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ABSTRACT

Glaciers in Alaska contribute greatly to sea-level rise and are losing mass at a faster rate than any
other region. Yet, our understanding of ongoing changes and ability to model them are hindered
by a lack of observations, particularly at high spatiotemporal resolution. Here, we leverage
Sentinel-1 synthetic aperture radar (SAR) data to produce temporally-varying glacier melt
extents and snowlines from mid-2016 to 2024 for 99% of glaciers in Alaska greater than 2 km?.
The melt extents are strongly correlated with temperatures, revealing that each 1°C increase in
summer temperature causes up to 3 additional weeks of glacier melt. The high spatiotemporal
resolution also captures subseasonal changes such as the 2019 heat wave, which caused
subregional snowlines to retreat up to 105 m higher and exposed up to 28% more of the
underlying glacier compared to typical years. Our snowlines agree well with optical datasets (r?
up to 0.94), thus providing unprecedented reliable data unencumbered by clouds or lighting
conditions. Moving forward, our automated, open-source workflow can easily be applied to other
regions. These data also present unique opportunities to calibrate and validate large-scale glacier
evolution models, a critical step for improving projections of glacier changes and their impacts.



INTRODUCTION

Mountain glaciers contribute greatly to sea-level rise, are an important water resource, and act as
crucial sentinels of climate change®. In Alaska, glaciers have lost more mass from 2000-20233#
and are projected to contribute more to sea-level rise by 2100° than any other mountain glacier
region. Accurate observations of these changes are necessary to understand the drivers of glacier
mass loss and improve projections, especially in light of the rapidly changing Arctic climate® and
extreme events, such as heat waves, that have a substantial impact on mountain glaciers’®.

Satellite-based observations are a powerful tool for monitoring glacier changes globally*°,
especially those that provide insight into glacier mass change®. Transient and seasonal snowlines
can estimate the glacier equilibrium-line altitude, i.e., the highest elevation on the glacier where
the climatic mass balance is zero for a given year!!, which is closely related to annual mass
balance!?!®, Mapping changes in transient snowlines and equilibrium-line altitudes over time
thus elucidates drivers of glacier change!®?® and improves glacier models’ abilities to predict
interannual and subannual changes?5-2°,

Currently, all large-scale systematic efforts to derive snowlines utilize optical data?22%30-33,
which suffer from inconsistent sampling due to cloud cover, light, and snow events. These
challenges are often exacerbated on mountain glaciers in late summer, which is particularly
problematic considering the importance of capturing the maximum snowline to properly estimate
equilibrium-line altitudes®**+%®, Furthermore, fully-automated workflows to obtain glacier
snowlines from optical data often suffer from large errors due to optical similarities between
snow and clouds, as well as cloud shadows and shading effects that complicate the classification
of debris, ice, firn, and snow™’,

Synthetic aperture radar (SAR) is a robust and reliable remote sensing observation since it
penetrates clouds and functions regardless of light. The strength of the SAR signal return, known
as backscatter, depends entirely on the physical properties of the surface. On glaciers in the
winter, SAR penetrates dry snow and scatters off the underlying ice or debris in the ablation
zone, and ice lenses in the firn of accumulation areas. During the summer, water in the snow
pack absorbs radar wave energy, which reduces backscatter and reveals the dry-to-wet snowline
(i.e., melt extent)®37. As the snowline retreats, the underlying ice or firn is exposed and
backscatter increases, providing an estimate of the snowline. Existing studies have demonstrated
the potential for SAR to derive temporally-varying melt extents®-* and snowlines*®-5!; however,
studies have yet to systematically process continuous snowline time series from SAR at regional
scales. Ultimately, these data offer invaluable insights into the onset, duration, and severity of the
ablation season, and serve as important calibration and/or validation data for temperature
reanalyses and glacier models.

In this study, we use Sentinel-1 SAR data to map transient snowlines and glacier melt extents for
99% of glaciers in Alaska greater than 2 km?, representing 85% of the total glaciated area in
Alaska. These data capture detailed spatial and temporal variations in melting and snowline
retreat across the region. We showcase the power of these data by quantifying the impact of the



2019 heat wave in Alaska on snowline retreat, underscoring the sensitivity of glaciers to short-
term climatic variability. Our observations show strong agreement with snowlines derived from
optical sources (r? up to 0.94) and are remarkably robust, as SAR-based observations are
unaffected by cloud cover and lighting conditions. These observations provide an unprecedented
basis for high temporal-resolution data developed via an automated workflow that can be applied
to other regions, and improve our ability to model large-scale glacier changes on subseasonal
scales.

