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Pathological complete response (pCR) serves as a critical measure of the success of neoadjuvant
chemotherapy (NAC) in breast cancer, directly influencing subsequent therapeutic decisions. With the
continuous advancement of artificial intelligence, methods for early and accurate prediction of pCR
are being extensively explored. In this study, we propose a cross-modal multi-pathway automated
prediction model that integrates temporal and spatial information. This model fuses digital pathology
images from biopsy specimens and multi-temporal ultrasound (US) images to predict pCR status early
in NAC. The model demonstrates exceptional predictive efficacy. Our findings lay the foundation for
developing personalized treatment paradigms based on individual responses. This approach has the
potential to become a critical auxiliary tool for the early prediction of NAC response in breast cancer

patients.

Breast cancer (BC) is currently the most prevalent cancer among women,
surpassing lung cancer'. Neoadjuvant chemotherapy (NAC), previously
limited to locally advanced BC, is now being used more extensively™’. This
treatment not only reduces the stage of BC and improves the rate of breast-
conserving treatment (BCT), but also minimizes the need for axillary
surgery’. Pathologic complete response (pCR) serves as a standard for
measuring the efficacy of NAC. Early identification of pCR is crucial to avoid
unnecessary surgery and chemotherapy cycles. This can help to prevent
toxic side effects and psychological impacts on patients who do not respond
to NAC’. Therefore, obtaining reliable methods for early prediction of pCR
is of utmost importance.

Based on existing research, there are variations in pathological
responses to NAC among patients with different tumor subtypes®.
Additionally, individual responses to chemotherapy may also vary due
to tumor heterogeneity™®. Several histopathology-based studies have
confirmed that certain stromal parameters, such as tumor-infiltrating
lymphocytes (TILs) and tumor-stroma ratio”"', demonstrate predictive
capabilities for pCR, in addition to the predictive information hidden in

the tumor epithelium'. Therefore, extracting heterogeneous informa-
tion implicit in tumor and associated stroma from histopathological
images and integrating it effectively is crucial for accurately identifying
pCR" . However, due to individual variations in responses to che-
motherapy drugs, relying solely on pre-treatment tumor information,
while valuable for predicting pCR, may not provide sufficient accuracy to
serve as a basis for clinical decision-making.

The changes in tumors during treatment are important predictive
features. To improve the accuracy of pre-treatment assessment for pCR,
researchers have recognized the significance of combining pre-treatment
tumor information with imaging changes during treatment. This integra-
tion provides a better representation of the temporal heterogeneity of
tumors and their response to chemotherapy drugs, thereby uncovering
crucial information for predicting pCR. An increasing corpus of research
supports the idea that incorporating changes in tumors and related regions
during the treatment process is crucial in predicting pCR for patients
undergoing NAC. This approach has the potential to enhance predictive
capabilities'*™*
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The findings of a study on predicting the efficacy of NAC in advanced
colorectal cancer suggest that a predictive model, which combines Whole
Slide Images (WSIs) with radiomic features, outperforms a unimodal model
in terms of predictive accuracy'’. Wang et al. developed a nomogram model
that integrates deep learning (DL) pathomic, radiomic and immune scores
to predict postoperative overall survival (OS) and disease-free survival
(DFS) in patients with lung metastasis of colorectal cancer”’. However, there
is limited research reported on combining histopathology and radiomics to
construct predictive models of post-NAC pCR in BC patients. Further
investigation is needed to determine whether integrating both modalities
can provide additional predictive information related to pCR status, thereby
improving the predictive performance for pCR.

