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There has been a persistent demand for an innovative modality in real-time histologic imaging, distinct
from the conventional frozen section technique. We developed an artificial intelligence-driven real-
time evaluation model for gastric cancer tissue using confocal laser endomicroscopic system. The
remarkable performance of the model suggests its potential utilization as a standalone modality for
instantaneous histologic assessment and as a complementary tool for pathologists’ interpretation.

Timely histological assessment of fresh tissue during surgical operations is
imperative for effective cancer treatment, encompassing the identification
and evaluation of tumor cells to inform treatment strategies and ensure
surgical resection with adequate margins. Nevertheless, the conventional
frozen section technique currently employed for this purpose is associated
with inherent limitations, primarily related to processing time and pre-
paration artifacts, rendering it susceptible to errors'.

An emerging alternative is the recently introduced confocal laser
endomicroscopic system (CLES)”. The confocal microscope, traditionally
utilized for high-resolution imaging in experimental biology, has undergone
recent hardware advancements enabling its miniaturization into a handheld
endomicroscopic probe’. This portable unit comprises the laser source and
signal processing device. Although the CLES has demonstrated its efficacy in
real-time histologic imaging across various organs in mice’ and human
samples, including brain tumors’, its application in gastric tissue remains
constrained with limited interpretation performance’. Furthermore, the
grayscale images generated by the CLES pose challenges in interpretation,
even for experienced pathologists, necessitating considerable time and effort
for adaptation. This underscores the pressing need for the development of
an automated interpretation system.

Recent strides in artificial intelligence (AI) algorithms have expanded
their applications in the medical field'*". In histologic image interpretation,
Al models have proven valuable across various cancer types'*™"*, not only for
interpreting hematoxylin and eosin (H&E) images but also for analyzing

immunohistochemical staining images, which often require rigorous
quantification to inform treatment strategies'. In the domain of digital
pathology Al research, a prevalent approach involves employing AT models
to segment gigapixel pathology images into smaller patch images. Subse-
quently, the AT model is utilized to detect tumor areas within each patch
image". Alternatively, a whole-slide-image-level diagnosis can be achieved
through the implementation of weakly supervised learning models'. As
these methodologies continue to evolve, the comprehensive validation of Al
models for interpretation becomes imperative, particularly when con-
sidering their deployment as standalone modalities”.

In this study, we developed an AI model tailored for the real-time and
automated detection of cancer cells within CLES images. The devised two-
stage AI model comprises a decisive phase discerning between tumor and
normal images, followed by histologic subtyping stages. Our findings reveal
that the model demonstrates remarkable proficiency in determining the
presence of tumor when compared to assessments by pathologists. More-
over, the integration of Al assistance in the interpretation of CLES images by
pathologists markedly augmented their diagnostic capabilities. This study
underscores the potential of our AI model for real-time gastric cancer
detection in CLES images, showcasing its versatility for utilization as both a
standalone modality and a tool to enhance pathologists’ image interpreta-
tion proficiency.

The hardware components of the utilized CLES in this study comprised
the light source, an image processor, and a maneuverable endomicroscopic
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head controlled by a joy-stick-like device (Fig. 1a, b). Upon specimen pla-
cement on the device, real-time imaging of the tissue was promptly achievable
through laser transmission. The acquired image instantaneously appeared on
the monitor, accompanied by the Al model’s prompt interpretation of cancer
probability, which could be visualized after the completion of the imaging
(Fig. 1c, Supplementary Fig. 1, and Supplementary Video 1). CLES images
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obtained from non-neoplastic gastric tissue distinctly portrayed the char-
acteristics of each layer — mucosa, submucosa, and muscularis propria (Fig. 1d
and Supplementary Fig. 2a). In mucosal layer imaging, the CLES images
effectively depicted the round or ovoid architecture of glands. Within the
submucosal layer, the loose fibrotic structure was discernible in the CLES
images. In the muscularis propria, the CLES images illustrated the
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Fig. 1 | Development of an artificial intelligence-based confocal laser endomi-
croscopic system. a The hardware component of the confocal laser endomicro-
scopic system (CLES). Reprinted with permission from VPIX Medical, Inc.