RESULTS

Patterns of glacier melt across and within subregions

We estimate melt extents and snowlines from mid-2016 through 2024 for 3,023 glaciers in
Alaska that are greater than 2 km? using Radiometrically Terrain Corrected Sentinel-1 C-band
SAR backscatter data (Methods). Sentinel-1 has a 12-day repeat and two orbiting satellites (one
of these satellites failed in December 2021), yielding a dense time series of ascending and
descending satellite passes over glaciers in Alaska (Fig. 1). Melt extents and snowlines were
generated from spatially-distributed backscatter data (Supplementary Fig. 1) and include
uncertainty for each observation. To account for SAR incorrectly classifying melt in late summer
due to the delayed refreezing process of water in the firn despite sub-freezing climate conditions,
we apply an end-of-summer cutoff using bias-corrected temperature reanalysis data®2. To enable
comparison across glaciers of various sizes and elevations, we estimate glacier melt days for
each glacier, which represent the cumulative fraction of the glacier area that has melted over time
(e.g., one melt day represents the full glacier melting for a day or two days with half the glacier
melting) (Methods).

Glacier melt varies considerably across Alaska, with more melt along coastal ranges than the
interior (Fig. 2, Supplementary Figs. 2 and 3). The ablation season, defined here as the date at
which the melt extent exceeds the glacier’s median elevation, begins in early April in the Coast
Mountains and Aleutians, which experience a relatively warm and wet maritime climate. In the
colder, drier interior, such as the Alaska Ranges or the Brooks Range, melt begins in late May or
June (Supplementary Fig. 4). Generally, melt onset coincides with air temperature exceeding 0°C
(Supplementary Fig. 5), the timing of which varies by two months across Alaska. Naturally, the
spatial variability of melt (glacier melt days) across Alaska mimics the timing of the melt onset.
Across southern Alaska—the Coast Mountains, Cordova-Valdez, Kenai, and Aleutian ranges—
glaciers experience up to ~200 glacier melt days each year. Conversely, glaciers in continental
climates, including the Brooks, Eastern Alaska, and Wrangell ranges, experience an average of
~50 to 120 glacier melt days each year.

Within subregions, strong patterns of melt exist on the coastal and continental sides of mountain
ranges. This is particularly evident in the Eastern Alaska, Wrangell, St. Elias, and Western
Chugach ranges, where glaciers on the coastal side experience ~20 more melt days and a melt
season up to three weeks longer than their continental counterparts (Supplementary Tables 1 and



2). This is likely due to a combination of climate (the continental side of these ranges in Alaska
are generally colder and drier; Supplementary Table 1) and solar aspect (the continental glaciers
are generally north-facing and thus receive less direct shortwave radiation).

The timing of satellite passes can provide insight into melt-refreeze cycles®*>* as ascending
satellite passes are in the evening and descending satellite passes are in the morning for Alaska.
The differences in detected melt extents from ascending and descending SAR highlight
important physical processes occurring on glaciers by quantifying the timing and length of the
shoulder seasons when the climate transitions between the accumulation and ablation seasons.
Most subregions demonstrate diurnal melt-refreeze cycles that result in the melt season for
descending (morning) passes appearing to be delayed by up to three weeks and having 7-21
fewer glacier melt days (Supplementary Tables 2 and 3). This discrepancy is greatest in the Lake
Clark, Eastern Alaska, and Wrangell ranges due to the slow onset of the ablation season,
characterized by modest daily melt occurring at the beginning of the ablation season®*¢, which
is refrozen in the descending (morning) backscatter signals. Overall, melt extents derived from
ascending and descending SAR thus provide valuable insight into the spatial and temporal
variations in diurnal melt-refreeze cycles revealing where the total melt is less than the refreeze
capacity of the seasonal snowpack.

