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Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer.
However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit.
Somatic alteration signatures may identify DDR deficiency but historically require whole-genome sequencing of tumour tissue. We
assembled whole-exome sequencing data for 155 high ctDNA fraction plasma cell-free DNA and matched leukocyte DNA samples
from patients with metastatic prostate or bladder cancer. Labels for DDR gene alterations were established using deep targeted
sequencing. Per sample mutation and copy number features were used to train XGBoost ensemble models. Naive somatic features
and trinucleotide signatures were associated with specific DDR gene alterations but insufficient to resolve each class. Conversely,
XGBoost-derived models showed strong performance including an area under the curve of 0.99, 0.99 and 1.00 for identifying
BRCA2, CDK12, and mismatch repair deficiency in metastatic prostate cancer. Our machine learning approach re-classified several
samples exhibiting genomic features inconsistent with original labels, identified a metastatic bladder cancer sample with a
homozygous BRCA2 copy loss, and outperformed an existing exome-based classifier for BRCA2 deficiency. We present DARC Sign
(DnA Repair Classification SIGNatures); a public machine learning tool leveraging clinically-practical liquid biopsy specimens for
simultaneously identifying multiple types of metastatic prostate cancer DDR deficiencies. We posit that it will be useful for
understanding differential responses to DDR-directed therapies in ongoing clinical trials and may ultimately enable prospective
identification of prostate cancers with phenotypic evidence of DDR deficiency.
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INTRODUCTION

Alterations in DNA damage repair (DDR) genes are common in
metastatic castration-resistant prostate cancer (mCRPC)'2. Dele-
terious germline and/or somatic mutations in homologous
recombination repair (HRR) related genes including BRCA2, ATM,
and CDK12 are present in 15-20% of patients'>=>. A further 3-5%
exhibit alterations in mismatch repair (MMR) genes MSH2, MSH6 or
MLH13%7_ Collectively, these gene alterations play a critical role in
patient management, directly influencing systemic therapy selec-
tion. Poly (ADP-ribose) polymerase (PARP) inhibitors are approved
for HRR gene-mutated mCRPC?. Platinum chemotherapy also has
activity in mCRPC with HRR gene defects®~'". MMR deficient
(MMRd) mCRPC responds to immune checkpoint inhibition, and
CDK12 alterations have been linked to sensitivity to immunother-
apy>®. Unfortunately, even among biomarker-selected patients,
clinical response rates to each class of treatment are sub-
optimal'?'4,

Since DDR is proficient in most mCRPC?, the utility of PARP
inhibitors and other emerging therapies depends on accurate
identification of vulnerable tumours®. The preferred clinical
approach is to perform targeted sequencing across the exons of
DDR genes in archival prostate biopsy tissue. However, gene
alteration status from targeted sequencing is an incomplete
predictor of DDR proficiency'®. Firstly, targeted approaches may
miss complex structural rearrangements, resulting in false
negatives’. Secondly, evaluation of pathogenicity is imperfect,

especially for missense mutations and non-BRCA genes'. Thirdly,
biallelic loss can be difficult to discriminate from monoallelic
loss'”. Because most DDR genes are presumed haplosufficient,
durability of response to targeted therapies is most strongly
correlated with biallelic gene inactivation®'8, Finally, the clinical
relevance of mutations in rarer DDR genes are unclear due to the
anecdotal nature of any observed therapy response.

The most commonly altered DDR genes are associated with
distinct patterns of genomic alterations. Defective MSH2 drives
microsatellite instability and high tumour mutational burden”'°,
CDK12-altered mCRPC exhibits genome-wide focal tandem
duplications'”2°, BRCA2 (though not ATM) defects are associated
with mutational signatures of defective HRR, as in breast, ovarian,
and pancreatic cancer?'?2, In other cancers, innovative models
have been developed to accurately identify defective HRR using
mutational features from whole-genome sequencing’>?324, How-
ever, different cancer types exhibit distinct mutational rates and
processes, which influence model attributes and overall perfor-
mance, especially in different clinical contexts and/or cancers not
considered during model development'>?3. Few models have
been specifically developed for prostate cancer, which is
characterised by widespread copy number alterations, complex
structural rearrangements and comparatively low mutational
burden, independent of DDR status®?2?°. No tools account for
prostate cancer-specific features or can simultaneously identify
BRCA2 deficient (BRCA2d), CDK12 deficient (CDK12d), and MMRd
mCRPC from individual patient samples.
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Fig. 1 Dataset overview. a Graphical abstract depicting development of a machine learning classifier for identifying DNA damage repair

