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ABSTRACT 

Glaciers in Alaska contribute greatly to sea-level rise and are losing mass at a faster rate than any 

other region. Yet, our understanding of ongoing changes and ability to model them are hindered 

by a lack of observations, particularly at high spatiotemporal resolution. Here, we leverage 

Sentinel-1 synthetic aperture radar (SAR) data to produce temporally-varying glacier melt 

extents and snowlines from mid-2016 to 2024 for 99% of glaciers in Alaska greater than 2 km2. 

The melt extents are strongly correlated with temperatures, revealing that each 1˚C increase in 

summer temperature causes up to 3 additional weeks of glacier melt. The high spatiotemporal 

resolution also captures subseasonal changes such as the 2019 heat wave, which caused 

subregional snowlines to retreat up to 105 m higher and exposed up to 28% more of the 

underlying glacier compared to typical years. Our snowlines agree well with optical datasets (r2 

up to 0.94), thus providing unprecedented reliable data unencumbered by clouds or lighting 

conditions. Moving forward, our automated, open-source workflow can easily be applied to other 

regions. These data also present unique opportunities to calibrate and validate large-scale glacier 

evolution models, a critical step for improving projections of glacier changes and their impacts. 
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INTRODUCTION 

Mountain glaciers contribute greatly to sea-level rise, are an important water resource, and act as 

crucial sentinels of climate change1-3. In Alaska, glaciers have lost more mass from 2000-20233,4 

and are projected to contribute more to sea-level rise by 21005 than any other mountain glacier 

region. Accurate observations of these changes are necessary to understand the drivers of glacier 

mass loss and improve projections, especially in light of the rapidly changing Arctic climate6 and 

extreme events, such as heat waves, that have a substantial impact on mountain glaciers7-9. 

Satellite-based observations are a powerful tool for monitoring glacier changes globally10, 

especially those that provide insight into glacier mass change3. Transient and seasonal snowlines 

can estimate the glacier equilibrium-line altitude, i.e., the highest elevation on the glacier where 

the climatic mass balance is zero for a given year11, which is closely related to annual mass 

balance12-15. Mapping changes in transient snowlines and equilibrium-line altitudes over time 

thus elucidates drivers of glacier change16-25 and improves glacier models’ abilities to predict 

interannual and subannual changes26-29.  

Currently, all large-scale systematic efforts to derive snowlines utilize optical data22,25,30-33, 

which suffer from inconsistent sampling due to cloud cover, light, and snow events. These 

challenges are often exacerbated on mountain glaciers in late summer, which is particularly 

problematic considering the importance of capturing the maximum snowline to properly estimate 

equilibrium-line altitudes24,34,35. Furthermore, fully-automated workflows to obtain glacier 

snowlines from optical data often suffer from large errors due to optical similarities between 

snow and clouds, as well as cloud shadows and shading effects that complicate the classification 

of debris, ice, firn, and snow30. 

Synthetic aperture radar (SAR) is a robust and reliable remote sensing observation since it 

penetrates clouds and functions regardless of light. The strength of the SAR signal return, known 

as backscatter, depends entirely on the physical properties of the surface. On glaciers in the 

winter, SAR penetrates dry snow and scatters off the underlying ice or debris in the ablation 

zone, and ice lenses in the firn of accumulation areas. During the summer, water in the snow 

pack absorbs radar wave energy, which reduces backscatter and reveals the dry-to-wet snowline 

(i.e., melt extent)36,37. As the snowline retreats, the underlying ice or firn is exposed and 

backscatter increases, providing an estimate of the snowline. Existing studies have demonstrated 

the potential for SAR to derive temporally-varying melt extents38-45 and snowlines46-51; however, 

studies have yet to systematically process continuous snowline time series from SAR at regional 

scales. Ultimately, these data offer invaluable insights into the onset, duration, and severity of the 

ablation season, and serve as important calibration and/or validation data for temperature 

reanalyses and glacier models. 

