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The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not
completely understood. We hypothesized that machine learning utilizing paired tissue microbiome
and plasma metabolome features could uncover distinct host-microbiome associations between
eoCRC and average-onset CRC (aoCRC). Individuals with stages I–IV CRC (n = 64) were categorized
as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S
rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO
(Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics
studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome
andmetabolomics) data and identify associations unique to eoCRC.Adifferential association network
analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction
analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for
microbiome-based classifier. Circular correlation technique highlighted several key associations.
Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative
correlationswithParasutterella, andRuminococcaceae (higher abundance in individualswith eoCRC).
Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and
showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC.
Network analysis revealed different clustering patterns and associations for several metabolites e.g.:
urea cyclemetabolites andmicrobes such asAkkermansia. We show thatmulti-omics analysis can be
utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker
potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in
eoCRC may offer opportunities for therapeutic interventions.

The rates of early-onset colorectal cancer (eoCRC) have increased in recent
years, but the etiology and pathogenesis are not well understood1–5. In the
United States, eoCRC disproportionately affects racial and ethnic mino-
rities, has a greater chance of being detected at advanced stages, andpresents
with challenges that are unique to younger people (fertility preservation,
impact on job security, and lifelong effects on quality of life due to treatment
toxicities)3,6. While there is certainly a benefit in timely diagnosis and
treatment, universal population-level screening with conventional methods
may not be a cost-effective solution to address the rising incidence of

eoCRC7. Therefore, there is a need to better understand the pathogenesis of
eoCRC and identify biomarkers for risk-adaptive screening for cancer
prevention as well as for cancer directed therapy8.

Recent advances in understanding the microbiome and metabolome
hold promise in this direction. It is increasingly recognized that exposures to
environmental factors, lifestyle, and diet alter our bodies’ microbiome2.
Metabolomics identifies alterations in chemical reactions at the cellular level
resulting from these exposures, changes related to pathologic processes such
as carcinogenesis, and those resulting from the microbiome9. These
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alterations may serve as markers for cancer development and thus be uti-
lized to identify individuals at increased risk for developing cancer10.Weand
others have previously demonstrated the significance of microbiome and
metabolome in carcinogenesis and have shown unique associations of these
featureswith eoCRC11,12. By using advancedmulti-omic analytic techniques,
new insights into their relationships can be gained. Our study aims to study
the feasibility of using machine learning classifiers based on microbiome
and metabolome features as well as network analysis to uncover distinct
host-microbiome associations related to eoCRC compared to aoCRC.

Results
Baseline characteristics
The studypopulation comprisedof 64 individualswithCRC(N = 20eoCRC
and N = 44 aoCRC). The majority were male—60% for eoCRC vs. 59%
aoCRC, and White—100% vs. 91%. Tumors were mostly left-sided (85%
eoCRC vs. 68% aoCRC) and rectal primary (65% vs. 39%). Stage IV disease
comprised 45% of those with eoCRC vs. 20% of aoCRC. Differences in
baseline characteristics were not statistically significant (p > 0.05 for all).

Most non-cancer controls were individuals with liver adenomas
(n = 15, 31.3%), healthy donors (n = 11, 22.9%), or those with other benign
liver conditions such as cysts (n = 10, 20.8%), hemangiomas (n = 7, 14.6%)
and focal nodular hyperplasia (n = 5, 10.4%).Thebaseline characteristics for
both groups are outlined in Table 1.

Discriminative clustering of metabolomics and microbiome fea-
tures in multiomics models
Distinct clustering patterns were observed in the multi-omic dimension
reduction plots as outlined in Fig. 1. The area under the curve (AUC) plots
(Supplementary Fig. 1a, b) confirmed the superior performance of the
metabolomics classifier (AUC 0.98) vs. the microbiome classifier (AUC
0.61). Combining the microbiome and metabolome data resulted in an
intermediate AUC of 0.83.

Metabolomic and microbiome features involved in eoCRC
molecular profile
Block Rank algorithm-based ranking revealed several unique metabolites
and microbiome features contributing to the model (Fig. 2). The features
and the estimate loading are represented in Fig. 2. These includeddistinctive
metabolites (n = 25, e.g., glycerol, pseudouridine, adenosine-5-monopho-
sphate) and microbial taxa (n = 10, e.g., Fusobacterium, Ruminococcaceae
UCG 002, Parasutterella, Anaeroplasma).