b Elaboration on the microscopic head and controller components. ¢ Illustration of a
CLES image with real-time artificial intelligence (AI)-based detection of cancerous
areas. d Representative CLES images alongside corresponding hematoxylin and
eosin (H&E) images of non-neoplastic gastric tissue regions. The upper portion
represents mucosa, the middle indicates submucosa, and the lower section denotes
muscularis propria. Scale bar, 50 um. e Representative CLES images and H&E
images corresponding to regions of gastric cancer tissue, with the upper part illus-
trating adenocarcinoma and the lower part poorly cohesive carcinoma. Yellow

arrow, tumor cells. Scale bar, 100 um. f Schematic representation of the two-stage Al
model development for interpreting CLES images. CNN convolutional neural net-
work, ADC adenocarcinoma. g A representative CLES image containing gastric
cancer, along with the Score-CAM for the corresponding image. CAM class acti-
vation map. Scale bar, 100 um. h Representative CLES images categorized as high-
confidence tumor (upper two), borderline confidence tumor (middle two), and
normal (lower two) as interpreted by the AI model. Yellow arrow: tumor cells. Scale
bar, 100 pm. i Confusion matrix and ROC curve of the Al model for detecting tumor
versus normal images in the internal validation dataset. j Confusion matrixand ROC
curve of the AI model for detecting ADC versus non-ADC in the internal validation
dataset. ADC adenocarcinoma.

arrangement of muscle fibers. Tumor cells were conspicuously evident in
CLES images (Fig. 1e and Supplementary Fig. 2b). Tubular adenocarcinoma,
a histologic subtype of gastric cancer resembling the original architecture of
gastric mucosal glands, manifested as bright round or ovoid objects in the
CLES images. Conversely, poorly cohesive carcinoma, another subtype of
gastric cancer characterized by the diffuse, scattered distribution of individual
cancer cells, was portrayed as scattered small bright dots in CLES images,
recapitulating its histomorphology in H&E stains.

We employed a two-stage process in the development of CLES image-
interpreting AI model (Fig. 1f). The first stage involves a convolutional
neural network (CNN) (CNN 1) determining whether the input image
represents a tumor. Upon identification as a tumor image, the second stage
employs another CNN model (CNN 2) to classify the histologic subtype of
the tumor, distinguishing between adenocarcinoma (ADC) and non-ADC
(specifically, poorly cohesive carcinoma). The AI model accurately deline-
ates the tumor area, as illustrated in the Score-class activation map (CAM)™
for the tumor image (Fig. 1g and Supplementary Fig. 3). Representative
high-confidence images interpreted by the AI model depict the infiltration
of bright cancer cell clusters, while non-neoplastic gastric tissue images,
assigned a confidence score of 0, lack tumor cells (Fig. 1h). Notably, the
model can distinguish dye aggregates, which reveal far-brighter variable-
sized signals, from cancer cells. The model exhibits low confidence when the
number of tumor cells is small, and the image is captured in a dark setting.
The performance evaluation of the trained AI model in the internal vali-
dation dataset, comprising 3686 CLES images, demonstrated remarkable
results with an Area under the Receiver Operating Characteristic curve
(AUROC) of 1.000 for both detecting tumor images and differentiating
histologic subtypes of tumors (Fig. 1i, j). As indicated in Supplementary
Table 1, CNN 1 achieved an accuracy, specificity, and sensitivity of 0.964,
0.964, and 0.966, respectively in the internal validation dataset. Additionally,
for histologic subtype classification (CNN 2), accuracy, specificity, and
sensitivity of 0.990, 0.985, and 0.993, respectively, were achieved for ADC
versus non-ADC. Despite attempts to train a multi-class classification
model for a single-stage process combining tumor subtype and normal
tissue, the performance was inferior compared to the two-stage process
models (Supplementary Fig. 4 and Supplementary Table 2). The false-
positive cases misinterpreted by the AI model encompass images featuring
prominent dye aggregates, out-of-focus images, and dark images. Con-
versely, the false-negative cases overlooked by the Al model predominantly
consist of out-of-focus images and images containing a scanty volume of
tumor cells (Supplementary Figs. 5 and 6).