In the field of oncology, the advancement of artificial intelligence (AI)
has brought about a transformative era. DL networks have outpaced con-
ventional machine learning (ML) methodologies and are renowned for their
precision and user-friendly attributes. They have been continuously applied
in recent years to various medical applications, including the segmentation
of breast tumors’ ™, benign-malignant classification®*°, assessment of
hormone receptor status”’, tumor subtyping’®”, prediction of drug
efficacy’””" and disease prognosis”. The DL models based on multi-time
point images have demonstrated performance advantages in evaluating the
effectiveness of NAC” ™. Nonetheless, the presently prevalent application
of Convolutional Neural Networks (CNNs) tends to prioritize regional
details within images, exhibiting limited capability to capture global context
and distant relationships between image elements, and requiring substantial
computational cost. In 2020, Dosovitskiy et al. pioneered the application of
the transformer, an innovative neural network, to image classification. The
vision transformer (ViT) was introduced and has achieved commendable
performance in this context™. ViT’s unique global self-attention mechanism
and substantial receptive field range have led to outstanding classification
performance, resulting in its increasing utilization for imaging tasks”*.
Additionally, it has found growing applications in medical imaging
research, demonstrating superior performance compared to CNN, parti-
cularly in studies related to breast tumor analysis™ .

In this study, we chose B-mode ultrasound (US) as a monitoring tool to
capture tumor responses to NAC due to its economical, non-radiative,
repeatable, and convenient nature. Additionally, we employed WSIs of
histopathologic hematoxylin-eosin (HE) stained sections obtained by core
needle biopsy (CNB) of primary BC tumors, providing visual insights into
pathological characteristics. The study utilized DL methods to integrate
WSIs from pathological analysis of pre-treatment CNB specimens of the
primary tumor with initial US images. This integration allowed for the
derivation of comprehensive tumor heterogeneity information. We pro-
posed a double ultrasound coherence network (Dou-Ult Net) to capture
pixel changes in US images before and after two cycles of NAC at any given
location, which reflected drug responsiveness. Given the critical importance
of inter-scale feature correlations, we have improved the architecture based
on transformer by integrating the long-range and short-range attention
mechanisms of the CrossFormer" vision architecture. This enhancement
aims to efficiently leverage multi-scale features across multimodal images
and establish correlations between large-scale global features and small-
scale fine-grained features. To achieve effective interaction between multi-
time point US images and pathological WSIs at different scales and channels
within input sequences, we embed a Squeeze and Excitation (SE) block™,
which dynamically adjusts the channel weights of input feature maps to
enhance the network’s perception of important features. We named this
novel network architecture “Squeeze and Excitation CrossFormer” (SE-
CrossT), which integrates channel attention modules within a transformer-
based interaction network, thereby fully extracting the feature information
of the images.

Results

Clinicopathological characteristics

From July 2017 to July 2022, 596 patients were selected from a pool of 1835
candidates based on inclusion criteria at the Harbin Medical University

Cancer Hospital, forming the final study group (Fig. 1). Overview of the
study design is presented in Fig. 2. Clinicopathologic characteristics of
patients in non-pCR and pCR cohorts are provided in Table 1. Among
them, 491 patients with unifocal lesions were randomly assigned to the
primary cohort, which was further divided into training, validation, and
TC1. There were no statistically significant variances in clinical baseline
features among the groups (P>0.05). Additionally, 105 patients with
multifocal lesions were used as TC2. Patient characteristics for each cohort
are detailed in Supplementary Table 1.

To evaluate the predictive abilities of established biomarkers and
extract significant clinical characteristics, we applied univariate and multi-
variate analyses to investigate the relationships between existing histological
and clinical imaging variables and NAC response. Univariate analysis
revealed significant differences in several clinical factors between the pCR
and non-pCR cohorts, encompassing ER, PR, HER2, Ki-67, clinical TNM
staging, Breast Imaging Reporting and Data System (BI-RADS) classifica-
tion, tumor subtype, chemotherapy regimen (P < 0.05). Figure 3 provides
the landscape of PCR-related clinicopathological characteristics of BC.
Multivariable analysis of pCR in relation to clinicopathological character-
istics in the cohort is summarized in Table 2. It indicated that patients with
ER-negative or ER-low positive status, high Ki-67 expression, non-HR
+/HER2— subtype were more prone to achieve pCR following NAC.
Simultaneously, the chemotherapy regimen is also a factor influencing pCR.
This conclusion is consistent with previous research findings*™.