Metabolomic-microbiome interactions unique to eoCRC
Circular correlation technique analysis (Fig. 3) highlighted several key asso-
ciations between metabolites andmicrobial genera in eoCRC vs aoCRC. For
example, metabolites glycerol and pseudouridine (greater abundance in
aoCRC) negatively correlated with microbial taxa Parasutterella and Rumi-
nococcaceae UCG 002 (lower abundance in aoCRC). Both of these metabo-
lites also negatively correlated with Acidaminococcus. Other metabolites
negatively correlated with these microbiome taxa (Parasutterella, Rumino-
coccaceae UCG002 and Acidaminococcus) were erythritol, lyxitol, myoino-
sitol, uric acid, and arachidonic acid. Parabacteroides, Erysipelatoclostridium,
and Eubacterium cellulosolvens negatively correlated with xylitol while the
latter two (ErysipelatoclostridiumandEubacterium) alsonegatively correlated
with cholesterol. Positive correlations were identified for Acidovorax (more
abundant in eoCRC) with cholesterol and xylitol. Several metabolites found
relevant in the block rank algorithm such as adenosine-5-monophosphate
and hydroxyhippuric acid were not correlated with the microbiome.

Comparison with controls
Only plasmametabolomicswas performed for controls. Themetabolomics-
based classifier for the non-CRCcontrols had amuch lowerAUCof 0.78 (in
making young vs. old classification) as opposed to the AUC of 0.98 for
people with CRC. In assessing the correlation of metabolites with age, no
significant associations were found (Supplementary Fig. 2).

Post hoc analysis using selected metabolites and microbiome
Tukey’s Honest Significant Difference test (post hoc) using selected meta-
bolites andmicrobiomewas performed to assessmetabolites of relevance in
themachine learningmodel and showed that the age-related variation is not
significant (p value = 0.369).

Network analysis
In our network analysis, we applied a comprehensive approach by inte-
grating microbial taxonomy and metabolomics features, avoiding pre-
selection biases from the DIABLOmodel. The method revealed distinctive
clustering patterns which are represented in Fig. 4.

Briefly, the SPRING method was used as an association measure,
transforming estimatedpartial correlations intodissimilarities andusing the
corresponding similarities as edge weights13. Eigenvector centrality defined
hubs, the scaled node sizes, and corresponding label sizes, while node colors
represented clusters determined using greedy modularity optimization.
Green edges denoted positive estimated associations and red edges to
negative ones. Unconnected nodes in both groups were removed.

Metabolites of the urea cycle, including urea and uric acid, showed
different clustering patterns and centrality in the two groups. Notably, urea
and ornithine had higher centrality in eoCRC versus aoCRC. Citric acid
exhibited greater centrality in aoCRC compared to eoCRC, while its related

Table 1 | Baseline characteristics of population selected for
the analysis—n (%) for categorical variables and median
(interquartile range—IQR) for continuous variablesa

Characteristics eoCRC (n = 20) aoCRC (n = 44) Control (n = 49)

Sex

Male 12 (60%) 26 (59%) 8 (16.3%)

Female 8 (40%) 18 (41%) 41 (83.7%)

Comorbidities

Hyperlipidemia 5 (25%) 12 (27%) 26 (53.1%)

Obesity 5 (25%) 3 (7%) 25 (51.0%)

Diabetes 1 (5%) 13 (30%) 5 (10.2%)

Tumor characteristics

Left sided 17 (85%) 30 (68%) –

Stage IV disease 9 (45%) 9 (20%) –

CRC colorectal cancer, eoCRC early-onset colorectal cancer, aoCRC average-onset colorectal
cancer.
ap > 0.05 for all comparisons.

Fig. 1 | DIABLO dimension reduction demonstrating discriminative clustering of
metabolomics and microbiome features in eoCRC vs. aoCRC.
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metabolite glutamate showed different clustering patterns between the
groups. The centrality of the microbe Akkermansia differed in the two
groups, showing stronger negative associations with metabolites serine and
glutamate in eoCRC compared to aoCRC.