In this study, we use Sentinel-1 SAR data to map transient snowlines and glacier melt extents for 

99% of glaciers in Alaska greater than 2 km2, representing 85% of the total glaciated area in 

Alaska. These data capture detailed spatial and temporal variations in melting and snowline 

retreat across the region. We showcase the power of these data by quantifying the impact of the 
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2019 heat wave in Alaska on snowline retreat, underscoring the sensitivity of glaciers to short-

term climatic variability. Our observations show strong agreement with snowlines derived from 

optical sources (r2 up to 0.94) and are remarkably robust, as SAR-based observations are 

unaffected by cloud cover and lighting conditions. These observations provide an unprecedented 

basis for high temporal-resolution data developed via an automated workflow that can be applied 

to other regions, and improve our ability to model large-scale glacier changes on subseasonal 

scales. 

RESULTS 

Patterns of glacier melt across and within subregions 

We estimate melt extents and snowlines from mid-2016 through 2024 for 3,023 glaciers in 

Alaska that are greater than 2 km2 using Radiometrically Terrain Corrected Sentinel-1 C-band 

SAR backscatter data (Methods). Sentinel-1 has a 12-day repeat and two orbiting satellites (one 

of these satellites failed in December 2021), yielding a dense time series of ascending and 

descending satellite passes over glaciers in Alaska (Fig. 1). Melt extents and snowlines were 

generated from spatially-distributed backscatter data (Supplementary Fig. 1) and include 

uncertainty for each observation. To account for SAR incorrectly classifying melt in late summer 

due to the delayed refreezing process of water in the firn despite sub-freezing climate conditions, 

we apply an end-of-summer cutoff using bias-corrected temperature reanalysis data52. To enable 

comparison across glaciers of various sizes and elevations, we estimate glacier melt days for 

each glacier, which represent the cumulative fraction of the glacier area that has melted over time 

(e.g., one melt day represents the full glacier melting for a day or two days with half the glacier 

melting) (Methods).  

Glacier melt varies considerably across Alaska, with more melt along coastal ranges than the 

interior (Fig. 2, Supplementary Figs. 2 and 3). The ablation season, defined here as the date at 

which the melt extent exceeds the glacier’s median elevation, begins in early April in the Coast 

Mountains and Aleutians, which experience a relatively warm and wet maritime climate. In the 

colder, drier interior, such as the Alaska Ranges or the Brooks Range, melt begins in late May or 

June (Supplementary Fig. 4). Generally, melt onset coincides with air temperature exceeding 0˚C 

(Supplementary Fig. 5), the timing of which varies by two months across Alaska. Naturally, the 

spatial variability of melt (glacier melt days) across Alaska mimics the timing of the melt onset. 

Across southern Alaska—the Coast Mountains, Cordova-Valdez, Kenai, and Aleutian ranges—

glaciers experience up to ~200 glacier melt days each year. Conversely, glaciers in continental 

climates, including the Brooks, Eastern Alaska, and Wrangell ranges, experience an average of 

~50 to 120 glacier melt days each year.  

Within subregions, strong patterns of melt exist on the coastal and continental sides of mountain 

ranges. This is particularly evident in the Eastern Alaska, Wrangell, St. Elias, and Western 

Chugach ranges, where glaciers on the coastal side experience ~20 more melt days and a melt 

season up to three weeks longer than their continental counterparts (Supplementary Tables 1 and 
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2). This is likely due to a combination of climate (the continental side of these ranges in Alaska 

are generally colder and drier; Supplementary Table 1) and solar aspect (the continental glaciers 

are generally north-facing and thus receive less direct shortwave radiation). 

The timing of satellite passes can provide insight into melt-refreeze cycles53,54 as ascending 

satellite passes are in the evening and descending satellite passes are in the morning for Alaska. 

The differences in detected melt extents from ascending and descending SAR highlight 

important physical processes occurring on glaciers by quantifying the timing and length of the 

shoulder seasons when the climate transitions between the accumulation and ablation seasons. 