Performance of DL models vs. other architectures in cross-
modal multi-pathway tasks

In this study, six DL methods were employed to establish a multimodal pCR
prediction model based on pathology and US images. The results demon-
strate that each DL model possesses the capability to predict pCR in the
unifocal dataset. The cross-modal multi-pathway model based on the SE-
CrossT network exhibited superior performance compared to other DL
methods, with AUC values of 0.851 (95% CI: 0.793-0.869, 0.791-0.856) in
both the validation cohort and TC1. ACC, SENS, SPEC, NPV, PPV values
were 0.918, 0.896, 0.888, 0.866, 0.885 and 0.882, 0.878, 0.855,0.840, 0.864
(Fig. 4e, i). When comparing the SE-CrossT network with models estab-
lished by five other DL methods in the validation cohort and TCl, the
findings indicated that within the validation cohort, this model achieved the
highest AUC, ACC, SENS, NPV, and PPV; In the TCl, it exhibited the
highest AUC, ACC, NPV, and PPV values (Table 3). The ROC curves for
the training, validation and test cohorts illustrate the comparative results of
AUC for models based on six networks (Fig. 4a, e, i).

Ablation study

To validate the predictive performance, the image set was divided, and
six DL methods were employed to establish a unimodal pCR prediction
model. Figure 4f, j showed that the SE-CrossT network had the highest
performance for the unimodal-pathology model, with an AUC of 0.810
(95% CI: 0.777-0.819) in the validation cohort and 0.703 (95% CI:
0.649-0.745) in TC1. ACC, SENS, SPEC, PPV, NPV were 0.857, 0.730,
0.788,0.751,0.751 in the validation cohort and 0.776, 0.727,0.738, 0.724,
0.729 in TC1 (Supplementary Table 2). Figure 4g, k shows that for the
unimodal-US model targeting multiple time points, the SE-CrossT
network achieved AUC values of 0.837 (95% CI: 0.806-0.855) and 0.817
(95% CI: 0.775-0.836) in the validation and TC1, respectively. ACC,
SENS, SPEC, PPV, NPV were 0.878, 0.883, 0.882, 0.859, 0.879 in the
validation cohort, and 0.823, 0.859, 0.867, 0.833, 0.855 in TC1 (Sup-
plementary Table 3). Table 4 performance SE- CrossT models based on
WSIs, US and Multimodal according to validation and test cohorts. The
results indicate that cross-mode joint learning of breast tissue pathology
and radiological images contributes to improved feature performance.
The model’s performance surpasses that of unimodal models, demon-
strating certain advantages in predicting pCR in the context of NAC.
Furthermore, the results of the ablation experiment for the SE block also
confirm the necessity of adding the SE block in training networks for
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Fig. 1 | Patient selection flowchart. BC breast cancer, NAC neoadjuvant chemotherapy, US ultrasound, Al artificial intelligence.

cross-mode multi-pathway tasks (Supplementary Table 4), In order to
visually depict the ablative experimental results of the SE module, we
present the AUC curves without the addition of the SE module in each
model’s respective cohort. Figure 4 shows the ablation study for the
SE block.

Validation of model performance with multifocal cases as an
independent test cohort

To assess the model’s robustness and generalization, we employed a mul-
tifocal lesion test cohort (TC2) that was not involved in training and
exhibited greater tumor heterogeneity. The results revealed suboptimal
performance for models based on CNN, with the best AUC reaching only
0.543 (95% CI: 0.496-0.553) (DenseNet121). Transformer-based models
performed better, with SE-CrossT and Swin-transformer models exhibiting
the highest performance, each achieving an AUC of 0.713 (95% CL
0.668-0.714, 0.649-0.714, P = 0.931), the corresponding ACC, SENS, SPEC,
PPV, and NPV values were 0.848, 0.794, 0.803, 0.815, 0.774, and 0.848,
0.793, 0.816, 0.786, 0.795, respectively (Supplementary Table 5). These
results indicate that our cross-modal multi-pathway model based on SE-
CrossT for breast tissue pathology and US images remains practical in
predicting pCR for multifocal cases, expanding the model’s applicability.