The standalone performance of the two-stage Al model in tumor
detection was further assessed using an external validation dataset com-
prising 100 CLES images. The model demonstrated noteworthy proficiency
in distinguishing between tumor and normal images, yielding an accuracy,
specificity, and sensitivity of 0.990, 0.982, and 1.000, respectively, achieving
superior performance compared to any performance by pathologists or
endoscopists in previous studies (Fig. 2a and Supplementary Table 3)°. The
inference time for a single image is 0.043 seconds, based on a single GPU
(NVIDIA RTX A6000). Four board-certified pathologists, who underwent
an educational session on CLES and its image features, also interpreted the
same dataset images. However, the performances of the pathologists were

significantly less effective compared to the AT model (Fig. 2b and Supple-
mentary Table 4). To assess the value of the AI model as a complementary
tool for pathologists interpreting CLES images, each pathologist initially
interpreted another 100 CLES images and assessed the presence of tumor.
Subsequently, the Al interpretation results were provided to them, and the
revised interpretations with Al assistance were analyzed. A notable
enhancement in the performance of interpreting CLES images was observed
for all pathologists, with accuracy improving from 0.74 to 0.97, 0.63 to 0.85,
0.78 to 0.79, and 0.65 to 0.76 for the four pathologists, respectively (Fig. 2c
and Supplementary Table 5). As depicted in the Sankey diagram, Al-assisted
revisions rectified a substantial number of misinterpreted cases, although
approximately 10% of the cases remained incorrect (Fig. 2d and Supple-
mentary Fig. 7). The Al assistance also increased concordance among the
pathologists, with the initial 25% agreement among all four pathologists
improving to 58%. When considering concordance among more than 3 out
of 4 pathologists, the initial 82% agreement was enhanced to 89% with the AI
assistance (Supplementary Fig. 8).

In summary, we developed a novel Al-based real-time evaluation sys-
tem for gastric cancer tissue using confocal laser endomicroscopy. Employing
a two-stage model eliminating the increased complexity of the CNN*, we first
distinguished between tumor and non-neoplastic tissue and then determined
the histologic subtype of gastric cancer, achieving significant performance.

Unlike conventional digital pathology AI models that operate on
gigapixel pathology images, our specialized AI model processes kilopixel
grayscale images, dynamically adjusting to the necessary image size. This
eliminates the need to break down general pathology images into patch
images, enabling tasks that previously took minutes to now be completed in
less than a second. The AI model’s validation results highlight its value as a
standalone tool for automated gastric cancer detection from CLES imaging.
Furthermore, the significantly enhanced concordance observed among
pathologists with AI assistance in interpreting CLES images underscores
one of the major advantages of a real-time Al system.

This system has potential applications in intraoperative margin
assessment”, and margin diagnosis of endoscopic submucosal dissection
specimens'®. As the real-world environment introduces various factors and
artifacts into CLES images, there is the potential for decreased performance
compared to our current results. Thus, fine-tuning the model using data
collected from real-world settings is imperative to enhance its generalization
abilities. Due to the inclusion of some CLES images from the same patients
in both the training and test datasets, there exists a potential risk of over-
fitting of the AI model. Consequently, conducting further validation uti-
lizing real-world datasets will be crucial to assess and mitigate this risk
effectively. Also, further investigations in clinical and basic studies,
exploring the relationship between CLES image features and tissue micro-
environment components™, are warranted.

Methods

Dataset

A total of forty-three fresh tissue samples were obtained from patients
diagnosed with gastric cancer. Tumor and normal gastric tissue samples
were concurrently collected from each patient. The enrolled samples
encompassed various clinicopathologic features of gastric cancer, including
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Fig. 2 | Performance validation of the artificial intelligence model and patholo-
gists in the interpretation of confocal laser endomicroscopic images. a Confusion
matrix illustrating the performance of the artificial intelligence (AI) model in
interpreting images from the confocal laser endomicroscopic system (CLES) in the
external validation dataset. b Confusion matrices depicting the performance of

pathologists in interpreting CLES images in the external validation dataset.

¢ Confusion matrices representing the performance of pathologists before (upper
row) and after (lower row) Al assistance in interpreting CLES images in the external
validation dataset. d Sankey diagrams illustrating the interpretation of CLES images
by the four pathologists before and after Al assistance.
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histological subtypes and tumor stage (Supplementary Table 6). The tissue
specimens were precisely cut to dimensions of 1.0 X 1.0 X 0.5 cm and sub-
sequently subjected to imaging using the CLES. Approval for this study was
obtained from the Institutional Review Board (IRB) at Ajou University
Medical Center, under the protocol AJIRB-BMR-KSP-22-070. Informed
consent requirements were waived by the IRB due to the utilization of
anonymized clinical data. The study strictly adhered to the ethical principles
delineated in the Declaration of Helsinki.