Most subregions demonstrate diurnal melt-refreeze cycles that result in the melt season for 

descending (morning) passes appearing to be delayed by up to three weeks and having 7-21 

fewer glacier melt days (Supplementary Tables 2 and 3). This discrepancy is greatest in the Lake 

Clark, Eastern Alaska, and Wrangell ranges due to the slow onset of the ablation season, 

characterized by modest daily melt occurring at the beginning of the ablation season55,56, which 

is refrozen in the descending (morning) backscatter signals. Overall, melt extents derived from 

ascending and descending SAR thus provide valuable insight into the spatial and temporal 

variations in diurnal melt-refreeze cycles revealing where the total melt is less than the refreeze 

capacity of the seasonal snowpack. 

Regional transient snowlines 

To facilitate regional assessments of transient snowlines and comparisons between glaciers, 

snowlines are represented as the fraction of total glacier area (Fig. 3). Note that some data gaps 

exist in the regional analysis—primarily due to missing SAR observations during summer 

months—as only glaciers with sufficient observations in a given year are considered (Methods). 

In general, the maximum snowline hovers around 50% of total glacier area for all subregions, 

and there is no clear trend in the maximum annual snowline from 2017-2024. While all 

subregions demonstrate some degree of interannual variability in the maximum snowline, 

distinct patterns in the timing of snowline retreat are prevalent across all subregions, which is 

especially evident after extreme events.  

The increased snowline retreat in June and July of 2019 is particularly striking. The timing of 

this retreat coincides with an extreme heat wave from June 23 to July 10, 201957 that extended 

throughout all of the glaciated subregions of Alaska except the Brooks Range, which is located 

much further north. In these subregions, the heat wave caused up to a 28% increase in snow-free 

glacier area in 2019 compared to other years (2017-2024) (Supplementary Table 4, 

Supplementary Figs. 6 and 7). In a typical year, the snowline would not retreat this high until up 

to two months later (Supplementary Fig. 8). This change in the timing of snowline retreat and 

lengthened exposure of bare ice and firn reduces the glacier albedo, affecting the glacier energy 

balance and increasing mass loss58.  

Unlike the melt extents, glacier snowlines are consistent on the coastal and continental sides of 

mountain ranges (Supplementary Figs. 9 and 10). This indicates a major difference in 
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accumulation patterns across these mountain ranges, as differences in accumulation are the only 

way snowlines could remain consistent across coastal and continental glaciers, despite the 

differences in observed melt days. This implied complexity in subregional melt and 

accumulation highlights the importance of accurate high spatial-resolution climate data and 

observational constraints for modeling remote glaciers.  

Climate impacts on melt extents and snowlines 

We assess the impact of climatic forcing by evaluating relationships between melt extents and 

transient snowlines with temperature and precipitation data. Specifically, we evaluate the 

correlation between derived glacier metrics (melt days, maximum snowline, and snowline 

changes) and climatic variables (temperature and precipitation) over various monthly and 

seasonal periods. While both temperature and precipitation were evaluated, only temperature is 

strongly correlated with any of the glacier metrics. Significant (p < 0.05) correlations exist 

between glacier melt days and summer temperatures (May through September) across glaciers in 

all subregions of Alaska (Fig. 4; Supplementary Table 5; Supplementary Fig. 11). In particular, 

glaciers across various parts of the Aleutians and Lake Clark subregions experience up to an 

additional 2 weeks of glacier melt days per 1˚C summer warming. This likely reflects the 

combination of long transition seasons (Supplementary Table 3), which increase the sensitivity 

of glacier melt days to small temperature changes, and large interannual variability in summer 

temperatures (Fig. 1) in these subregions. Weaker correlations between melt days and summer 

temperatures occur in the Kenai and Coast Mountains, likely due to the early onset of melt, 

which begins in April, such that additional summer warming does not substantially contribute to 

additional melt extent, since the glaciers are already experiencing widespread melt by May (Fig. 