Regional transient snowlines

To facilitate regional assessments of transient snowlines and comparisons between glaciers,
snowlines are represented as the fraction of total glacier area (Fig. 3). Note that some data gaps
exist in the regional analysis—primarily due to missing SAR observations during summer
months—as only glaciers with sufficient observations in a given year are considered (Methods).
In general, the maximum snowline hovers around 50% of total glacier area for all subregions,
and there is no clear trend in the maximum annual snowline from 2017-2024. While all
subregions demonstrate some degree of interannual variability in the maximum snowline,
distinct patterns in the timing of snowline retreat are prevalent across all subregions, which is
especially evident after extreme events.

The increased snowline retreat in June and July of 2019 is particularly striking. The timing of
this retreat coincides with an extreme heat wave from June 23 to July 10, 2019°% that extended
throughout all of the glaciated subregions of Alaska except the Brooks Range, which is located
much further north. In these subregions, the heat wave caused up to a 28% increase in snow-free
glacier area in 2019 compared to other years (2017-2024) (Supplementary Table 4,
Supplementary Figs. 6 and 7). In a typical year, the snowline would not retreat this high until up
to two months later (Supplementary Fig. 8). This change in the timing of snowline retreat and
lengthened exposure of bare ice and firn reduces the glacier albedo, affecting the glacier energy
balance and increasing mass 10ss®.

Unlike the melt extents, glacier snowlines are consistent on the coastal and continental sides of
mountain ranges (Supplementary Figs. 9 and 10). This indicates a major difference in



accumulation patterns across these mountain ranges, as differences in accumulation are the only
way snowlines could remain consistent across coastal and continental glaciers, despite the
differences in observed melt days. This implied complexity in subregional melt and
accumulation highlights the importance of accurate high spatial-resolution climate data and
observational constraints for modeling remote glaciers.

Climate impacts on melt extents and snowlines

We assess the impact of climatic forcing by evaluating relationships between melt extents and
transient snowlines with temperature and precipitation data. Specifically, we evaluate the
correlation between derived glacier metrics (melt days, maximum snowline, and snowline
changes) and climatic variables (temperature and precipitation) over various monthly and
seasonal periods. While both temperature and precipitation were evaluated, only temperature is
strongly correlated with any of the glacier metrics. Significant (p < 0.05) correlations exist
between glacier melt days and summer temperatures (May through September) across glaciers in
all subregions of Alaska (Fig. 4; Supplementary Table 5; Supplementary Fig. 11). In particular,
glaciers across various parts of the Aleutians and Lake Clark subregions experience up to an
additional 2 weeks of glacier melt days per 1°C summer warming. This likely reflects the
combination of long transition seasons (Supplementary Table 3), which increase the sensitivity
of glacier melt days to small temperature changes, and large interannual variability in summer
temperatures (Fig. 1) in these subregions. Weaker correlations between melt days and summer
temperatures occur in the Kenai and Coast Mountains, likely due to the early onset of melt,
which begins in April, such that additional summer warming does not substantially contribute to
additional melt extent, since the glaciers are already experiencing widespread melt by May (Fig.
2). Correlations are slightly less dramatic for other subregions, although they generally show 2-7
additional glacier melt days per 1°C of summer warming. For reference, 2019 summer
temperatures on glaciers in these subregions were 0.8 to 2.0°C warmer than the 2017-2024
(excluding 2019) mean summer temperature (Supplementary Table 6). This suggests that every
fraction of a degree of summer warming has a significant effect on the glaciers causing up to a
month of additional glacier melt days.

While no significant relationships were found with the maximum snow-free area, high snowlines
after the 2019 heat wave (which occurred from June 23 to July 10) were significantly correlated
with temperature. Specifically, each additional 1°C warming corresponds to a 1-4% increase in
exposed ice area fraction (Fig. 4; Supplementary Table 5; Supplementary Fig. 12). Given the
2019 heat wave temperatures were 2.1 to 6.8 °C warmer than the typical year (Supplementary
Table 6), this relationship highlights the ability of SAR to capture the impact of the heat wave on
the glaciers and, more importantly, quantifies the sensitivity of glaciers to heat waves. While
subregional snowlines increased by up to 105 m during the heat wave, exposing up to 28% more
ice during the 2019 heat wave compared to the same time period in other years (Supplementary
Table 4), snowlines on individual glaciers increased by more than 240 m, exposing up to an
additional 33% of glacier area (Supplementary Fig. 13).