Discussion
We usedmachine learning classifier models to characterize themulti-omics
features of eoCRC vs. aoCRC and found that plasma metabolomic features
separated the cancer cohorts by age of onset more efficiently than tumor

Fig. 2 | Discrimination of cancer groups using PLS-DA. Loading plot from the PLS-DA applied to the (a) Metabolome and (b) Microbiome data to discriminate cancer
groups. Colors indicate the group in which the median is maximum for each feature.

Fig. 3 | Circular correlation analysis of key metabolite-microbial genera associations (positive in red, negative in black).
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microbiome features.Themetabolomics-basedmachine learningmodel had
better discriminatory power, or the ability to effectively classify eoCRC vs.
aoCRCusing features fromthe trainingdataset. The lackof similarly efficient
classification in the non-CRC control group suggests that the alterations
associated with CRC contributed to this distinction. Further, using a multi-
omics approach, we demonstrated that several metabolites of relevance in
CRCand the classifiermodels exhibited correlationswithmultiplemicrobial
taxa, highlighting differences between eoCRC and aoCRC. These include
pseudouridine, glycerol, cholesterol, myoinositol, and arachidonic acid14–20.
Therefore, it appears that the alterations in plasma metabolome are partly
explained by differences in the tumor-associated microbiome, which may
also explain the variations in metabolites observed between studies21. The
fact that the microbiome only partially accounts for the eoCRC vs aoCRC
differences is also reflected in the lower AUC for the microbiome-based
classifier. In the present study, differential correlations inmetabolites such as
erythritol, which don’t have a well-established association with colorectal
cancer, were identified andneed further investigation22. Additionally, certain
metabolic differences such as adenosine-5-monophosphate and
4-hydroxyhippuric acid that are of relevance in cancer were not correlated
with the microbiome, suggesting host-driven metabolic influences for these
metabolites12,23,24.Network analysis revealed adistinct clusteringofurea cycle
metabolites with the microbiome in eoCRC compared to aoCRC. This
finding is interesting in light of the urea cycle’s association with CRC and its
potential therapeutic relevance25,26.

Although metabolomics was able to capture the eoCRC vs aoCRC
distinction more comprehensively, studying the differentially altered
microbiomes is also relevant as the significanceofmicrobiome alterations in
the pathogenesis of eoCRC is increasingly understood. Factors such as
antibiotics anddietarypatterns are believed to contribute todysbiosis,which
can alter gene expression and the immune microenvironment, leading to
cancer27,28. Dysbiosis is particularly relevant in eoCRCgiven the birth cohort
effect (increasing incidence of eoCRC since the early 1950s), which may be
related to environmental exposures that manifest in the microbiome7.
Therefore, microbiome signatures are being sought as potential biomarkers
with the potential to complement existing colorectal cancer screening
tools29. Themicrobes thought to have carcinogenic potential inCRC include
Fusobacterium, Anaeroplasma, Flavonifractor, Parasutterella, Rumino-
coccaceae UCG 002, Acidovorax, Anaeroplasma, and Eubacterium9,30–38.We

therefore analyzed the microbiome features contributing to the classifier
models. The microbial taxa significant in the correlative analysis were
Parasutterella and Ruminococcaceae UCG 002, which were more abundant
in eoCRC. Other microbes contributed to the model (Fusobacterium,
Anaeroplasma) but did not meet the threshold for metabolic correlations,
while several microbes correlated with metabolite differences but did not
contribute to the model (Acidaminococcus, Acidovorax, Erysipelatoclos-
tridium, Eubacterium cellulosolvens).

A prior study attempted a similar application of multi-omics utilizing
fecal metabolomics and demonstrated the distinct metabolomic and
microbiome features of eoCRCversus aoCRCand in comparison to subjects
without a history of colon cancer9. The fecal metabolites that were relevant
in the study included microbiota derivatives of tryptophan and bile acid
metabolites9. While our findings differed from this prior study, possibly
reflecting the variations in sampling, we demonstrated that a multi-omic
approach incorporating plasma metabolomics and tissue microbiome is
feasible. In a related investigation, a metabolomics-based classifier achieved
an impressive area under the curve (AUC) of 0.81 for the diagnosis of colon
cancer and 0.89 for rectal cancer, respectively39. Notably, diagnostic accu-
racy for cancer was substantially enhanced when metabolite markers were
integrated with protein markers (specifically, CEA and CA19-9), resulting
in an elevated AUC of 0.94 for both colon and rectal cancer39.