2). Correlations are slightly less dramatic for other subregions, although they generally show 2-7 

additional glacier melt days per 1˚C of summer warming. For reference, 2019 summer 

temperatures on glaciers in these subregions were 0.8 to 2.0˚C warmer than the 2017-2024 

(excluding 2019) mean summer temperature (Supplementary Table 6). This suggests that every 

fraction of a degree of summer warming has a significant effect on the glaciers causing up to a 

month of additional glacier melt days.  

While no significant relationships were found with the maximum snow-free area, high snowlines 

after the 2019 heat wave (which occurred from June 23 to July 10) were significantly correlated 

with temperature. Specifically, each additional 1˚C warming corresponds to a 1-4% increase in 

exposed ice area fraction (Fig. 4; Supplementary Table 5; Supplementary Fig. 12). Given the 

2019 heat wave temperatures were 2.1 to 6.8 ˚C warmer than the typical year (Supplementary 

Table 6), this relationship highlights the ability of SAR to capture the impact of the heat wave on 

the glaciers and, more importantly, quantifies the sensitivity of glaciers to heat waves. While 

subregional snowlines increased by up to 105 m during the heat wave, exposing up to 28% more 

ice during the 2019 heat wave compared to the same time period in other years (Supplementary 

Table 4), snowlines on individual glaciers increased by more than 240 m, exposing up to an 

additional 33% of glacier area (Supplementary Fig. 13). 
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DISCUSSION 

In this paper, we leverage SAR to present a new dataset of transient glacier snowlines and melt 

extents across Alaska, and assess glacier changes relative to climatic factors. To our knowledge, 

we provide the first large-scale, systematic application of SAR to derive transient glacier 

snowlines. Glacier transient snowline altitude time series show strong agreement with existing 

datasets derived from optical sources (r2 up to 0.94), indicating the suitability of Sentinel-1 SAR 

to obtain accurate snowlines (Supplementary Text S1, Supplementary Table 7, Supplementary 

Figs. 14-25). Some discrepancy between snowlines detected from SAR and optical sources is 

expected, particularly after snowfall events, since SAR penetrates dry snow and observes the 

underlying surface. Consequently, SAR-derived snowlines may lag in detecting descending 

snowlines or fail to capture minor snowfall events (Fig. 5). However, this provides SAR with the 

unique and powerful ability to still observe the maximum snowline altitude (i.e., the equilibrium-

line altitude) even when satellite acquisitions occur after new snowfall that has not yet melted. 

SAR also offers powerful advantages to snowlines derived from optical sources21-24,32 as the 

methods require no training or calibration, are robust to climate and daylight (including cloud 

cover, shadows, shading, and general changes in lighting conditions), and obtain measurements 

on a 6 to 12-day basis. As such, snowlines from SAR produce regular snowline observations 

throughout the entire ablation season, including in shoulder seasons where snowlines from 

optical sources are the least reliable. This consistency is particularly valuable towards the end of 

the summer, as snowlines are often used to estimate the equilibrium-line altitude. Like optical 

data, distinguishing firn from snow is more challenging than snow from ice. However, our 

results show that the change in backscatter signal from snow to firn is substantial enough to 

estimate the snowline above the equilibrium-line altitude as accurately as optical data 

(Supplementary Text S1). Furthermore, unlike many existing snowline products, our workflow 

quantifies uncertainty in transient snowline observations, which is critical for utilizing snowlines 

as calibration for models at subseasonal resolution26. Ultimately, these data present unique 

opportunities for near real-time monitoring of glaciers and serve as a foundation to augment 

existing regional and global datasets by providing subseasonal data at the glacier scale4,59,60. 

Our new datasets estimate transient melt extents and snowlines with unprecedented reliability. 

These findings provide insights into the ways in which Alaskan glaciers are responding to 

climate change, and have implications at local, regional, and global scales. The present-day 

sensitivity to warming indicates that glaciers across Alaska will experience up to 1 to 4 weeks of 

additional glacier melt days by the end of the 21st century based on present-day glacier areas, 

depending on the emissions scenario (Supplementary Table 5, Supplementary Fig. 26). 