DISCUSSION

In this paper, we leverage SAR to present a new dataset of transient glacier snowlines and melt
extents across Alaska, and assess glacier changes relative to climatic factors. To our knowledge,
we provide the first large-scale, systematic application of SAR to derive transient glacier
snowlines. Glacier transient snowline altitude time series show strong agreement with existing
datasets derived from optical sources (r? up to 0.94), indicating the suitability of Sentinel-1 SAR
to obtain accurate snowlines (Supplementary Text S1, Supplementary Table 7, Supplementary
Figs. 14-25). Some discrepancy between snowlines detected from SAR and optical sources is
expected, particularly after snowfall events, since SAR penetrates dry snow and observes the
underlying surface. Consequently, SAR-derived snowlines may lag in detecting descending
snowlines or fail to capture minor snowfall events (Fig. 5). However, this provides SAR with the
unique and powerful ability to still observe the maximum snowline altitude (i.e., the equilibrium-
line altitude) even when satellite acquisitions occur after new snowfall that has not yet melted.

SAR also offers powerful advantages to snowlines derived from optical sources?-2432 as the
methods require no training or calibration, are robust to climate and daylight (including cloud
cover, shadows, shading, and general changes in lighting conditions), and obtain measurements
on a 6 to 12-day basis. As such, snowlines from SAR produce regular snowline observations
throughout the entire ablation season, including in shoulder seasons where snowlines from
optical sources are the least reliable. This consistency is particularly valuable towards the end of
the summer, as snowlines are often used to estimate the equilibrium-line altitude. Like optical
data, distinguishing firn from snow is more challenging than snow from ice. However, our
results show that the change in backscatter signal from snow to firn is substantial enough to
estimate the snowline above the equilibrium-line altitude as accurately as optical data
(Supplementary Text S1). Furthermore, unlike many existing snowline products, our workflow
quantifies uncertainty in transient snowline observations, which is critical for utilizing snowlines
as calibration for models at subseasonal resolution?®. Ultimately, these data present unique
opportunities for near real-time monitoring of glaciers and serve as a foundation to augment
existing regional and global datasets by providing subseasonal data at the glacier scale*°%°,

Our new datasets estimate transient melt extents and snowlines with unprecedented reliability.
These findings provide insights into the ways in which Alaskan glaciers are responding to
climate change, and have implications at local, regional, and global scales. The present-day
sensitivity to warming indicates that glaciers across Alaska will experience up to 1 to 4 weeks of
additional glacier melt days by the end of the 21st century based on present-day glacier areas,
depending on the emissions scenario (Supplementary Table 5, Supplementary Fig. 26).
Similarly, mid-summer snowlines will continue to be susceptible to heat waves, however, the
climate even in typical years will cause snowlines to retreat earlier and expose ~5% more ice
regionally through mid-summer by 2100, depending on the future emissions scenario
(Supplementary Table 5, Supplementary Fig. 27). The open-source methods and accompanying
analyses are well suited to scale to other regions and/or globally, which would open unique



opportunities to leverage the data as calibration and validation for temperature reanalyses and
global glacier models. Such assessments will constrain models at subseasonal scales, thereby
improving estimates of future glacier changes and contributions to sea-level rise.

METHODS

Data overview and preparation

SAR data was obtained via the Alaska Satellite Facility (ASF) Vertex search interface
(https://search.asf.alaska.edu/) for all satellite path-frame combinations covering glaciated terrain
over Alaska and that had at least 100 scenes between January 2016 and December 2024.
Radiometrically terrain corrected (RTC)®* SAR ground range detected high-resolution data
(GRD-HD) integrated waveform (IW) products were downloaded at 30 m pixel spacing using yo
backscatter coefficient normalization and a decibel output scale. DEM matching was applied to
effectively co-register SAR images to the Copernicus Global 30 m DEM®2, Both Sentinel-1A and
Sentinel-1B data were utilized. In total, we considered 50 path-frame combinations: 18 from
ascending satellite passes and 32 from descending satellite passes, each with between 102 and
248 scenes.

Cross-polarized (VH) backscatter products were extracted to improve sensitivity to volume
scattering of the radar signal in firn and snow and more effectively detect changes in glacier
facies compared to co-polarized data® (Supplementary Fig. 25). All data from each path-frame
were aggregated into a single time series datacube and downscaled from 30 m to 100 m
resolution (Supplementary Fig. 24), with observations every ~12 days since mid-2016. We
extracted data for each glacier in a scene with an area of at least 2 km?, representing 99% of
glaciers in Alaska that have an area of at least 2 km?, and 85% of the total glaciated area in
Alaska.