defects in metastatic prostate and bladder cancers. Pre-evaluated clinical ctDNA samples from multiple sources were selected for whole-
exome sequencing and used to train interpretable XGBoost models. b Oncoprint showing assigned DNA damage repair labels (assigned from
prior deep targeted sequencing) and selected somatic features of the whole-exome sequencing cohort including signature weights and
mutation counts. Log depth ratios (LDR) are the normalised average from targeted sequencing. c-f Comparison between naive somatic
features of all samples assigned to each DNA damage repair label, including the number of single nucleotide variants (SNVs) and indels, the
proportion of the genome affected by a copy number variant (CNV) relative to base ploidy, and the overall genome ploidy. P-values are from
Mann-Whitney U tests. For the box and whisker plots, the box encompasses the interquartile range, the midpoint of the box represents the
median, and the whiskers extend 1.5x beyond the interquartile range. Note that the mismatch repair defective (MMRd) label reflects
integrated results from ctDNA gene panel sequencing, whole-exome sequencing, intron sequencing as well as immunohistochemical staining
of MSH2, MSH6, MLH1, and PMS2 in archival primary tissue.

Routine whole-genome sequencing of tumour tissue biopsy is
clinically unfeasible in mCRPC?%%’, However, plasma circulating
tumour DNA (ctDNA) is abundant in a large proportion of
clinically-progressing mCRPC?8, enabling identification of genomic
features including copy number changes and mutations®°. We
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recently demonstrated that published trinucleotide signatures of
defective MMR can be inferred from whole-exome sequencing
(WES) of ctDNA'®. Here, we exploit algorithmic advances in
boosted ensemble models**3" to develop DARC Sign (DnA Repair
Classification Signature) (Fig. 1a): a set of models and
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accompanying software for classifying clinically-actionable DDR
deficiencies in prostate cancer using ctDNA WES.

RESULTS

Clinical plasma ctDNA samples subjected to whole-exome
sequencing
To construct a labelled training dataset for generating DARC Sign
classification models (Fig. 1a), we assembled WES data of plasma
cell-free DNA and matched leukocyte DNA from patients with
metastatic prostate cancer. WES data from patients with meta-
static bladder cancer were included as a comparator (but were not
used for model training). Samples and corresponding labels for
DNA damage repair gene status were drawn from four published
studies from our group employing the same experimental and
computational methodology'”'%?832 This data was supplemen-
ted here with WES data from additional samples harbouring DNA
damage repair gene alterations identified via deep targeted
sequencing. After quality control, our cohort consisted of 155 cell-
free DNA samples with WES data, including 129 from metastatic
prostate cancer and 26 from bladder cancer; median on-target
unique read depth 164x (Supplementary Data 1, 2). To maximise
generalizability of results, we applied Sequenza33, an established
tool for tumour fraction (purity) estimation and identification of
copy number states. The median Sequenza-assigned tumour
fraction across our samples was 37% (Supplementary Data 1).
Our cohort included 23 metastatic prostate cancer samples with
germline and/or somatic BRCA2d, 10 with CDK12d, 16 with MMRd,
and 6 with ATM defects (ATMd) (Fig. 1b; Supplementary Data 1).
The remaining 74 samples from patients with prostate cancer
were labelled as DDR gene wild type (DDRwt) based on the
absence of deleterious alterations in established DDR genes in
targeted and whole-exome sequencing data. 25 of 26 bladder
cancer samples were labelled as DDRwt, with one labelled as
BRCA2d due to a deep copy number deletion of BRCA2. Mutation
and copy number calls from WES data mirrored original labels
from deep targeted sequencing (Fig. 1b; Supplementary Data 3, 4).

Low specificity of conventional trinucleotide signature fitting
Decomposition of trinucleotide profiles and subsequent signature
fitting can identify BRCA2d but is most suited to whole-genome
sequencing data where there are large numbers of mutations. We
evaluated COSMIC trinucleotide mutation signature weights®*
across our WES dataset, combining weights for MMRd-associated
signatures 6, 15, 20, and 26 (Fig. 1b). Sensitivity was high for
detection of samples with MMRd (with minimum weight of 0.05,
sensitivity = 0.93) and BRCA2d (signature 3; sensitivity =0.91).
However, specificity was low (BRCA2d = 0.69; MMRd = 0.21). The
particularly low specificity for MMRd detection is likely attributable
to the advanced age of patients with prostate cancer and the
similarity between signatures associated with MMRd and ageing.
There is no known trinucleotide signature for CDK12d (or ATMd).
The poor discriminatory value of fitted trinucleotide signatures in
isolation, together with the lack of a known mutational signature
for CDK12d, highlights the need for incorporation of additional
genomic features into DDR defect classification tools for WES data.

