-

the-art prediction systems, our results establish a promising foundation for the future 

development of data-driven and seasonal prediction systems. 

Methods 

Problem formulation 

The objective is to predict the climate state Y ∈ R 𝑐𝑦×𝑛𝑙𝑎𝑡×𝑛𝑙𝑜𝑛 of a future season based on current 

and past states X𝑖 ∈ R 𝑐x×𝑛𝑙𝑎𝑡×𝑛𝑙𝑜𝑛 from the 𝑖 preceding months. To deal with the stochastic nature of 

the atmosphere beyond 12 days1 we intend to forecast not a deterministic value but the 

conditional probability distribution 𝑝(Y𝑡+1|X𝑡,X𝑡−1,...,X𝑡−𝑇) of the target season Y𝑡+1 on the current 

and previous conditions X. 

The representation of the target season Y is comprised by 𝑐𝑦 variables of 3-month seasonal 

averages on a 5°×5° latitude-longitude grid. As stated in41, this grid-scale is a good compromise 

between capturing the large-scale climate signal and smoothing out noise while saving 

computational resources. The representation of the initial states X is comprised by 𝑐𝑥 variables of 

monthly averages on a 5°×5° latitude-longitude grid. The same methodology can be tested under 

different representations, combining different grids and temporal resolutions (both at source and 

output) due to its inherent flexibility. Thus, for the regional use case, we increase the spatial 

resolution of the target Y to 1°. 

Variational Inference 

To obtain the conditional probability distribution 𝑝(Y|X) on a target climate state Y given a state 

X of current or past conditions, state-of-the-art climate prediction systems run multiple dynamical 

simulations, each with slightly perturbed initial conditions, obtaining an ensemble of plausible 

outcomes from which probabilities can be inferred. Analogously, our objective is to learn a 

statistical model 𝑝𝜃 (𝑦|𝑥,𝑧) from which multiple predictions can be inferred statistically from a set 
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of initial conditions and an n-dimensional latent variable 𝑧 that adds the stochastic component to 

the statistical model. 

Learning the conditional probability distribution 𝑝𝜃 (𝑦|𝑥) from data is not a straightforward 

problem63. Ideally, we would like to minimise the difference between our learned distribution 𝑝𝜃 

(𝑦|𝑥) and the observed data distribution 𝑞𝐷 (𝑦|𝑥). This objective can be achieved empirically by 

maximising the sum over the log-likelihoods of our data points in the learned distribution64. Yet, 

this is computationally intractable as it requires integration over 𝑧 for each data point: 

 

𝑝𝜃(𝑦|𝑥) = ∫ 𝑝𝜃(𝑦|𝑧, 𝑥)𝑝𝜃(𝑧|𝑥)𝑑𝑧
 

 
                                                    (1) 

 

Amortised variational inference43 offers an alternative by narrowing the integration space of z to 

values that are likely to generate y. This likelihood is described by 𝑝(𝑧|𝑦𝑖,𝑥𝑖) and is approximated 

by an amortised inference distribution 𝑞𝜙(𝑧|𝑦,) that is also learned. To jointly optimise the 

parameters 𝜙 and 𝜃 a lower-bound of the log-likelihood or evidence lower-bound (ELBO) is 

defined: 

𝐿(𝜃, 𝜑) =  −𝔼𝑞𝜑(𝑧|𝑥, 𝑦)[log 𝑝𝜃(𝑦|𝑧, 𝑥)] +  𝐷𝐾𝐿(𝑞𝜑(𝑧|𝑦, 𝑥) ||  𝑝𝜃(𝑧|𝑥))              (2) 

where E𝑞𝜙(𝑧|𝑥,𝑦) [log 𝑝𝜃 (𝑦|𝑧,𝑥)] is the expected log-likelihood of 𝑦 given 𝑧 and 𝑥, and 𝐷𝐾𝐿 

(𝑞𝜙(𝑧|𝑦,𝑥)||𝑝𝜃 (𝑧|𝑥)) is the KL divergence between the approximate posterior 𝑞𝜙(𝑧|𝑦,𝑥) and the 

prior 𝑝𝜃 (𝑧|𝑥). 

Thus, our final objective is to jointly train two neural networks: 𝑞𝜙(𝑧|𝑦,𝑥) representing the learned 

approximate posterior, and 𝑝𝜃 (𝑦|𝑧,𝑥) being the learned generative model. 𝑞𝜙(𝑧|𝑦,𝑥) will be 

represented by an encoder applied to the target state Y and only used during the training phase. 