Similarly, mid-summer snowlines will continue to be susceptible to heat waves, however, the 

climate even in typical years will cause snowlines to retreat earlier and expose ~5% more ice 

regionally through mid-summer by 2100, depending on the future emissions scenario 

(Supplementary Table 5, Supplementary Fig. 27). The open-source methods and accompanying 

analyses are well suited to scale to other regions and/or globally, which would open unique 
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opportunities to leverage the data as calibration and validation for temperature reanalyses and 

global glacier models. Such assessments will constrain models at subseasonal scales, thereby 

improving estimates of future glacier changes and contributions to sea-level rise. 

METHODS 

Data overview and preparation 

SAR data was obtained via the Alaska Satellite Facility (ASF) Vertex search interface 

(https://search.asf.alaska.edu/) for all satellite path-frame combinations covering glaciated terrain 

over Alaska and that had at least 100 scenes between January 2016 and December 2024. 

Radiometrically terrain corrected (RTC)61 SAR ground range detected high-resolution data 

(GRD-HD) integrated waveform (IW) products were downloaded at 30 m pixel spacing using γ0 

backscatter coefficient normalization and a decibel output scale. DEM matching was applied to 

effectively co-register SAR images to the Copernicus Global 30 m DEM62. Both Sentinel-1A and 

Sentinel-1B data were utilized. In total, we considered 50 path-frame combinations: 18 from 

ascending satellite passes and 32 from descending satellite passes, each with between 102 and 

248 scenes.  

Cross-polarized (VH) backscatter products were extracted to improve sensitivity to volume 

scattering of the radar signal in firn and snow and more effectively detect changes in glacier 

facies compared to co-polarized data63 (Supplementary Fig. 25). All data from each path-frame 

were aggregated into a single time series datacube and downscaled from 30 m to 100 m 

resolution (Supplementary Fig. 24), with observations every ~12 days since mid-2016. We 

extracted data for each glacier in a scene with an area of at least 2 km2, representing 99% of 

glaciers in Alaska that have an area of at least 2 km2, and 85% of the total glaciated area in 

Alaska. 

Melt extent altitude 

Glacier melt extents reveal where the glacier is melting for each scene. The melt extent is 

characterized by a sharp drop in backscatter due to the presence of water in the snowpack that 

absorbs and attenuates the radar signal36. The initial classification of melting is based on a time 

series analysis of backscatter relative to the winter mean for each pixel (Supplementary Fig. 28). 

Specifically, pixels are classified as melting when the backscatter decreases by at least 3 dB (a 

~50% decrease in power) compared to the mean winter backscatter37 and the change in 

backscatter is greater than twice the winter standard deviation40. The winter mean is based on 

scenes from January and February. Pixels with a standard deviation from winter scenes that 

exceeds 3 dB are excluded as the backscatter should be relatively stable during this time. Since 

pixels are often misclassified as not melting when the surface becomes snow-free and the 

backscatter no longer has the marked drop (see snowlines below), a second step classifies these 

snow-free pixels as melting when the higher, snow-covered pixels are still melting. Specifically, 
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we aggregate the melt pixels to 20 m elevation bins, identify the minimum elevation bin with at 

least 10 pixels of which 90% are melting, and classify all elevations below this bin as melting. 

The melt extent altitude is derived by estimating the percent of a glacier’s pixels that are 

classified as melting and determining the corresponding elevation from the cumulative area 

altitude distribution24. For example, if 50% of the glacier is melting, the melt extent altitude is 

the glacier's median elevation. This percentage-based method is robust to complex glacier 

geometries with multiple tributaries and melt extents that vary considerably spatially. 

Uncertainty is calculated from the corresponding elevations associated with the percentage of 

pixels that are classified as melting but above the melt extent and, vice versa, that are classified 

as not melting but are below the melt extent. 