Individual genomic features associate with distinct DNA
damage repair gene defects but do not accurately classify
prostate whole-exomes

Next we examined the burden of mutations and copy number
alterations in each sample (Fig. 1c-f). As expected, both BRCA2d
and MMRd samples showed significantly more single nucleotide
variants (SNVs) and insertions and deletions (InDels) compared to
DDRwt prostate cancer (Fig. 1¢, d; Supplementary Data 3). CDK12d
and MMRd samples exhibited a lower burden of copy number
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alterations and were more likely to have overall diploid genomes
compared to the other classes (Fig. 1e, f; Supplementary Data 1).
Prostate cancer is characterised in part by aneuploidy and
structural rearrangements®' and in support of this, even the
DDRwt samples showed a high burden of copy number variation
and frequent evidence of high average ploidy (i.e. 3-4) suggestive
of prior whole-genome doubling (Fig. 1f; Supplementary Fig. 1).
Therefore, although BRCA2d samples were associated with
increased ploidy and number of deletions relative to their base
ploidy, there was high overlap in individual copy number features
when compared to DDRwt samples (Fig. 1e, f; Supplementary Data
4, 5). Samples from patients with bladder cancer showed higher
SNV burden compared to non-MMRd prostate cancer (with an
enrichment of APOBEC-associated trinucleotide mutational signa-
tures) and frequent aneuploidy (Fig. 1b—f) as previously reported®”.

Development of a machine learning classification model using
whole-exome mutation and copy number features

To develop a new classifier model we leveraged 224 individual
somatic features (Supplementary Data 5, 6, 7), combining the
established COSMIC SNV trinucleotide (n =96) and InDel (n = 83)
contexts®* with copy number segmentation features (n=45)
(Fig. 2a)%®. In an unsupervised analysis using UMAP embeddings®’,
these somatic features showed promise for distinguishing MMRd
samples and suggested that BRCA2d and CDK12d may be
resolvable in a combined model (Fig. 2a). Samples with lower
tumour fraction formed a distinct cluster (including a BRCA2d and
CDK12d sample), presumably due to a reduction in the number of
detected copy features.

The 224 somatic features and DDR labels for each sample
served as the input for each eXtreme Gradient Boost (XGBoost)
ensemble classifier (Fig. 2b; Supplementary Fig. 2), developing
three separate binary models for BRCA2d, CDK12d and MMRd
(collectively termed ‘DARC Sign’). Each model was trained on a
schema of the respective DDR defect label versus all other
samples, which included DDRwt and the two other defect labels.
The samples in each class were split into test and training data
and stratified on labels in a 40-60 split. A stratified K-fold cross-
validation in a gridsearch of hyperparameters was then used to
optimise a boosted decision tree ensemble model, and the main
differentiating features of this model were interpreted using
SHapley Additive exPlanations (SHAP) values (Supplementary Fig.
2; Supplementary Data 8, 9, 10, 11).

BRCA2. The canonical COSMIC signature 3 associated with HRR
defects is relatively wide-ranging, including 34 different trinucleo-
tide contexts (across all 6 substitutions classes) with proportions
greater than 1%. Here, C-to-G base transversions (especially
A[C > G]G) were the most impactful for BRCA2d classification,
partly because other potentially relevant substitutions are
prevalent in non-BRCA2d prostate cancers with ageing-related
or MMRd-related etiologies (Fig. 2¢; Supplementary Data 8;
Supplementary Fig. 3). While deletions with microhomology at
ligated DNA ends are frequently observed in BRCA2d genomes,
they were not strongly impactful in our model (although InDels
with a single micro-homologous base did contribute to the
BRCA2d model). Instead, the number of long InDels was a stronger
feature, likely because it is correlated with the number of indels
with microhomology (Supplementary Fig. 4). As expected, copy
number features that were representative of highly rearranged
and aneuploid genomes were impactful for classifying BRCA2d
(Fig. 2¢; Supplementary Fig. 3). Consistent with approaches that
leverage large-scale transitions to identify HRR deficiency, copy
number segments of 10 and 20 Mb had a strong positive effect in
the model while much larger segments (e.g. 100 Mb; SegSize_10:
indicating a lower degree of copy number variation) contributed
to a negative classification (Fig. 2c).
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Fig. 2 The impact of combined or individual genomic features on classification of DNA damage repair defects. a Left, The 224 total
genomic features that formed the input for the machine learning classification model (top = single nucleotide variants (SNVs), middle =
insertion deletion variants (InDels), bottom = copy number variants (CNVs)). See “Methods” for feature breakdown. Bars represent the average
proportions across all prostate cancer samples. a middle, 2 dimensional UMAP representation of each feature category, coloured by DNA
damage repair gene label. a right, UMAP representation of all feature categories horizontally concatenated together. b Schema of XGBoost
model generation. All genomic features from samples with metastatic prostate cancer are horizontally concatenated as the model inputs,
followed by a process of training many iterations to produce ensemble models for each class of DNA damage repair defect. The models were
tested on both metastatic prostate and bladder cancer samples. b-e SHapley Additive exPlanations (SHAP) summary plots illustrating the 15
most impactful features for each classification model. Impact is determined as the sum of each feature’s sample level SHAP value. Feature

values (blue to pink gradient) are normalised as a proportion of the highest value of each respective feature.