While 𝑝𝜃 (𝑦|𝑧,𝑥) will be conformed by an encoder on the initial state X and the decoder generating 

new predictions Y𝜃  combining information from the learned latent space and the compact 
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representation of the initial state X. Minimising this ELBO allows joint optimisation of 𝜃 and 𝜙, 

effectively approximating the intractable 𝑝𝜃 (𝑦|𝑥). 

Architecture 

The model architecture design is essential for extracting meaningful features that improve 

seasonal predictability. The architecture needs to capture both temporal and spatial long-range 

interactions influenced by global teleconnections, as well as local interactions that stem from 

land-atmosphere processes and persistence. However, due to the limited size of the available 

training dataset, keeping the model complexity in check is essential to avoid overfitting. Choosing 

the architectural design implies finding a sustainable balance between these factors. 

Vision Transformers (ViTs) are a well-suited option for this task45,65. ViTs employ a general-purpose 

inductive bias that allows them to model distant and local connections without needing the deep 

hierarchy and pooling operations typical of Convolutional Neural Networks (CNNs). Thus, they 

decouple the interaction range from the network depth, and this is particularly helpful when 

modelling the different types of interactions that occur at seasonal time scales. In addition, 

transformers are very suitable for incorporating data with different formats (i.e. time series with 

2D or 3D spatial grids). They can also make inferences even under the erratic presence of missing 

values. Still, due to their unconstrained non-locality, ViTs are known to need large datasets in 

order to train correctly. These reasons partly explain the multiple applications of ViTs found in 

weather prediction66–68, contrasting the few to no applications for seasonal prediction. 

As illustrated in Figure 1 panel B, our model architecture combines the variational inference 

framework of a conditional Variational Autoencoder (cVAE) with ViT encoders for feature 

extraction. The 𝑞𝜙(𝑧|𝑦,𝑥) approximate posterior is represented by a ViT encoder applied to the 

target climate state Y. This encoder generates a compact latent representation 𝑧𝑦, which is then 

passed through a Multi-Layer Perceptron (MLP) to produce the variational parameters 𝜇 and 𝜎 

that will conform the learned posterior distribution 𝑞𝜙(𝑧|𝑦,𝑥). This network component (depicted 

in orange) is only used during training. The 𝑝𝜃 (𝑦|𝑧,𝑥) generative model is formed by an additional 
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ViT encoder applied to the initial climate state X, producing a reduced representation 𝑧𝑥. This 

reduced representation 𝑧𝑥 latent is then combined with a sample from the posterior distribution 

𝑞𝜙(𝑧|𝑦,𝑥) and passed through a Convolutional Neural Network (CNN) decoder to generate new 

climate predictions Y𝜃. 

Once the model is trained, deterministic predictions can be generated by sampling values from 

the prior distribution z. Each sample 𝑧 is concatenated with the 𝑧𝑥 latent representing the initial 

state and decoded through the CNN decoder, obtaining a deterministic prediction (or ensemble 

member) conditioned on the initial state 𝑥. By repeating this process with multiple samples of z, 

we draw the 𝑝𝜃 (𝑦|𝑧,𝑥) distribution learned by the model, obtaining an ensemble of predictions 

that capture the uncertainty of the system. This architecture allows the model to extract 

meaningful features from the input data while maintaining a constrained overall size. By jointly 

optimizing the encoder (𝑞𝜙) and decoder (𝑝𝜃) networks using minimizing loss objective, the model 

learns to generate diverse, physically consistent ensemble predictions while capturing the 

underlying uncertainty in the data. 

Datasets 

We use four different climate models (see Table 1) from the Coupled Model Intercomparison 

Project 6 (CMIP647) to obtain a sufficiently large training set. The historical and SSP2-4.5 scenarios 

are concatenated for each realisation into a continuous time series spanning 1880 to 2080. These 

specific models were chosen as they meet the criteria for the number of realisations and output 

variables. All the models’ output was obtained from the Earth System Grid Federation (ESGF) and 

gathered and pre-processed to joint spatial resolution and units using ESMValtool69. 