Confocal laser endomicroscopic system image acquisition
The CLES device used in this study follows a mechanical configuration
described in our previous work’. The microscopic head and 4 mm diameter
probe are positioned near the tissue, with a 488 nm light emitted from the light
source (cCeLL-A 488, VPIX Medical) transmitted through an optical fiber to
the tissue. The tissue, pre-applied with fluorescent dye, absorbs and emits
longer-wavelength light (500-560 nm), transmitted back to the main unit
through optical fibers in the probe. A stage holding the probe ensures stability
during image capture. Tissue scanning utilizes a Lissajou laser-scanning
pattern, allowing image acquisition up to 100pum from the tissue surface.
For tissue staining, fluorescein sodium (FNa; Sigma-Aldrich) dis-
solved in 30% ethanol (0.5 mg/ml) was carefully applied to the tissue sample,
incubated for one minute, and rinsed with phosphate-buffered saline. After
delicate cleaning to remove dye aggregates, CLES imaging captured
dynamic grayscale images (1024 X 1,024 pixels) with a field of view mea-
suring 500 * 500 um. Gastric cancer and non-neoplastic tissue were scanned
from the mucosa to submucosa and muscularis propria, averagely produ-
cing 500 images per tissue piece (Supplementary Fig. 1).

Histologic evaluation of the specimen

Following the CLES imaging, tissue samples were subjected to H&E staining
after fixation in 10% formalin and the creation of formalin-fixed, paraffin-
embedded (FFPE) blocks. Sections of 4 um thickness from these FFPE blocks
were stained with H&E. The stained slides were then scanned at 40 X
magnification using the Aperio AT2 digital whole-slide scanner (Leica
Biosystems). For the precise evaluation of CLES images alongside H&E-
stained images, the acquired CLES images were vertically stitched from
mucosa to subserosa and subsequently directly compared to the H&E images
of the tissue at the same magnification (Supplementary Fig. 2). Histologic
structures such as vessels or mucin pools served as landmarks for identifying
the exact location. The determination of whether the CLES images from
gastric tumor samples indeed contained tumor cells was facilitated through
this direct comparison with the mapped H&E images. The mapping of CLES
images and H&E images were conducted by experienced pathologists with
gastrointestinal pathology subspecialty (S.K., and D.L.).

Development of the artificial intelligence model

Preprocessing. Supplementary Table 7 outlines the acquisition of the
entire 7480 tumor images and 12,928 normal images for the development
and validation of the Al model. Each original image, sized at 1024 x 1,024
pixels, was resized to 480 X 480 pixels to align with the specifications
recommended by EfficientnetV2 for CNN models™. These resized ima-
ges underwent normalization, scaling their pixel values between 0 and 1
by dividing them by 255.

Classification model development. EfficientnetV2, a model achieving
state-of-the-art performance in Imagenet 2021, and renowned for its high
processing speed, was utilized for developing the tumor classification
model (CNN 1) and the tumor subtype classification model (CNN 2)*. To
determine the model capacity in terms of the number of layers and filters
among the hyperparameters, we compared the performance of two var-
iants of the EfficientNetV2 model: EfficientNetV2-S (with approximately
22 million parameters) and EfficientNetV2-M (with approximately 54
million parameters) after training. The EfficientNetV2-S model was
selected due to its superior performance. Experimentation revealed that
when employing high learning rates such as 0.1 or 0.001, overfitting

occurred early in the epochs, leading to a bias towards either tumor or
normal classes. Hence, a lower learning rate of 0.0001 was employed to
encourage the model to converge gradually during training.