CDK12. Classification of CDK12d was driven by features associated
with diploid genomes and focal copy number changes (Fig. 2d;
Supplementary Data 9). With respect to the latter, enrichment of
small segment sizes (below 5 kb) and absolute changes of just 1, 3,
or 5 copies (i.e. features CNCP_1, CNCP_3, and CNCP_5, respectively)
between adjacent segments were positively impactful—biologically
representing consecutive tandem duplications of a single genomic
tract—while an absence of breaks in a chromosome arm was a
negative indicator of CDK12d (Supplementary Fig. 3). The copy
number representation of short neighbouring segments with
incremental copy changes in multiples of 2 is consistent with the
established tandem duplicator phenotype of CDK12d cancers®.

MMRd. As expected, the MMRd model was strongly influenced
by several mutational features that are rarely present in non-

npj Precision Oncology (2023) 27

MMRd prostate cancer exomes (Fig. 2e; Supplementary Data 10).
Genome-wide hypermutation is an established hallmark of MMRd
tumours, resulting in an abundance of C>T mutations well
beyond what can be causally attributed to ageing-associated
spontaneous cytosine deamination (which also causes C>T
mutations). Accordingly, N[C>TIG SNV features were highly
impactful for MMRd classification. Features linked to microsatellite
instability (another hallmark of MMRd) also strongly influenced
classification: indeed, the most positively impactful feature was a
1 bp deletion in the context of a=5bp cytosine homopolymer,
uniquely attributed to replication slippage and unfaithful correc-
tion due to compromised mismatch repair (Supplementary Fig. 3).
Although MMRd tumours (pan-cancer) are also typically asso-
ciated with diploidy and a general absence of copy-number
changes, features reflecting these properties are not exclusive to
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Fig. 3 Performance of the DARC sign classification models. a, ¢, e Predicted probabilities of binary class membership for each of the three
models, for all metastatic prostate cancer samples. b, d, f Associated classifier metrics for the performance of each model, based on the
original labels. Measures include precision-recall curve (left), precision (red) and recall (blue) as function of decision threshold (centre) and
ROC/AUC curves (right). Threshold (blue dotted line in centre panel) was determined as the minimum threshold to achieve the maximum

F-score (see “Methods”).

MMRd and therefore were comparatively less relevant in driving
its classification (e.g. CDK12d genomes are also typically diploid).

Model performance and exceptions
For each model, we examined the probability of class membership
based on the original sample labels (Fig. 3). Most samples with a
BRCA2d label had a very high probability of BRCA2d class
membership resulting in an F-score derived threshold of 0.69
and area under the curve (AUC) of 0.99 (Fig. 3a, b; Supplementary
Fig. 5). Importantly, this included one BRCA2d sample with
relatively low tumour fraction that had clustered separately in
earlier unsupervised UMAP analysis. However, one sample
(sample_011_PC) originally labelled as BRCA2d had a<10%
probability of BRCA2d class membership (Supplementary Data
12). While this sample carried a germline BRCA2 stopgain
mutation, the allele frequency of this mutation was suggestive
of heterozygosity in the ctDNA sample and indicated that at least
one intact copy of BRCA2 remained present (Supplementary Fig.
6). Three samples that had not been previously identified in initial
targeted sequencing had a high probability of BRCA2d class
membership (including two samples from the same patient). Each
exhibited characteristic InDel, SNV and copy features indicative of
BRCA2d (Supplementary Fig. 6; Supplementary Data 5, 6, 7).

For CDK12d samples, a naive threshold of 0.5 results in three
‘false  negatives’ (sample_036_PC, sample_037_PC and
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sample_039_PC; Fig. 3c; Supplementary Data 12). However, in
two of three cases (sample_036_PC and sample_039_PC), another
sample collected from the same patient (at a different time point)
yielded a probability greater than 0.5. The ideal threshold likely
falls above the F-score derived 0.09 but below 0.5 (Fig. 3d). One
BRCA2d sample (sample_021_PC) showed a high probability of
CDK12d class membership and exhibited some somatic features
associated with CDK12d, including successive single copy changes
and small copy number segments on chromosomes 3, 8,9, 13 and
17 (Supplementary Fig. 7). However, whole-exome and targeted
sequencing analysis revealed no CDK12 gene alterations, and the
overall widespread genomic instability of this sample was not
indicative of CDK12d. Interestingly, CDK12d probability, but not
BRCA2d or MMRd, was significantly associated with Sequenza-
assessed tumour fraction (R=0.26, P=0.003 Wald Test) (Supple-
mentary Fig. 8). This is likely because the classification of CDK12d
is heavily reliant on copy number features that are difficult to
identify in context of low tumour fraction®.