Melt extent altitude

Glacier melt extents reveal where the glacier is melting for each scene. The melt extent is
characterized by a sharp drop in backscatter due to the presence of water in the snowpack that
absorbs and attenuates the radar signal®. The initial classification of melting is based on a time
series analysis of backscatter relative to the winter mean for each pixel (Supplementary Fig. 28).
Specifically, pixels are classified as melting when the backscatter decreases by at least 3 dB (a
~50% decrease in power) compared to the mean winter backscatter®’ and the change in
backscatter is greater than twice the winter standard deviation*°. The winter mean is based on
scenes from January and February. Pixels with a standard deviation from winter scenes that
exceeds 3 dB are excluded as the backscatter should be relatively stable during this time. Since
pixels are often misclassified as not melting when the surface becomes snow-free and the
backscatter no longer has the marked drop (see snowlines below), a second step classifies these
snow-free pixels as melting when the higher, snow-covered pixels are still melting. Specifically,



we aggregate the melt pixels to 20 m elevation bins, identify the minimum elevation bin with at
least 10 pixels of which 90% are melting, and classify all elevations below this bin as melting.

The melt extent altitude is derived by estimating the percent of a glacier’s pixels that are
classified as melting and determining the corresponding elevation from the cumulative area
altitude distribution?. For example, if 50% of the glacier is melting, the melt extent altitude is
the glacier's median elevation. This percentage-based method is robust to complex glacier
geometries with multiple tributaries and melt extents that vary considerably spatially.
Uncertainty is calculated from the corresponding elevations associated with the percentage of
pixels that are classified as melting but above the melt extent and, vice versa, that are classified
as not melting but are below the melt extent.

Transient snowline altitude

Transient snowline altitudes are estimated using a similar percentage-based approach as melt
extent altitudes. Snow-free glacier pixels are determined as those that are below the melt extent,
have a 4 dB increase (a ~2.5x increase in power) compared to the 5th percentile of summer
(April, May, June, and July) backscatter, and have a change in backscatter exceeding at least
twice the winter pixel standard deviation (Supplementary Fig. 29). The 5th percentile of
minimum summer backscatter effectively captures a point in the time series that has the
characteristic drop in backscatter associated with snow melting on the surface. The percentage of
snow-free pixels on the glacier is then used to estimate the transient snowline altitude based on
the corresponding elevation from the cumulative area altitude distribution. Uncertainty is
estimated as the elevation associated with anomalous snow-covered and snow-free pixels below
and above the transient snowline altitude, respectively.

End-of-summer cutoff

Melt extent altitudes are unreliable in the late summer due to a lag between actual surface
conditions (i.e., no melt) and the delayed refreezing within the snow/firn that dictates SAR
backscatter signals. As such, a drop in SAR backscatter can remain in accumulation areas,
specifically the wet percolation zone, even after the ablation season has ended and the glacier is
no longer melting. We use daily air temperature data from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5)*? to apply an end-of-summer cutoff
for the melt extent altitudes. We bias-correct the temperature data using an additive temperature
factor that minimizes the misfit between SAR-derived melt onset and the initial date when
temperature exceeds 0 °C for each elevation bin. Using a lapse rate of 6.5 °C km, we adjust the
bias-corrected ERAS5 temperature time series to each glacier elevation bin, and apply an end-of-
summer cutoff to the melt extent altitudes for each elevation bin based on the final date with
above-freezing temperatures.

Transient snowline altitudes at the end of summer are also adjusted to ensure that the transient
snowline altitude does not exceed the melt extent altitude. We note that this may incorrectly



lower snowlines after the ablation season (e.g., October and November) once melting has
stopped but if snow has not yet fallen; however, this has a negligible impact on our results as the
focus of our study is on the rising or maximum snowline over the ablation season.

Glacier change metrics

We use “glacier melt days” as a normalized metric representing the duration and spatial extent of
glacier melt each year. Specifically, glacier melt days are calculated annually from the melt
extent altitude time series, representing the number of days during which the equivalent of the
glacier’s total area is melting (e.g., one melt day represents the full glacier melting for a day or
two days with half the glacier melting). The date of melt onset is calculated as the date in which
the melt extent exceeds 50% of the glacier area. This threshold is chosen as it is robust to noise
and approximately coincides with the glacier accumulation area experiencing melt.