We conducted 5-fold cross-validation of the two models, allocating
80% of the entire dataset for training and the remaining 20% for testing. To
achieve a balanced ratio between tumor and normal classes during training
and mitigate overfitting caused by class imbalance, we down-sampled the
normal image set to align with the number of tumor images. This down-
sampling process involved random sampling with a fixed seed value. As a
result, among the preprocessed images, 5984 tumor images and 5984 nor-
mal images (in a 1:1 ratio) were utilized in training the AI model. The final
performance was calculated as the average and standard deviation of the
accuracy, sensitivity, and specificity among the folds. Each model is trained
for 50 epochs in each fold with batch size 16, AdamW optimizer with a
default parameter, and cross-entropy loss function. In order to derive better
generalization performance in the training process, data augmentation
techniques such as flip and rotation were applied. As depicted in Fig. 1f, we
developed a two-stage process that distinguishes the tumor and the subtype
of the CLES image with the two CNN models mentioned above. (1) In the
first stage, the input CLES image is determined as tumor or normal by CNN
1. In the sigmoid output of the CNN 1 model for the image, it is indicated asa
tumor if it is greater than 0.5, or if it is less, it is indicated as normal. (2) In the
second stage, CNN 2 classifies the tumor subtype of the tumor-determined
CLES image. As in the first stage, if it is greater than 0.5 in the CNN
2 sigmoid output of the input tumor image, it is classified as ADC, or if it is
less, then classified as non-ADC. To determine the threshold value as 0.5, we
compared the performance of the model across different thresholds by
considering precision and F1 score, as shown in Supplementary Tables
8and 9. The optimal threshold for each fold was determined using Youden’s
index”, resulting in values of 0.506, 0.508, 0.523, 0.573, and 0.546, respec-
tively. 1496 tumor images and 2586 normal images were utilized for the test
in each fold. Despite the slight enhancement of performance with the
thresholds calculated from Youden’s index, we decided to utilize the median
value of the sigmoid function, 0.5, as the default threshold because the true
positive rate and true negative rate exhibit variability depending on the
chosen threshold, potentially introducing bias towards specific classes.
Following the model development, 3686 images were utilized for the
internal validation of the model performance.

Activation map analysis. The activation map of the CNN 1 model was
created using Score-CAM to determine whether the CNN 1 model
trained the imaging features related to the tumor normally. Score-CAM
removes dependence on the slope by acquiring the weight of each acti-
vation map through the forward pass score for the target class, and the
final result is obtained by a linear combination of the weight and the
activation map, so it shows an improved result compared to the previous
class activation mapm. As shown in Fig. 1g, in the activation map, the area
activated in the CNN 1 prediction is shown in red.

External validation of the standalone performance of the artificial
intelligence model and pathologists’ performance
The standalone performance assessment of the two-stage Al model in
detecting tumor images involved the utilization of 43 tumor images and 57
normal images from 14 patient samples. Metrics such as sensitivity, speci-
ficity, and accuracy for detecting tumor images were calculated. Con-
currently, four experienced pathologists independently analyzed the same
validation dataset comprising 100 CLES images, determining whether each
image contained tumor cells. Prior to the task, they underwent group training
for interpreting CLES images conducted by an experienced gastrointestinal
pathologist (S.K.) well-acquainted with CLES. In addition to the training, the
four pathologists were provided with 200 CLES images and their corre-
sponding H&E images for further study. Sensitivity, specificity, accuracy, and
Cohen’s kappa value, in comparison to the ground truth data, were assessed.
A separate dataset of 100 CLES images, including 46 tumor images and
54 normal images from 15 patient samples, was presented to the
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pathologists in a distinct session. After their initial interpretation regarding
the presence of tumor cells in each image, the Al interpretation results were
disclosed to the pathologists for assistance, allowing them to revise their
analytical results. Cohen’s kappa value was utilized to show inter-observer
agreement. Sensitivity, specificity, and accuracy were also calculated both
before and after the Al assistance to comprehensively evaluate the impact of
Al support on the pathologists’ performance.

Statistical analysis

AUROC was used to evaluate the performance of the AT models. Cohen’s
kappa was applied to evaluate the concordance of tumor/normal distinction
between the ground truth and the interpreted result. All statistical analyses
were carried out using Python 3.8 and R version 4.0.3 software (R Foun-
dation for Statistical Computing).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data in this study are available from the corresponding author upon
reasonable request.

Code availability

The program was developed using Python programming language (version
3.8). The models are implemented using PyTorch v1.10 (available at https://
github.com/pytorch/pytorch) and Scikit-learn v1.0.2 (available at https://
github.com/scikit-learn/scikit-learn/blob/main/sklearn/model_selection/_
split.py). The activation map analysis process is implemented using Score-
CAM (open source implementations available online, https://github.com/
frgfm/torch-cam). The data augmentation transformations are implemented
using Albumentations v1.3.1 (https:/github.com/albumentations-team/
albumentations), OpenCV Python v4.7.0.68 (https://github.com/opencv/
opencv-python). Mathematical operations are implemented using Numpy
v1.23.4 (https://github.com/numpy/numpy). For any questions regarding
the replication of results, the corresponding author can be contacted.
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