The MMRd subtype is a genomically-distinct outlier compared
to non-MMRd samples. There are many singular features with
strong discriminatory power for resolving MMRd from non-MMRd
samples (e.g. 1:Del:C:5, A[C>TIG and C[C>TIG) (Supplementary
Fig. 3). As such, our combined model incorporating all genomic
features achieved perfect classification metrics with a broad
threshold range between 0.06 and 0.64 (Fig. 3e, f; Supplementary
Data 12).
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Utility in bladder cancer ctDNA whole-exomes

We applied our prostate cancer trained models to a cohort of 26
bladder cancer samples, which included one known case with
deep BRCA2 deletion (Supplementary Fig. 9). Three bladder cancer
samples were classified as BRCA2d (Fig. 4a). The sample with a
known BRCA2 deep deletion had the highest BRCA2d probability
(0.88). The two other samples (sample_145_BC and sam-
ple_151_BC) showed evidence of genomic alterations around
the BRCA2 locus, although with short-read WES we could not
resolve any potential breakpoints (Supplementary Fig. 9). In a
2-dimensional UMAP with embeddings learned on all samples
(prostate and bladder cancers), the original prostate cancer
clusters are preserved while the majority of bladder cancer
samples cluster apart, likely due to the increased number of
APOBEC-associated SNVs (Fig. 4b). Probabilities for CDK12d and
MMRd class membership were very low across all bladder cancer
samples, consistent with the absence of these alterations in
sporadic bladder cancer. Given the disparate SNV profiles for
prostate and bladder cancer, these results provide evidence for
the generalizability of our framework across other cancers.

Comparison to an existing BRCA2d classifier

Most published tools including HRDetect and CHORD were
designed for whole-genome sequencing data'>?* and are thus
not appropriate comparisons to DARC Sign. We compared our
model to scarHRD*® which uses WES to distinguish between
BRCA1/2 mutant and BRCA1/2 wild type breast cancer. ScarHRD
uses the sum of three copy number features: number of loss of
heterozygosity (LOH) events, number of large scale transitions
(LST) and number of copy number variants that extend to
telomeric sequences (TelomericAl) (Fig. 5a-d; Supplementary Data
13). LOH and LST counts are also used as inputs in other machine
learning-based classifiers'>?3, and are being explored as standa-
lone surrogates of PARP-inhibitor and/or platinum chemotherapy
vulnerability (now reported as part of several commercial ctDNA
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assays)>>394% The number of LSTs (which is a feature called
BCper10Mb in DARC Sign development) most strongly distin-
guished BRCA2d from BRCA2wt samples (Cohen’s d: 1.84,
p = 3.4e-8), whereas number of LOH events (HRD score) was least
discriminative for BRCA2d status (Cohen’s d: 0.57, p =3.3e-3).
Overall, DARC Sign achieved a much greater effect size and
specificity for determining BRCA2d status (Cohen’s d: 6.71,
p = 1.5e-13) than each naive copy number feature in isolation or
as a sum (i.e. the output of ScarHRD). Collectively, these results
highlight that individual copy number-based features from WES
are insufficient to reliably predict BRCA2 deficiency in metastatic
prostate cancer. Rather, an approach combining multiple feature
types provides superior discrimination, as shown here with DARC
Sign.

DISCUSSION

We present DARC Sign, a framework for resolving multiple classes
of clinically-actionable DDR deficiency in metastatic prostate
cancer. Importantly, state-of-the-art machine learning models
within DARC Sign use minimally-invasive liquid biopsy and
standard WES data. In contrast, prior models for pan-cancer
mutational signature derivation typically require costly whole-
genomes and fresh frozen cancer tissue'>2324,

PARP inhibitors are approved for mCRPC with selected HRR
gene defects, but response rates are modest?. DARC Sign could
feasibly be applied to large correlative efforts from clinical trials
testing PARP inhibitors in prostate cancer (e.g. the Prostate Cancer
Foundation supported PRECISION Registry; www.precision-
registry.com) to clarify whether BRCA2d class membership may
indicate particularly therapeutically-vulnerable cancers, including
those with non-BRCA2-driven HRR deficiency. Rare mutations are
reported in other HRR-related genes such as PALB2 or RAD51C but
the phenotypic consequences of these defects are unclear'24142,
Importantly, prostate cancer poses a particular challenge for more
naive single measure approaches that produce genomic instability
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scores, since copy number changes are pervasive (and therefore
nonspecific to HRR-deficient genomes) and there are multiple
classes of DDR defect associated with genome instability
(including CDK12 mutations) which are not associated with
disease response to PARP inhibition*'. It is notable that ‘HRD
score’ thresholds developed for ovarian cancer have relatively
poor accuracy in prostate cancer WES data®?.