Snowline validation

The transient snowline time series derived from this study are compared to existing studies that
report snowlines or ELA for glaciers in Alaska?*?432, We report metrics including the correlation
coefficient, mean error (bias), mean absolute error, and root mean square error. For datasets that
report only an annual ELA (i.e., ref. 23), the maximum annual snowline altitude is taken from
the SAR-derived snowline as the ELA. For datasets that report snowline altitudes for specific
dates, the SAR-derived transient snowline time series are linearly interpolated to obtain a
snowline altitude estimate for the corresponding date. SAR-derived snowline data are only
compared if there are at least 20 SAR observations for a given year, 10 of which occur from May
through September.

Climate analyses

To assess the impact of climate on glaciers, temperature and precipitation data were correlated
with melt extent altitudes, transient snowlines, and glacier change metrics. Hourly ERA5
temperature and precipitation data were aggregated to daily values (mean and cumulative,
respectively). The Pearson linear correlation coefficient and slope of correlations were calculated
for various time spans throughout the summer. We report ‘significant’ correlations using a Wald
test (p < 0.05). Correlations were extracted between glacier metrics (i.e., glacier melt days and
snowline changes) and climatic variables (i.e., temperature and precipitation for a given time
span) for each SAR path per glacier and year. The reported correlations are the results of glaciers
aggregated by subregion (e.g., Supplementary Table 5, Supplementary Figs. 11 and 12) or
locally into hex bins with neighboring glaciers (e.g., Fig. 4). Projections of temperatures through
2100 are from an ensemble of 12 general circulation models (GCMs) from the Coupled Model
Intercomparison Project Phase 6 (CMIP6) and four shared socioeconomic pathways (SSPs),
using an 11-year moving average to filter through interannual variability.
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Fig. 1: Sentinel-1 coverage of glaciated subregions in Alaska for ascending and descending
satellite passes. The number of glaciers greater than 2 km? with Sentinel-1 data are denoted for
the twelve subregions of Alaska. Inset shows mean annual precipitation and summer temperature
at the terminus of all studied glaciers for each subregion from 2017-2024, and highlights those
from 2019 associated with a heat wave. The colors on the map and in the inset correspond to

each of the subregions.
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Fig. 2: Mean glacier melt days and date when glacier melt extent exceeds the median glacier
elevation across Alaska. Hex bar heights indicate the number of glaciers in the area and are
colored by the date when the melt extent exceeds 50% of the glacier area. Inset panels show the
mean glacier melt days from 2017-2024 for each subregion. Data are shown for descending
scenes to represent melt that does not refreeze overnight. Data for ascending scenes are shown

in the supplementary materials (Supplementary Fig. 3).
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Fig. 3: Transient snowline evolution as a fraction of glacier area from 2017-2024 for twelve
subregions across Alaska. The symbols indicate approximate dates of the start (June 23) and end
(July 10) of the 2019 heat wave in Alaska, and the colors correspond to the maximum snowline
during each month throughout the summer. Years without snowlines denote data gaps due to
insufficient coverage in a given year.
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Fig. 4: Relationship between glacier melt days and summer temperatures as well as snowline
changes and mid-summer temperatures. Correlation and slope between glacier melt days and
summer (May through September) temperatures (a,c) are based on each glacier and each year.
Relationships for snowline change up to July 10 and temperatures from June 23 to July 10,
coincide with the dates of the 2019 heat wave (b, d). Data represent all observations within a
given area. Only pixels with a significant correlation (p < 0.05) are shown.
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Fig. 5: Example of snowlines and melt extents derived from SAR compared to optical snowlines
(ref. 22) on Black Rapids Glacier in 2020. Glacier hypsometry is shown on top of the heat map.
SAR acquisitions and corresponding snowlines are shown in the middle panels (generally
appearing just below the dark red areas, where thinner lines represent snowline uncertainty).
The nearest optical imagery with limited cloud coverage are shown on the right, with the SAR-
derived snowline from the middle panel overlaying the images. Landsat-8 imagery (right
column) courtesy of the U.S. Geological Survey.
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