Fusion of baseline features into cross-modal multi-pathway model
Four clinical variables associated with pCR, tumor subtype, ER status, Ki67
percentage, and chemotherapy regimen were integrated as features into the
best-performing SE-CrossT-based cross-modal multi-pathway model. The

AUC demonstrated improvement to 0.873 (95% CI: 0.834-0.898, P < 0.005)
in the validation cohort, and in TC1, it exhibited an increase to 0.875 (95%
CL: 0.835-0.890, P<0.005) (Fig. 4h, I). Post-integration of clin-
icopathological variables, the model exhibited ACC, SENS, SPEC, NPV, and
PPV values 0f0.918, 0.883,0.894, 0.861, 0.874, respectively (Table 5). Hence,
integrating clinicopathological characteristics can enhance the performance
of the cross-modal multi-pathway model while expanding its applicability.
As an independent test cohort, multifocal cases exhibited an ACC of 0.886
post-clinicopathological characteristics fusion, with a significant increase in
AUCt00.819 (95% CI: 0.764-0.868, P < 0.001), Fig. 5 shows ROC curves for
predicting pCR levels of cross-modal multi-pathway models based on the
SE-CrossT network in the TC2. This also underscores the apparent
importance of clinicopathological characteristics in multifocal cases.

Visual interpretation of the DL model

To improve the interpretability of predictions made by the DL model,
we visualized response areas within the original lesion regions
depicted in pathology and US modal images (Fig. 6). We created
illustrative heatmaps by obtaining two distinct image sets: one fea-
turing cases of pCR, and the other highlighting instances of non-pCR.
The DL model demonstrated an impressive ability to produce accurate
diagnostic results. The resulting heatmaps showed clear color pat-
terns, with red regions indicating areas that provide valuable pre-
dictive information for pCR. After careful examination of all
heatmaps, distinct patterns emerged that distinguished tumors with
PCR from those without.
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Fig. 2 | Overview of the study design. a Diagnostic and treatment workflow for
included breast cancer patients: All patients underwent ultrasound-guided core
needle biopsy (CNB), followed by initiation of a standard NAC protocol within 1
week after the biopsy. Surgical intervention was conducted for all patients upon
completion of the entire treatment course, and the achievement of pCR was deter-
mined through histopathological examination. b Obtaining pathology images: the
process involved scanning HE-stained slides from CNB to create WSIs. The most
representative region was selected as the ROL ¢ The process of obtaining ultrasound
(US) images: collecting pre-NAC (labeled as US-0) and post two cycles of treatment
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(labeled as US-1) ultrasound images, followed by preprocessing. d Univariate and
multivariate logistic regression analyses were performed to identify clinically
meaningful features linked to pCR as baseline characteristics. These selected features
were then used to construct a model integrating clinicopathological characteristics.
e The breast cancer patients receiving NAC were divided into the training cohort
(N =391), validation cohort (N = 49), test cohort 1 (unifocal test cohort, N = 51),and
test cohort 2 (multifocal test cohort, N = 105). Test cohorts were not involved in the
training process. f Schematic diagram of the artificial intelligence model.

g Performance results and visualization of the predictive model.

In the field of WSIs patch, the most valuable regions are those that
contain TILs, with invasive carcinoma ranking second. In US images,
valuable regions often include a significant portion of the primary tumor
lesion area or are located in the tumor’s periphery. In US-0 images of
tumors, valuable regions tended to coalesce within the internal facets of the
tumor, regardless of the pCR status. In US-1 images, valuable regions that
promote non-pCR tended to aggregate within the tumor, similar to the
pattern observed in US-0 images. Additionally, in most US-1 images
showing pCR tumors, the valuable regions are often concentrated along the
tumor’s periphery. This explanation contributes to understanding the dis-
criminative ability of the DL model, aligning with insights from previous
clinical studies'".