In contrast to previous whole-genome classifiers for HRR
deficiency such as CHORD and HRDetect'>%3, our models utilized
additional genomic features and adjusted the weight of each
feature based on the training data (rather than pre-selecting
features). These additional features, including copy number
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alterations, likely compensated for the considerably reduced
number of somatic alterations using our whole-exome approach.
Prior signature-based research relying on WES mutational features
alone show limited sensitivity and accuracy for identifying bona
fide HRR-defective mCRPC?%%%, partly due to the low mutational
burden in prostate cancer. Nevertheless, the high specificity of our
training data means that our model is likely best suited to
metastatic prostate cancer, although the results from metastatic
bladder cancer ctDNA indicate some potential for broader
applicability. For other cancers, especially those with large
differences in feature distribution relative to prostate cancer, it
may be possible to train new model(s) using our open source
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framework, but this hypothesis will need to be tested with
additional data. Re-training could also be performed for prostate
cancer tumour tissue WES data, since it is plausible that the use of
a ctDNA dataset introduced specificity due to more variable
tumour fraction or greater sub-clonal diversity. A key strength of
our study is the highly accurate labels for DDR gene status in
ctDNA, which were derived from deep targeted sequencing with a
bespoke prostate cancer panel, involved expert manual curation
of both mutation and copy number data, and were validated in
matched archival tissue'’'%; most DDR gene testing is not as
rigorous due to pragmatism in clinical settings. Future re-training
efforts should aim to build a similarly accurate training dataset.

Our signature-based classifier demonstrated that it is possible to
accurately resolve a CDK12d phenotype from HRR deficiency.
Although CDK12 mutations are associated with focal tandem
duplications and can be described as genomically-unstable®®, our
model appeared to leverage the fact that CDK12d exomes were
exclusively diploid and showed relatively few large copy number
alterations. CDK12 mutations are uncomplicated to identify with
standard targeted sequencing and there do not appear to be
complex or epigenetic events disrupting the CDK12 locus in
prostate cancer'’. Nevertheless, there are likely to be cases with
incidental CDK72 mutations that do not exhibit a tandem
duplicator phenotype. Since immunotherapy and CDK4/6 inhibi-
tion are currently in clinical trials for prostate cancer with CDK12
mutations, there will be opportunities in future to determine the
extent to which CDK12d classification is associated with disease
response to various targeted therapies. A key limitation of our
study is that we focused on samples with high ctDNA fraction,
recognizing that additional sequencing depth (and therefore cost)
would be required to recover somatic features from samples with
low ctDNA fraction. However, even with high sequencing depth,
copy number changes are difficult to detect in samples with low
ctDNA fraction, while mutations and structural rearrangements
can still be identified. The CDK12d classification model demon-
strated the most reliance on copy number features and was
expectedly therefore the most compromised by low ctDNA
fraction. The potential utility of DARC Sign for identifying the
CDK12d phenotype in ctDNA needs to be evaluated in context of
this limitation.

Future studies should validate the generalizability of our
classification tool to samples processed at other institutions
(employing different laboratory and/or bioinformatic approaches),
since a limitation of our study is a lack of external validation cohort
(due to the relative rarity of publicly-available mCRPC cell-free
DNA WES data). We also focused on samples with prior DDR gene
alteration status defined by deep targeted sequencing and expert
manual curation: necessary here for accurate training labels, but
not always likely to be paired with WES or whole-genome
sequencing in the long-term. In the near-term future, we suspect
that even if broader sequencing approaches such as WES can
inform on genomic signatures, targeted sequencing of ctDNA or
tumour tissue is likely to retain clinical utility due to the
importance of detecting genomic alterations outside of the DDR
pathway, and also for identifying germline mutations or resistance
mechanisms. Ultimately a theoretical strength of DARC Sign is the
possibility to identify an HRR-deficient phenotype in the absence
of a confirmed genomic alteration in a known HRR gene, including
cancers with cryptic HRR gene alterations (e.g. intronic structural
rearrangements or epigenetic silencing) that are difficult to detect
with standard targeted DNA sequencing approaches. Conversely,
DARC Sign is likely to separately classify cancers with an apparent
HRR gene alteration but that retain functional HRR. Ideally, these
theories should be tested in the context of mCRPC that is treated
with a PARP inhibitor (or immunotherapy), where treatment
responses can be correlated with both DDR gene alteration status
and DARC Sign classification output. In our study we did not have
sufficient numbers of cancers with BRCA1, PALB2, or other rare HRR
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gene alterations to determine whether DARC Sign would assign
BRCA2d status to such cancers. Furthermore, we were not able to
test whether some monoallelic HRR gene alterations are linked
with DDR deficient phenotypes.

In conclusion, we developed a public machine learning tool
(DARC Sign; DnA Repair Classification SIGNatures) that can identify
and discriminate three different classes of clinically-relevant DDR
defects in metastatic prostate cancer. Our models use WES data
and minimally-invasive ctDNA rather than requiring expensive
whole-genome sequencing and impractical fresh metastatic tissue
biopsy. We believe that DDR signature-based classifiers leveraging
both mutation and copy number based features will be useful for
refining biomarker strategies.