The finding from the network analysis pertaining to urea cycle and
eoCRC is biologically relevant and worth investigating further. Asso-
ciation of elevated urea levels with lower levels of urea metabolizing
microbe Bifidobacterium, and its contribution to colorectal carcino-
genesis has been previously established25. The authors of the same study
also demonstrated how pharmacologic inhibition of urea cycle meta-
bolism and Bifidobacterium longum supplementation reduced murine
intestinal tumor numbers and sizes. Bifidobacterium was not a key
microbe in our model, likely due to different sampling (tissue micro-
biome in the present study vs fecal microbiome in the other). However, it
appears that urea cycle is relevant especially in eoCRC. The metabolites
involved in urea cycle are also part of Arginine biosynthesis pathway
with demonstrated association with CRC including eoCRC and poten-
tial therapeutic relevance26. Whether the distinct clustering patterns
observed in eoCRC vs aoCRC suggest distinct pathogenetic processes
remains to be validated. The alterations of other metabolites such as

Fig. 4 | Network analysis of metabolomic–microbiome correlations of eoCRC
vs. aoCRC.The SPRINGmethodwas used as an associationmeasure. The estimated
partial correlations are transformed into dissimilarities via the “signed” distance
metric and the corresponding similarities are used as edge weights. Eigenvector
centrality is used for defining hubs and scaling node sizes. Node colors represent

clusters, which are determined using greedy modularity optimization. Clusters have
the same color in both networks if they share at least two taxa. Green edges corre-
spond to positive estimated associations and red edges to negative ones. Nodes that
are unconnected in both groups are removed.
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citric acid andmicrobes such asAkkermansia in eo vs. aoCRC have been
previously described11,12. In addition, the present study demonstrates
how akkermansia may influence the differential expression of certain
metabolites. The findings continue to indicate the underlying metabolic
and microbiome differences that need further investigation.

Our study has several limitations. First, although our findings of
metabolomics as a robust classifier are consistent with prior studies, we did
lack an external cohort for validation. In the study we focused on demon-
strating the feasibility of multi-omic analysis to uncover distinct host
microbiome associations in eoCRCversus aoCRC. Sincewe are studying the
feasibility of this approach and required multiple data points on the same
group of individuals with CRC (metabolomics, tissue microbiome, clinical
characteristics) which are not uniformly available across different datasets,
we limited our study to a single institution. However, we included a control
group of individuals without CRC to isolate the effect of CRC on the
metabolome anddemonstrated that thefindingswere unique to peoplewith
CRC. Second, correlative findings of metabolomics and microbiome were
made, but it is unclear how much of the relationships observed are causal
versus associative. Given the timing of the sample collection for the present
study, the models describe molecular profiles after the disease is established
rather than predicting its occurrence.While even establishing associations is
relevant from a biomarker perspective, longitudinal analysis and mechan-
istic studies are crucial to elucidate the relationships from a pathogenesis
standpoint and understand the biological implications40,41. Lastly, given the
retrospective nature of the study, the impact of unmeasured confounders
cannot be determined. However, we did evaluate potential confounders and
demonstrated that they were not significantly different in the different
groups that were compared. Third, the limitations of themodels (overfitting
of metabolomics model and low AUC for microbiome model) could
influence the results. We did consider other classical machine learning
approaches that are robust to overfitting and decided to use the DIABLO
approach which has an established role in multiomics analysis42,43. Addi-
tionally, network analysis was performed independent of the classifier
models and demonstrated unique metabolomic-microbiome correlations.