Discussion

Nowadays, artificial intelligence (AI) has been extensively applied in
medical imaging research due to its ability to uncover information that
may escape human eyes. This has found widespread application in
predicting the effectiveness of NAC for BC. For instance, studies using
radiomics have discovered a correlation between posterior acoustic
features in US images and the proliferative capacity and cell count of
tumors. Tumors with rapid proliferation tendencies, it is found, are
more likely to achieve pCR'". Tumors with no apparent change in size
can be effectively analyzed for internal subtle changes through artificial
intelligence. These changes often correlate with the loss of cell count
post-NAC, thereby reflecting the responsiveness to NAC™. We have
observed that while there is a considerable amount of research focusing
on predicting pCR after NAC in BC, there is a limited emphasis on
achieving optimal performance metrics during early-stage treatment. In
the 2016 study by Noritake et al., a comparative analysis was conducted

Table 1 | Clinicopathologic characteristics of patients in non-
PCR and pCR cohorts

npj Precision Oncology | (2024)8:189

Characteristics PCR (n = 155) Non-pCR P-value
(n =441)
Age 0.448
Mean + SD 52.52 +9.17 53.17 +9.24
BMI 0.255
Mean + SD 24.62 +3.29 24.97 £3.43
Menopausal status 0.935
Pre/peri-menopausal 42 (27.1%) 121 (27.4%)
Post-menopausal 113 (72.9%) 320 (72.6%)
Tumor size
Mean + SD 29.35+10.41 29.63 +8.48 0.765
T stage 0.278
™ 28 (18.1%) 59 (13.4%)
T2 119 (76.8%) 367 (83.2%)
T3 5(3.2%) 7(1.6%)
T4 3(1.9%) 8(1.8%)
Phenotypes <0.001
HR-+/HER2— 22 (14.2%) 289 (65.5%)
Triple-negative 30 (19.4%) 48 (10.9%)
HR—/HER2+ 64 (41.3%) 44 (10.0%)
HR-+/HER2+ 39 (25.2%) 60 (13.6%)
4
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Table 1 (continued) | Clinicopathologic characteristics of
patients in non-pCR and pCR cohorts

Characteristics PCR (n = 155) Non-pCR P-value
(n=441)
Receptor status
ER <0.001
Negative 99 (63.9%) 100 (22.7%)
Low positive 13 (8.4%) 8 (1.8%)
Positive 43 (27.7%) 333 (75.5%)
PR <0.001
Negative 112 (72.3%) 302 (68.5%)
Positive 43 (27.7%) 139 (31.5%)
HER2 <0.001
Negative 30 (19.4%) 119 (27.0%)
Low expression 22 (14.2%) 218 (49.4%)
Positive 103 (66.5%) 104 (23.6%)
Ki-67(%)
Mean + SD 40.68 + 19.59 27.35+19.50 <0.001
Clinical TNM stage 0.006
-l 118 (76.1%) 378 (85.7%)
n 37 (23.9%) 63 (14.3%)
Nodal status 0.521
Node positive 144 (92.9%) 416 (94.3%)
Node negative 11 (7.1%) 25 (5.7%)
Chemotherapy regimen <0.001
Use of anti-HER2 90 (58.1%) 76 (17.2%)
agents in HER2-positive
cancer
Taxane- and 8 (5.2%) 15 (3.4%)
platinum-based
Taxane-based 2 (1.3%) 10 (2.3%)
Anthracycline with 55 (35.5%) 340 (77.1%)
taxane
Multifocal 0.291
Yes 23 (14.8%) 82 (18.6%)
No 132 (85.2%) 359 (81.4%)
BI-RADS 0.005
2,3, 4a 4 (2.6%) 4 (0.9%)
4b 15 (9.7%) 18 (4.1%)
4c 41 (26.5%) 164 (37.2%)
5 95 (61.3%) 255 (57.8%)

PCR pathologic complete response, ER estrogen receptor, PR progesterone receptor, HER2 human
epidermal growth factor receptor 2.