METHODS
Clinical cell-free DNA whole-exome sequencing cohort

We compiled WES data from our published cohorts of patients
with clinically-progressing mCRPC accrued through clinical trials or
a local biobank92843 As part of these studies, all plasma cell-free
DNA and patient-matched leukocyte DNA samples have under-
gone prior deep targeted sequencing, with a proportion also
subjected to WES on the basis of high estimated ctDNA
fraction'92843, To boost our sample size, we sequenced additional
exomes from a cohort of DDR gene-altered mCRPC (again defined
by prior targeted sequencing), prioritising samples with ctDNA
fraction >20%'’. Finally, we included published ctDNA WES data
from 26 patients with metastatic bladder cancer as a compara-
tor*2, In total, 155 cell-free DNA samples with WES data passing
quality controls were included (Supplementary Data 1). Although
WES features of most samples within our cohort were partially
characterised in prior studies'®?83243 the analyses undertaken
here represent unique hypotheses exploring multiple classes of
genomic signatures and applied machine-learning methods.

WES was performed on cell-free DNA and patient-matched
leukocyte (germline) DNA using libraries previously prepared for
targeted sequencing. Libraries were hybridised to the Roche
NimbleGen SeqCap EZ MedExome capture panel according to the
manufacturer’s protocols, and final enriched library pools were
sequenced on lllumina machines'®?832, Sequencing depths
(Supplementary Data 2) were calculated using samtools mpileup
(version 1.7)** for all sites included in the EZ MedExome capture
panel target files. Approval for collection and genomic profiling of
patient samples was granted by the University of British Columbia
Research Ethics Board. The study was conducted in accordance
with the Declaration of Helsinki, and written informed consent
was obtained from all participants prior to enrolment.

Per-sample labels for DNA damage repair gene status

To construct a training dataset, all prostate samples were assigned
a DDR gene status label. Sample labels reflect the presence or
absence of putatively deleterious alterations in BRCA2, ATM and
CDK12, determined from prior deep targeted exon sequencing of
22 DDR genes'’. Mutation pathogenicity was assessed on the
basis of predicted protein-level consequences: truncating variants
—including frameshift InDels, splice site mutations (mutations
within £2 bp of an exon/intron junction), stop-loss, and nonsense
(stop-gain) mutations—as well as deep deletions were considered
deleterious. Germline and somatic missense mutations identified
as ‘pathogenic’ or ‘likely pathogenic’ in the ClinVar database*
were also considered deleterious. Evidence of biallelic disruption
was not required for a sample to be labelled as DDR gene
defective, and samples without evidence of deleterious DDR gene
defects were labelled as DDRwt (DNA damage repair wildtype).
Labels of MMR genes (MSH2/6, MLH1) were previously defined
using the same panel and criteria. In addition, clinical immuno-
histochemical staining of archival primary tissues and intron
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sequencing of MSH2/6 and MLH1 was previously performed to
confirm MMRd gene status in selected samples'®.

Processing and alignment of whole-exome sequencing data

Paired-end reads were trimmed to remove adapters and bases
with a quality score <20 were masked. Alignment to the
GRCh38.p12 reference genome was performed using BWA-MEM
(version 0.7.15)*¢. Samtools (version 1.7)** was used for sorting and
removal of reads with low quality mapping scores (MAPQ < 20).
Duplicate reads were marked and removed with Picard MarkDu-
plicates (version 2.18.0) (http://broadinstitute.github.io/picard/).
Pileup level statistics of base and InDel counts were generated
using Pysamstats (https://github.com/alimanfoo/pysamstats).

Somatic and germline variant calling

Somatic single nucleotide variants (SNVs) and InDels required a
variant allele frequency (VAF)>2% with at least 10 supporting
unique reads at loci with >30x depth in both cell-free DNA and
patient-matched leukocyte DNA. Candidate mutations were
discarded if the VAF in cell-free DNA was less than 3x that of
the paired leukocyte sample or less than 20x the background
error rate, defined as the mean VAF of the position-matched
substituted base(s) across all leukocyte samples. For variants
adjacent to catalogued genomic repeats (via RepeatMasker) and/
or regions with a strongly predominant base (i.e. the +20bp
genomic context surrounding candidate variant being comprised
of >80% a single nucleotide), we required a VAF>40x the
background error rate. Variants were also filtered if the mean
distance from the end of supporting reads to the variant base was
<6 bp. Functional annotation was performed using ANNOVARY.
Putative germline SNVs or InDels were identified from leukocyte
samples and defined as non-reference bases with VAFs between
30% and 70% and a minimum read depth of 40x.

Whole-exome copy number variant calling (including local
segmentation, determination of tumour purity and ploidy
inference) was performed with Sequenza (version 3.0.0)%. We
used default settings with a 10 kb window and min.reads.normal
set to 20, and the result with the highest probability for each
sample was accepted. For all samples in our study, non-diploid
ploidies inferred by Sequenza (defined as mean ploidy <1.1 or
>2.9) were only accepted if the Sequenza-determined cellularity
was >0.18, since low tumour fraction typically precludes reliable
determination of non-diploid status?®.