The current study presents several notable findings of future relevance.
First, the metabolomics classifier exhibited remarkable performance,
demonstrating its potential as a robust biomarker for precise risk assessment
and the development of effective therapeutic interventions. Second, our
findings underscore the potential of metabolomics for enhancing the
assessment of pathophysiological alterations and providing a comprehen-
sive perspective by incorporating facets of host metabolism and dysbiosis.
Third, our multi-omics analysis unveiled pronounced differences in host-
microbiome interactions between eoCRC and aoCRC, providing insights
into the pathogenic mechanisms that could be investigated further. This is
relevant given the increasingly recognized role of dysbiosis in carcinogenesis
and alignswith ongoing efforts to utilizemicrobiomemodulation as a viable
approach in cancer therapy44–46. Modulation of urea cycle-related microbes
to influence the natural history of colorectal cancer is one such area of
interest and our findings concerning age-specific differences add another
dimension that needs investigating25.

In conclusion, our findings demonstrate that multi-omics analysis can
help identify unique host-microbiome interactions associated with eoCRC
and aoCRC. The strategy can help identify biomarkers for screening and
treating eoCRC.

Methods
Samples
Plasma samples were obtained from the prospective colorectal and liver
tumor biobanks at Cleveland Clinic from 01/2004 to 03/2021. The liver
biobank was included because it was the source of non-CRC control blood
samples. Samples were obtained from individuals on the day of their pro-
cedures, inventoried, and immediately stored at−80 °C. The samples were
maintained at−80 °C until processing. The study was performed under the
oversight of the Cleveland Clinic institutional review board and the ethical
approval process (IRB # 4134 and IRB#10-347), and written informed

consent was obtained from all human participants. This study was con-
ducted in accordance with the guidelines of the Declaration of Helsinki, the
Belmont report, and the U.S. Common rule.

The samples included cases (individuals with a diagnosis of CRC) and
controls (individuals without CRC or any other malignancy). The cases
comprised all stages of CRC. Case samples were obtained at the time of
surgical resection of the primary disease. Control samples included those
who underwent liver resections or biopsies for benign causes, or liver
transplant donors. The cohort was categorized based on the ages at the time
of diagnosis as age ≤ 50 years (individuals with eoCRC or young non-CRC
controls) or age ≥ 60 years (individuals with aoCRC or older non-CRC
controls). Clinical information was obtained from a review of electronic
medical records. Of note the control samples were used only for metabo-
lomic analyses.

Metabolomic analysis
The samples underwent metabolomic analyses using gas chromatography
time-of-flight mass spectrometry (GC-TOF-MS) with the Primary Meta-
bolism panel from West Coast Metabolomics at University of California,
Davis47. This assay is designed for untargeted plasma analysis and detects
over 200 known and more than 200 unknown metabolites. The list of
known metabolites is accessible at https://metabolomics.ucdavis.edu/core-
services/metabolites48. Previous publications have provided comprehensive
information on the technique’s validity and procedures related to plasma
extraction and metabolomics49–52.

Briefly, the samples were subjected to extraction using a solution
consisting of acetonitrile, isopropanol, and water in a ratio of 3:3:2, which
was chilled to−20 °C and degassed. A volume of 1ml of this solution was
utilized for extraction. For metabolite derivatization, a two-step process
previously described was employed49. First, methoximation was used to
protect carbonyl groups, followed by the exchange of acidic protons with
trimethylsilyl groups to enhance volatility. A sample was then injected into
an Agilent 6890 GC (Agilent Technologies, Santa Clara, CA, USA),
equipped with a Restek Rtx-5Sil MS column (30m × 0.25mm, 0.25 μm)
and operated with a splitless time of 25 s and a helium gas flow rate of 1ml/
min. The oven temperature was initially held at 50 °C for 1min and then
increased to 330 °C at a rate of 20 °C/min, where it was maintained
for 5min.

Data acquisitionwas carriedout using a Leco Pegasus IV time-of-flight
mass spectrometer (Leco Corporation, St. Joseph, MI) with electron ioni-
zation at−70 eV. Rawdatawere processed usingChromaTOFversion 4.50,
which included baseline subtraction, deconvolution, and peak detection.
Metabolite annotation and reporting were performed using Binbase53.

Microbiome analysis
16S rRNA gene amplicon sequencing and bioinformatics analysis were
conducted following previously established protocols from colonic tissue
specimens obtained at the time of surgical resection11,54,55. In brief, raw 16S
amplicon sequences and metadata were demultiplexed using the split_li-
braries_fastq.py script within the QIIME2 software56. The demultiplexed
fastqfileswere subsequentlydivided into sample-specific fastqfilesusing the
split_sequence_file_on_sample_ids.py script in QIIME2. Subsequently,
individual fastqfiles were processed using theDivisive AmpliconDenoising
Algorithm (DADA) pipeline to remove non-biological nucleotides57.