between 18F-FDG positron emission mammography (PEM) and whole-
body 18F-FDG PET (WBPET) for predicting pCR in NAC’'. The study
revealed that WBPET exhibited superior predictive performance for
pCR after the second cycle of NAC compared to PEM (AUC = 0.761). In
2022, in a large cohort study conducted by Wu et al,, involving 801
patients, the results demonstrated that a radiomics model based on
continuous US and clinical characteristics exhibited predictive perfor-
mance for pCR after the second cycle of NAC, with AUC values of 0.834
and 0.829 in independent external test cohorts, respectively™. In 2021, a
combined model based on siamese convolutional neural networks
developed by Byra et al. predicted pCR after the second chemotherapy
cycle, achieving an AUC of 0.847%. While these studies suggest the
potential of imaging-based models relying on features at the second cycle

of NAC to predict pCR, it is acknowledged that these insights may not be
comprehensive. Li et al. utilized DL techniques to extract features from
HE-stained WSIs of BC biopsy tissues™. They constructed a predictive
model for the efficacy of neoadjuvant therapy, validating the spatial
information of WSIs, such as tumor-infiltrating lymphocyte (TIL)
density in the stroma, as being correlated with treatment response and
prognosis. Additionally, the study confirmed the association of pCR
status with histological features such as lymphocytes, vacuoles, mitosis,
and nuclear pleomorphism. These findings also underscore that the
initial pathological features of tumor tissues contain rich information
predictive of treatment responsiveness, closely associated with post-
NAC pCR. We observed complementary information in the predictive
value for pCR between pre-treatment pathological information and
imaging data during the treatment process. The effective integration of
these two sources holds significant value for enhancing the accuracy of
PCR predictions.

In this study, we propose a cross-modal multi-pathway DL model
based on the novel vision architecture, SE-CrossT, for predicting pCR.
This is the first model to jointly incorporate unsegmented HE-stained
WSIs and multi-temporal US images into a network based on trans-
former, providing individualized predictions for post-treatment pCR
in BC patients after the second cycle of NAC. Our model enables multi-
temporal, multi-scale analysis of multimodal images. We compared
our approach with other widely used methods in image classification
including classical networks in CNNs such as VGG16, ResNet50,
DenseNet121 and architectures in transformers like Vision Transfor-
mer (ViT), Swin-Transformer based on seven metrics: ACC, SENS,
SPEC, PPV, NPV, and AUC. While CNNs are widely applied in
medical image analysis, our results indicate that the performance of the
CNN network is suboptimal. This may be attributed to the limited
ability of CNNs, as a class of networks that primarily focus on per-
ceiving local information, to capture the global receptive field. Simi-
larly, although ResNet50 and DenseNet121 have added connectivity
layers to enhance feature extraction and ensure information integrity,
they still fail to address the issue of global information interaction. As a
result, the model performance did not show a significant improvement.
Due to various factors affecting the coherence of US image acquisition,
it is challenging to achieve uniformity in the collected images. The
performance of the model is consequently influenced by variations
resulting from its autonomous learning of different imaging para-
meters. As a result, the performance of CNN based on absolute posi-
tional deviation further diminishes. Compared to CNNs, the self-
attention mechanism in the transformer framework is more focused on
the information relationships expressed by adjacent positions and
pixels in the image domain, yielding a global receptive field. This aligns
well with our need for integrating information across the image set.
Our proposed SE-CrossT network demonstrating the optimal perfor-
mance, the AUC values on the validation cohort and TC1 both were
0.851, significantly outperforming models established with other DL
methods used for comparison in this study (Fig. 4e, i). In the multi-
factorial analysis of clinicopathological characteristics, we categorized
ER and HER2 into three groups and introduced ER-low positive and
HER2 low expression as categorical variables. The multifactorial
analysis results indirectly support existing research findings on the
subgroup characterized by ER-low positive, suggesting a biological
behavior similar to ER-negative tumors™. The incorporation of clin-
icopathological characteristics further improved the model’s perfor-
mance, with AUC values on the validation cohort and TCI reaching
0.873 and 0.875 (Fig. 4h, 1), respectively, both achieving ACC greater
than 0.9. Our results confirm that the SE-CrossT architecture has
successfully facilitated effective interaction between crucial regions in
multimodal, multi-time point images for response prediction. This also
validates that the predictive information contained in HE-stained
WSIs from biopsy and US can complement each other. Our findings
suggest that the multimodal DL model outperforms other networks in
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Fig. 3 | The landscape of pCR-related clinicopathological characteristics of BC. ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor

receptor 2, pCR pathologic complete response.