Split Source Time Period Models 

Training CMIP6 (Hist. + SSP245) 1880 - 2080 

CanESM5 r(6:25)i1p1f1, CanESM5 r(6:25)i1p2f1, 

MIROC-ES2L r(6:25)i1p1f2, MIROC6 r(6:25)i1p1f1 & 

MPI-ESM1-2-LR r(6:25)i1p1f1 
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Validation CMIP6 (Hist. + SSP245) 1880 - 2080 

CanESM5 r(1:5)i1p1f1, CanESM5 r(1:5)i1p2f1, 

MIROC-ES2L r(1:5)i1p1f2, MIROC6 r(1:5)i1p1f1 & MPI-ESM1-

2-LR r(1:5)i1p1f1 

Test ERA5 1950 - 2021  

Table 1. Datasets description information 

For the evaluation of the data-driven models, we use the ERA548 reanalysis covering 1950 to 

2021. ERA5 is produced using 4D-Var data assimilation combined with the ECMWF Integrated 

Forecast System (IFS) CY41R2. Again, ERA5 data was pre-processed to a common spatial grid and 

units using ESMValtool. 

We also use the ECMWF’s seasonal climate prediction SEAS510 as a dynamical benchmark against 

the data-driven models. SEAS5 is based on the Integrated Forecast System (IFS) atmospheric 

component coupled to the Nucleus for European Modelling of the Ocean (NEMO) ocean model 

and the dynamic Louvain-la-Neuve Sea Ice Model (LIM2). SEAS5 operational seasonal forecasts 

are initialised on the first day of each month, and 51 ensembles are initialised covering up to 

seven months in the future. Additionally, a set of hindcasts (1981 to 2017) are also produced with 

the same configuration but with a reduced ensemble (25 realisations). As a benchmark, we 

concatenate both hindcast and forecasts into a continuous set of forecasts covering the period 

1981 to 2021 with an ensemble of 25 realisations. The SEAS5 data was obtained from the 

Copernicus Climate Data Store (CDS) API. 

Data preprocessing 

We perform an initial homogenization of all the climate model output and reanalysis data to a 

common spatio-temporal resolution and units. For both inputs and outputs, monthly means at 5° 

or 1° horizontal resolution are used (depending on the prediction task). 

The second stage involves the standardisation of the data, including de-trending, anomaly 

computation, and normalisation. Data standardisation is a critical aspect of data-driven climate 

predictions. On one hand, the standardisation of inputs and outputs can drastically change the 

prediction task assigned to the model (i.e. predicting seasonal averages over the trend vs 
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predicting the forcing influence at the seasonal time scale). Similarly, it can affect the models’ 

performance, as the standardisation can remove or add information from the climate fields used. 

Finally, improper standardisation of the outputs, references, and benchmarks can lead to 

misleading claims of performance during the validation42,51, especially under strong trends41,70. 

At the same time, data standardisation helps in the speed and stability during the training of data-

driven approaches. 

De-trending for CMIP6 data is performed removing the forced component (ensemble mean) of 

each model independently. For the ERA5 reanalysis, locally estimated scatterplot smoothing 

(LOESS)71, with a fixed time window of 30 years and one degree of freedom, is applied to obtain 

a non-linear trend later removed from the data. To avoid overestimates of forecast skill due to the 

use of information not available at forecast time51, we fit LOESS using only values prior to the 

forecasting time (retroactively). As shown in Figure 1, de-trending is applied to the target Y during 

training, as well as during the validation of the forecasts. 

Standardised monthly anomalies are computed by subtracting the mean and normalising by the 

standard deviation of the 1981 to 2000 period. As an exemption, precipitation values are fitted to 

a gamma distribution instead. All these steps are applied point by point to each climate model 

and reanalysis independently, helping to remove significant biases present in both climate models 

and the reanalysis output. However, none of the data from the testing period 2001-2021 is 

included in this process. 

Assessing forecasts quality 

In this work, we use a set of verification metrics to quantify the quality of the predictions 

developed and we compare the results against the ECMWF state-of-the-art seasonal prediction 

system SEAS5. As exposed in 41, we identify two main objectives. First, to assess whether our 

proposed model produces more accurate predictions compared to a reference forecast, in our 

case a state-of-the-art dynamical forecasting system. Second, to assess whether the ensemble 

spread of our method provides a good estimation of uncertainty on average. 
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The first objective can be fulfilled by employing deterministic metrics. As a first individual 

assessment of the different forecasts, we employ the Spearman correlation (Equation 1) 

between the anomalies of the ensemble median of our predictions and the ground truth, also 

known as the Anomaly Correlation Coefficient (ACC). It helps quantify the monotonic 

relationship between these two. The Spearman correlation is preferred over the Pearson 

correlation due to its non-parametric nature and insensitivity to outliers.  