Transient snowline altitude 

Transient snowline altitudes are estimated using a similar percentage-based approach as melt 

extent altitudes. Snow-free glacier pixels are determined as those that are below the melt extent, 

have a 4 dB increase (a ~2.5x increase in power) compared to the 5th percentile of summer 

(April, May, June, and July) backscatter, and have a change in backscatter exceeding at least 

twice the winter pixel standard deviation (Supplementary Fig. 29). The 5th percentile of 

minimum summer backscatter effectively captures a point in the time series that has the 

characteristic drop in backscatter associated with snow melting on the surface. The percentage of 

snow-free pixels on the glacier is then used to estimate the transient snowline altitude based on 

the corresponding elevation from the cumulative area altitude distribution. Uncertainty is 

estimated as the elevation associated with anomalous snow-covered and snow-free pixels below 

and above the transient snowline altitude, respectively. 

End-of-summer cutoff 

Melt extent altitudes are unreliable in the late summer due to a lag between actual surface 

conditions (i.e., no melt) and the delayed refreezing within the snow/firn that dictates SAR 

backscatter signals. As such, a drop in SAR backscatter can remain in accumulation areas, 

specifically the wet percolation zone, even after the ablation season has ended and the glacier is 

no longer melting. We use daily air temperature data from the European Centre for Medium-

Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5)52 to apply an end-of-summer cutoff 

for the melt extent altitudes. We bias-correct the temperature data using an additive temperature 

factor that minimizes the misfit between SAR-derived melt onset and the initial date when 

temperature exceeds 0 °C for each elevation bin. Using a lapse rate of 6.5 °C km-1, we adjust the 

bias-corrected ERA5 temperature time series to each glacier elevation bin, and apply an end-of-

summer cutoff to the melt extent altitudes for each elevation bin based on the final date with 

above-freezing temperatures.  

Transient snowline altitudes at the end of summer are also adjusted to ensure that the transient 

snowline altitude does not exceed the melt extent altitude. We note that this may incorrectly 
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lower snowlines after the ablation season (e.g., October and November) once melting has 

stopped but if snow has not yet fallen; however, this has a negligible impact on our results as the 

focus of our study is on the rising or maximum snowline over the ablation season. 

Glacier change metrics 

We use “glacier melt days” as a normalized metric representing the duration and spatial extent of 

glacier melt each year. Specifically, glacier melt days are calculated annually from the melt 

extent altitude time series, representing the number of days during which the equivalent of the 

glacier’s total area is melting (e.g., one melt day represents the full glacier melting for a day or 

two days with half the glacier melting). The date of melt onset is calculated as the date in which 

the melt extent exceeds 50% of the glacier area. This threshold is chosen as it is robust to noise 

and approximately coincides with the glacier accumulation area experiencing melt. 

Snowline validation 

The transient snowline time series derived from this study are compared to existing studies that 

report snowlines or ELA for glaciers in Alaska21-24,32. We report metrics including the correlation 

coefficient, mean error (bias), mean absolute error, and root mean square error. For datasets that 

report only an annual ELA (i.e., ref. 23), the maximum annual snowline altitude is taken from 

the SAR-derived snowline as the ELA. For datasets that report snowline altitudes for specific 

dates, the SAR-derived transient snowline time series are linearly interpolated to obtain a 

snowline altitude estimate for the corresponding date. SAR-derived snowline data are only 

compared if there are at least 20 SAR observations for a given year, 10 of which occur from May 

through September. 

Climate analyses 

To assess the impact of climate on glaciers, temperature and precipitation data were correlated 

with melt extent altitudes, transient snowlines, and glacier change metrics. Hourly ERA5 

temperature and precipitation data were aggregated to daily values (mean and cumulative, 

respectively). The Pearson linear correlation coefficient and slope of correlations were calculated 

for various time spans throughout the summer. We report ‘significant’ correlations using a Wald 

test (p < 0.05). Correlations were extracted between glacier metrics (i.e., glacier melt days and 

snowline changes) and climatic variables (i.e., temperature and precipitation for a given time 

span) for each SAR path per glacier and year. The reported correlations are the results of glaciers 

aggregated by subregion (e.g., Supplementary Table 5, Supplementary Figs. 11 and 12) or 

locally into hex bins with neighboring glaciers (e.g., Fig. 4). Projections of temperatures through 