Table 2 | Multivariable analysis of pCR in relation to
clinicopathological characteristics in the cohort

Characteristics OR 95% CI P-value
Phenotypes
HR+/HER2— -
Triple-negative 7127  (1.735-29.272) 0.006**
HR—/HER2+ 7.139  (3.792-13.440) <0.001***
HR+/HER2+ 1
ER
Negative 4171 (2.571-6.769) <0.0071***
Low positive 8.141  (2.875-23.053)  <0.001***
Positive 1
Ki-67(%) 1.021  (1.010-1.033) <0.0071***
Chemotherapy regimen
Use of anti-HER2 agents in HER2- 2.892  (1.356-6.169) 0.006**
positive cancer
Taxane- and platinum-based
Taxane-based
Anthracycline with taxane 1

P < 0.05 indicates that the predictive variables are independently associated with pCR.
OR odds ratio, C/ confidence interval, ER estrogen receptor.
**P<0.01; ***P < 0.001.

multimodal settings. Furthermore, ablation experiments also confirm
that the multimodal model performs the best compared to the unim-
odal pathological model or US model.

Our model is trained through supervised learning. By deeply
exploring the primary tumor and relevant lesion areas in multimodal
images, it predicts based on the learned features. This approach can
further reduce the varying impact of subjective factors among doctors on
final clinical decisions. It achieves automatic acquisition and integration
of hierarchical features from multi-scale ROI, avoiding limitations and
biases seen in previous convolutional neural network feature fusion.
This significantly increases the amount of information available for
assessment, maximizing the utilization of existing image data. We
translated the model’s image features into visual heatmaps to establish a
link between input images and output labels, thereby overcoming the
‘black box’ nature of DL models to the fullest extent possible’**. The
results indicate that there are typically two valuable locations in US
images for predicting pCR: the tumor boundary and the grayscale
internal region of the tumor (Fig. 6). In the domain of WSIs patches, the
regions considered most valuable are those containing TILs, followed by
invasive carcinoma. This underscores the significant role these areas play
in predicting pCR.

Incorporating clinicopathological characteristics related to pCR
into our best model and validating the model’s generalizability using
multifocal cases with stronger tumor heterogeneity, The results indicate
that the model’s performance is enhanced when clinical information is
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study for SE block in cross-modal multi-pathway model and fusion of clin-

icopathological characteristics into cross-modal multi-pathway model. SwinT Swin-

based on six networks in the training, validation cohort and text cohort 1; Ult ROC ~ Transformer, SE-CrossT based adding clinicopathological baseline characteristics.

Table 3 | Performance evaluation of six DL models based on multimodal data in validation and test cohort 1

VGG16

ResNet50

DenseNet121

ViT

Swin-transformer

SE-CrossT

Validation cohort (n = 49)

0.796 (0.762-0.817

0.816 (0.744-0.818

0.813 (0.789-0.829

0.781 (0.715-0.782

0.918 (0.838-0.924

0.718 (0.655-0.741

0.662 (0.602-0.674

0.846 (0.668-0.740,

0.652 (0.621-0.676

0.851 (0.793-0.869

0.856 (0.781-0.881

0.885 (0.850-0.912

0.865 (0.808-0.887,

0.881 (0.852-0.917

0.896 (0.833-0.918

0.850 (0.789-0.857,

0.857 (0.781-0.890

0.851 (0.814-0.852

0.857 (0.822-0.882

ACC 0.857 (0.829-0.891)
AUC 0.741 (0.678-0.762)
SENS 0.870 (0.816-0.876)
SPEC 0.870 (0.790-0.886)
PPV 0.822 (0.799-0.861)
NPV 0.836 (0.803-0.847)