 

𝜌 = 1 −
6 ∑ (𝑟𝑥𝑖

−𝑟𝑦𝑖
)

2
𝑛
𝑖=1

𝑛(𝑛2−1)
                                                                     (3) 

 

where 𝑟𝑥 is the ranks of the predictions’ ensemble median, 𝑟𝑦  the ranks of the ground truth, 

and 𝑛 the number of samples. 

 

In addition, the root mean square error (RMSE) is used to add information of the potential mean 

and conditional biases in our predictions (Equation 2). The RMSE can be expressed as a function 

of the Spearman correlation and the mean and conditional biases72, providing a complete 

deterministic overview of our predictions. 

 

RMSE = √
1

𝑛
∑ (𝑥̂𝑖

2 − 𝑦𝑖
2)𝑛

𝑖=1                                                                            (4) 

 

where 𝑥̂ is the ensemble median of our predictions, 𝑦 are the observations, and 𝑛 the number 

of samples. 

 

Our second objective is better fulfilled using probabilistic metrics, which test whether the spread 

in our prediction is adequate to quantitatively represent the range of possibilities for individual 

predictions over time. We base our probabilistic validation on the Continuous Ranked Probability 

(CRPS), a measure of squared error in the probability space: 

CRPS(𝑃, 𝑦) = ∫ [𝐹(𝑥) − 𝐻𝑦(𝑥)]
2∞

−∞
𝑑𝑥                                                                            (5) 
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where 𝐹 is the proposed cumulative distribution function (CDF) obtained from the forecast 

ensemble 𝑥, and 𝐻 is the Heaviside step function centred at the actual observed value 𝑦. 

To facilitate the interpretability and comparison of the results, both CRPS and RMSE are expressed 

as skill scores referenced against a climatological forecast (clim) or SEAS5: 

𝐶𝑅𝑃𝑆𝑆 = 1 −
𝐶𝑅𝑃𝑆

𝐶𝑃𝑅𝑆𝑟𝑒𝑓
 𝑅𝑀𝑆𝑆 = 1 −

𝑅𝑀𝑆𝐸

𝑅𝑀𝑆𝐸𝑟𝑒𝑓
       (6,7) 

Uncertainty in the validation metrics is evaluated using a non-parametric bootstrapping 

approach. The forecasts and reanalysis observations are reshuffled in this method to compute 

1000 core values. For the ACC computation, the values obtained are compared to the 95th 

significance level against a similar distribution generated using a random time series instead of 

the forecast. For the skill score metrics, we reshuffled the forecast, reference forecast, and 

reanalysis time series to compute a distribution of skill scores. Then, we assess whether the score 

value is significantly greater than zero at the 95th significance level. 

 

Architecture & training configuration 

The model processes five key climate variables: 2-meter air temperature (tas), precipitation (pr), 

sea surface temperature (tos), and geopotential height at 500hPa and 300hPa levels (zg500, 

zg300). For the input state X, these variables represent conditions during the preceding 6 months, 

while the target state Y is comprised of the same variables seasonal averaged comprised by lead 

months 1 to 3. Topography, land-ocean, and encoded latitude and longitude coordinates are also 

concatenated to the input state X. During inference, 150 ensembles are pooled by sampling from 

the latent space and conditioned on the inputs. 

Our conditional Variational Autoencoder (cVAE) implements dual Vision Transformer (ViT) 

encoders to process input and target climate states. Each encoder pathway consists of 8 

transformer layers with an embedding dimension of 128 and single-head attention, operating on 

patch sizes of 1 to capture fine-grained spatial features. The latent space has a dimension of 128, 
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enabling a compact representation of climate patterns. The decoder employs four residual blocks 

with 32 filters each, using convolutional layers to reconstruct the predicted climate fields. 

We train a separate model for each season, concatenating adjacent seasons (±1 month) to 

increase the training set size. Each model underwent training for 50 epochs with a batch size of 

256, using an initial learning rate of 1e−4 and weight decay of 0.001 for regularization. Models are 

optimized through an information maximization loss function for variational autoencoders, or 

InfoVAE objective73, that constitutes a generalization of the ELBO objective. The reconstruction 

term is weighted by the cosine of the latitude to account for differences in grid-cell area. The 

weighting parameter (lambda) was set to 1 and the confidence parameter (alpha) to 0.9. This 

configuration was selected according to the results obtained in the validation set when sampling 

pseudo-randomly different hyper-parameter configurations (not shown). 