2100 are from an ensemble of 12 general circulation models (GCMs) from the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) and four shared socioeconomic pathways (SSPs), 

using an 11-year moving average to filter through interannual variability. 
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DATA AVAILABILITY  

All data produced in this work are available with open access, and the source data are publicly 

accessible. Sentinel-1 SAR data can be downloaded through the Alaska Satellite Facility Vertex 

tool (https://search.asf.alaska.edu/#/). Glacier outlines are available online through the Global 

Land Ice Measurements from Space (GLIMS) initiative (https://www.glims.org/RGI/). Climate 

data are available online at the Copernicus Climate Change Service (C3S) Climate Data Store 

(cds.climate.copernicus.eu/). All glacier transient snowlines, melt extents, and binned backscatter 

products are available from Zenodo (https://zenodo.org/records/17108203) and can be easily 

accessed, visualized, and downloaded for any glacier through an online tool 

(https://alaskasnowlines.streamlit.app/).  

CODE AVAILABILITY 

Python was used to generate all results and analysis in this study. Information regarding Python 

installation and system requirements is available online (https://www.python.org/). Code used to 

produce these results and generate figures is available on GitHub 

(https://github.com/albinwwells/SAR-Alaska-Processing) with a sample dataset and 

accompanying tutorial available on Zenodo (https://zenodo.org/records/17108203). 
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FIGURES AND LEGENDS 

 
Fig. 1: Sentinel-1 coverage of glaciated subregions in Alaska for ascending and descending 

satellite passes. The number of glaciers greater than 2 km2 with Sentinel-1 data are denoted for 

the twelve subregions of Alaska. Inset shows mean annual precipitation and summer temperature 

at the terminus of all studied glaciers for each subregion from 2017-2024, and highlights those 

from 2019 associated with a heat wave. The colors on the map and in the inset correspond to 

each of the subregions. 
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Fig. 2: Mean glacier melt days and date when glacier melt extent exceeds the median glacier 

elevation across Alaska. Hex bar heights indicate the number of glaciers in the area and are 

colored by the date when the melt extent exceeds 50% of the glacier area. Inset panels show the 

mean glacier melt days from 2017-2024 for each subregion. Data are shown for descending 

scenes to represent melt that does not refreeze overnight. Data for ascending scenes are shown 

in the supplementary materials (Supplementary Fig. 3). 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

 
Fig. 3: Transient snowline evolution as a fraction of glacier area from 2017-2024 for twelve 

subregions across Alaska. The symbols indicate approximate dates of the start (June 23) and end 

(July 10) of the 2019 heat wave in Alaska, and the colors correspond to the maximum snowline 

during each month throughout the summer. Years without snowlines denote data gaps due to 

insufficient coverage in a given year. 
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Fig. 4: Relationship between glacier melt days and summer temperatures as well as snowline 

changes and mid-summer temperatures. Correlation and slope between glacier melt days and 

summer (May through September) temperatures (a,c) are based on each glacier and each year. 

Relationships for snowline change up to July 10 and temperatures from June 23 to July 10, 

coincide with the dates of the 2019 heat wave (b, d). Data represent all observations within a 

given area. Only pixels with a significant correlation (p < 0.05) are shown.  
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Fig. 5: Example of snowlines and melt extents derived from SAR compared to optical snowlines 

(ref. 22) on Black Rapids Glacier in 2020. Glacier hypsometry is shown on top of the heat map. 

SAR acquisitions and corresponding snowlines are shown in the middle panels (generally 

appearing just below the dark red areas, where thinner lines represent snowline uncertainty). 

The nearest optical imagery with limited cloud coverage are shown on the right, with the SAR-

derived snowline from the middle panel overlaying the images. Landsat-8 imagery (right 

column) courtesy of the U.S. Geological Survey.  
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