Feature generation

SigProfilerMatrixGenerator was used to create SNV trinucleotide
contexts (n = 96) and InDel repeat context (n = 83) profiles*®. No
double base substitutions were found within our cohort and thus
were not included as features. Established copy number features>®
were calculated from the Sequenza segments output. The six copy
feature categories include:

® BCper10mb: The number of 3’ segment endpoints per 10 Mb
genomic window.

® BCperCA: The number of breaks per chromosome arm (as
defined according to UCSC goldenPath hg38 database
cytoBand.txt), calculated as the number of segments per
arm minus one.

® CN: The number of segments with the associated integer copy
number.

® CopyFraction: The fraction of the genome associated with
each integer ploidy.

® SegSize: The segment length in units of 10 Mb.

® CNCP: The copy number change point is the absolute
difference in ploidy between each segment and its 5’
neighbouring segment within the same chromosome.
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Modelling and downstream analysis

Separate datasets were generated for each label (BRCA2d, MMRd,
CDK12d, DDRwt) such that for each dataset, samples with the
respective label were marked as positive, and all other samples,
including those with an alternate subtype label, were marked as
negative. To generate cross-validated classification models for
each label, samples were randomly assigned into testing and
training sets using a 40:60 split stratified on the given label.

To determine the best scoring estimator and corresponding
hyperparameters of XGBoost models for each label, a gridsearch
K-fold cross-validation (sklearn.model_selection.GridSearchCV) was
performed on each training dataset with 10 folds for the BRCA2d
model and 6 folds for the CDK12d and MMRd models. The smaller k
for the latter two models reflects the reduced availability of label-
positive samples in these training sets due to the low population
prevalence of CDK12d and MMRd (versus BRCA2d). A binary logistic
objective was set for each model. Hyperparameters were scored
based on an evaluation metric composed on the ordered criteria of
AUC, error, and log loss. Through a maximum of one million rounds
and a search space of 0.5-1.0 for the subsampling hyperparameters
subsample, colsample_bytree, colsample_bylevel and colsample_-
bynode, an ensemble tree with a maximum depth of three nodes
and a learning rate of 0.001 was found to be the highest scoring
model for each of the three classifications. The resulting models
fitted to each of the training datasets were used to predict the
probability of the respective binary labels in the entire cohort
including both prostate and bladder cancer samples.

For model interpretation, we analysed the impact of each
feature on the ensemble models using the SHAP (SHapley
Additive exPlanations) Python package (version 0.41.0)*°. Shapley
values were generated for each of the models using the
“TreeExplainer” function with “feature_perturbation” set as “tree_-
path_dependent” and graphed in the style of the SHAP
“summary_plot”. Feature importance was calculated as the sum
of the absolute value of each sample’s feature attribution.

To assess model performance, AUC, receiver operating char-
acteristics (ROC), F1-scores and other metrics were calculated
using scikit-learn methods. F1-score-based thresholds were
calculated by finding the F1 at all thresholds from 0 to 1 at
0.001 intervals, and the minimum threshold with the maximum F1
value was used as the derived threshold. UMAP values were
generated using the umap-learn 0.4.3%” Python package using a
Euclidean metric and 500 epochs. Trinucleotide mutation signa-
ture weights were calculated using DeconstructSigs (version 1.9.0)
with default parameters®®. All further downstream analysis
including data processing and statistical tests were performed
using Python 3.7, Pandas (version 1.4.2), NumPy (version 1.21.2),
Scipy (version 1.7.3)°', and Scikit-learn®2. To compare our
ensemble boosted models to an established HRRd classifier,
ScarHRD was run using default parameters, using the same
Sequenza-generated inputs as used for DARC sign.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY

Unprocessed de-identified whole-exome sequencing reads for all cell-free and
leukocyte DNA samples used in this study are available at EGA accession number
EGAS00001007006 under standard controlled release. Previously published deep
targeted exon-capture sequencing data for all samples analysed (plus select whole-
exome sequencing data) are available at EGA accession numbers EGAS00001004800
(prostate cancer)'” and EGAS00001004615 (bladder cancer)*? under standard
controlled release.

npj Precision Oncology (2023) 27


http://broadinstitute.github.io/picard/
https://github.com/alimanfoo/pysamstats

npj

EJ Ritch et al.

10

CODE AVAILABILITY

The DARC Sign models, code and structured data to reproduce results and figures in
this study are public: https://github.com/elieritch/DarcSign. Code related to variant
calling and annotation is publicly available at: https://github.com/elieritch/CircuiTT.
All code provided depends on versions Python 3.7 or greater, Pandas 1.1 or greater,
Seaborn 0.12 or greater, Scipy 1.7.3, Numpy 1.21.2, Scikit-learn 0.23.2, NumPy 1.21.2,
umap-learn 0.4.3, SHAP 0.41.0 and XGBoost.
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