The basic configuration and hyper-parameters of the model are consistent across the experiments 

shown in panel D of Figure 1, with one exception: in the Regional 5° model, the number of blocks 

in the decoder is reduced from 4 to 2 due to the limited number of points. The training stage of 

the global 5° configuration takes 3.3 hours using 4xH100 NVIDIA GPUs. Training times of similar 

magnitude are obtained for the other target configurations. Inferencing a complete hindcast 

(1950-2021) for all variables and a single season takes seconds on a single H100 GPU across all 

model configurations. Additional details regarding the architecture and hyper-parameters can be 

found in the Supplementary Information (Table S1). 

Data availability 

All the data used are publicly available or restricted to the signed-up users. SEAS5 and ERA5 data 

were downloaded from the official website of Copernicus Climate Data (CDS) at 

https://cds.climate.copernicus.eu/. CMIP6 datasets were downloaded from the Earth System 

Grid Federation (ESGF). CMIP6 and ERA5 datasets were pre-processed using ESMValTool 

(https://esmvaltool.org). 

Code availability 
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The code used for data processing, model training, inference, and evaluation is available at 

https://gitlab.earth.bsc.es/es/seasgen/. 
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Fig. 1. Methodology overview. A, Illustration of the signal decomposition of the target variable Y. B, Schematic 

representation of the conditional Variational Autoencoder (cVAE) architecture. Two vision transformers (ViTs) 

encode the information from multiple climate fields into the latent space. The compressed latent space 

representation is then passed to the CNN decoder that reconstructs the predicted climate fields. C, Final 
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model assembling, combining the interannual variability prediction from the cVAE model and the regressed 

LOESS trend. D, tested model configurations, combining different spatial resolutions and target domains. 

Fig. 2. ACC against ERA5 reanalysis. ACC against ERA5 reanalysis (2001–2021), for temperature (2T, top row) 

and precipitation rate (PR, bottom row). Seasons are shown in the columns: DJF (December–January–

February), MAM (March–April–May), JJA (June–July–August), and SON (September–October–November). 

Black dots indicate statistical significance at the 95% confidence level. 

Fig. 3. Ensemble size effect on model’s deterministic performance. Effect of ensemble size on the ACC of the 

ensemble median (blue thick line) against ERA5 (red thick line). The figure depicts MAM temperature 

anomalies in a grid cell located at 42.5°N, 10.5°E. Blue thinner lines depict the individual ensembles. 

Fig. 4. Global temperature skill scores. Forecast skill scores for near-surface air temperature (tas) predictions 

from 2001–2021, using 1981–2000 as the reference period of the climatological forecast and anomalies. The 

panels show four seasons (DJF, MAM, JJA, SON) across columns and two skill metrics: the root-mean-square 

error skill score (RMSS) and the continuous ranked probability skill score (CRPSS). Skill scores range from 0 

(pink, indicating no skill) to 0.5 (dark blue, indicating high skill above the reference). Metrics are referenced 

(Ref.) against the climatological forecasts (CLIM) or against the ECMWF’s seasonal prediction system (SEAS5). 

Black dots indicate statistical significance of the skill score being positive at the 95% confidence level (more 

details can be found in the Methods section). 

Fig. 5. Global precipitation skill scores. Same as Figure 4 but for precipitation predictions. 

Fig. 6. Regional temperature CRPSS. Temperature forecast skill scores across seasons (DJF, MAM, JJA, and 

SON) of the three model configurations described in Figure 1, panel D: Global 5°, Regional 5°, and Regional 

1°. Metrics are referenced (Ref.) against the climatological forecasts (CLIM) or against the ECMWF’s seasonal 

prediction system (SEAS5). Dots indicate statistical significance that the skill score is positive at the 95% 

confidence level. 

Fig. 7. Regional precipitation CRPSS. Same as Figure 6 but for precipitation predictions. 

Fig. 8. Niño3.4 teleconnections. Pearson correlation between predicted DJF temperature (2T), precipitation 

(PR), and 500 hPa geopotential height (ZG500), and the DJF Niño3.4 index (2001–2021). Black dots indicate 

statistical significance at the 95% confidence level. 
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Fig. 9. NAO teleconnections. Pearson correlation between predicted DJF temperature (2T) and precipitation 

(PR) and the DJF NAO index (2001–2021). Black dots indicate statistical significance at the 95% confidence 

level. 
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