The output of the DADA2 pipeline resulted in a feature table of
amplicon sequence variants (ASVs). This ASV table was then subjected to
alpha and beta diversity analysis using the phyloseq and microbiomeSeq
(http://www.github.com/umerijaz/microbiomeSeq) packages in R58. To
assess differences in alpha-diversity measures among sample categories,
variance analysis (ANOVA) was conducted using the plot_anova_diversity
function in the microbiomeSeq package. For beta diversity analysis, Per-
mutational Multivariate Analysis of Variance (PERMANOVA) with 999
permutations was performed on all principal coordinates derived from
Canonical Correspondence Analysis (CCA) using the ordination function
of the microbiomeSeq package. Additionally, correlation analysis between
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microbiome (genera) and metabolomics (metabolites) data was performed
using the microbiome Seq package.

Statistical analysis
Differential abundance analysis was conducted using the random-forest
algorithm, which was implemented in the DAtest package (https://github.
com/Russel88/DAtest/wiki/usage#typical-workflow). We compared dif-
ferentially abundant methods using several metrics, including False Dis-
covery Rate (FDR), Area Under the Curve (AUC) for Receiver Operating
Characteristic (ROC) analysis, Empirical power (Power), and False Positive
Rate (FPR).

Based on DAtest’s benchmarking results, we selected lefseq and
Anova as our preferredmethods for performing differential abundance
analysis. Throughout the analysis, we considered statistical sig-
nificance at p < 0.05 and adjusted p values for multiple comparisons
using the Benjamini and Hochberg method to control the False Dis-
covery Rate59.

For assessing associations between microbiome, and metabolites with
metadata variables, we employed linear regression as a parametric test and
the Wilcoxon test as a non-parametric test using the following cut-offs:
alpha = 0.05, multiple correlation = false discovery rate or FDR, detection
limit = 10−10. Potential confounding factors were assessed using PERMA-
NOVA.These statistical analyseswere carriedout inR (version4.1.2; RCore
Team, 2021)60.

Machine learning
Microbiome and untargeted metabolomics data from eoCRC vs aoCRC
cohorts were used to construct a robust machine-learning classifier model
for the groups using DIABLO (Data Integration Analysis for Biomarker
Discovery using Latent variable approaches for Omics studies). DIABLO
integrates molecular signatures such that the associations between meta-
bolomeandmicrobiomeare sought in classifier optimization42. Thenumber
of components was selected using Mahalanobis distance. The final model
was tuned to determine optimal parameters using leave-one-out cross-
validation scores. Feature analysis was performed using the Block Rank
algorithm. Features were ranked based on the stability metric, defined as a
fraction indicating the number of models in the performance test that
selected this feature when being fitted.

Network analysis
To assess the biological relevance of metabolites, considering their
microbial or dual (microbial or host-related) origin, we employed a
differential microbe-metabolite interaction network. These networks
were constructed using all microbial taxonomy and metabolomics fea-
tures that were not preselected from the previously described model
(DIABLO). Normalization was carried out through variance and sta-
bilizing transformation. The SPRING method served as an association
measure13. Estimated partial correlations were transformed into dis-
similarities using the “signed” distance metric, and the resulting simi-
larities were utilized as edge weights. Eigenvector centrality was
employed to identify hubs and scale node sizes. Differential association
analysis was conducted using Fisher’s z-test. Clusters were identified
through greedy modularity optimization, with nodes unconnected in
both groups subsequently removed.

Data availability
Authors T.J., N.S., A.A.K., and S.K. had full access to all the data in the study.
We take full responsibility for the integrity of the data. There are restrictions
to the availability of some data generated in this study due to the lack of
authorization in our informed consent to share data beyond our institution
without the explicit consent of the research subjects. The raw 16S rRNA
amplicon sequencing data are available at: Sangwan and Khorana61. The
data analyzed in this study are available from the corresponding author on
reasonable request, S.D.K.
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