( )
( )
( )
0.886 (0.829-0.900)
( )
( )

0.863 (0.831-0.866

( )
( )
( )
0.873 (0.809-0.874)
( )
( )

0.868 (0.829-0.904

( )
( )
( )
0.888 (0.862-0.889)
( )
( )

0.875 (0.837-0.900

( )
( )
( )
0.871 (0.820-0.900)
( )
( )

0.875 (0.796-0.882

)
)

(t )
0.888 (0.861-0.895)
0.866 (0.819-0.891)
0.885 (0.830-0.896)

Test cohort 1 (n=51)

0.784 (0.763-0.804

0.755 (0.685-0.772

0.804 (0.775-0.828

0.773 (0.700-0.783

0.882 (0.854-0.920

0.664 (0.595-0.687,

0.707 (0.634-0.743

0.708 (0.650-0.705

0.712 (0.683-0.714

0.851 (0.791-0.856

0.869 (0.839-0.892

0.866 (0.824-0.892

0.830 (0.790-0.838

0.866 (0.821-0.893

0.878 (0.828-0.893

0.845 (0.814-0.878

0.836 (0.808-0.863

0.852 (0.785-0.889

0.861 (0.812-0.890;

0.855 (0.826-0.868

0.809 (0.736-0.819

0.832 (0.802-0.834

0.836 (0.796-0.847

0.855 (0.800-0.879

0.840 (0.775-0.864

ACC 0.725 (0.665-0.738)
AUC 0.614 (0.617-0.684)
SENS 0.851 (0.798-0.866)
SPEC 0.830 (0.768-0.868)
PPV 0.813 (0.774-0.839)
NPV 0.819 (0.786-0.835)

(
(
(
(
(
(

0.821 (0.747-0.858

( )
( )
( )
( )
( )
( )

0.846 (0.825-0.856

( )
( )
( )
( )
( )
( )

0.833 (0.797-0.836

(
(
(
(
(
(

0.850 (0.815-0.850

0.864 (0.789-0.884

Data in parentheses are 95% confidence intervals.
ACC accuracy, AUC area under the receiver, SENS sensitivity, SPEC specificity, PPV positive predictive value, NPV negative predictive value, ViT vision transformer.

included, with an AUC of 0.875 in the TC1 (Fig. 41). Therefore, the
addition of clinicopathological characteristics can improve the accuracy
of predicting pCR when such information is available. However, in the
multifocal lesions test cohort, we observed that the performance of the

multifocal prediction model was lower than that of the unifocal cohort.

This suggests that the spatiotemporal heterogeneity of multifocal tumors
is stronger, affecting the accuracy of pCR prediction. Furthermore, the
predictive performance combining clinicopathological characteristics is

significantly better than the image-only model (AUC: 0.819 vs. 0.713),
indicating that information from clinicopathological characteristics
appears to be more crucial for multifocal tumors (Fig. 5). This also opens
the possibility of attempting to predict pCR in multifocal cases.

This study has certain limitations. First, DL, especially transformer
networks, requires extensive training datasets, and our data were obtained
retrospectively from a single center, rendering the dataset insufficient.
Future prospective studies with multi-center large datasets are needed to
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Table 4 | Performance of SE-CrossT models based on WSls, US and multimodal according to validation and test cohorts

SE-CrossT

ACC

AUC

SENS

SPEC

PPV

NPV

Validation cohort (n = 49)

0.810 (0.777-0.819)

0.730 (0.678-0.750)

0.788 (0.726-0.818)

0.751 (0.680-0.779)

0.751 (0.712-0.781)

0.837 (0.806-0.855)

0.883 (0.819-0.901)

0.882 (0.815-0.890)

0.859 (0.803-0.887)

0.879 (0.816-0.884)

WSIs 0.857 (0.783-0.890)
us 0.878 (0.811-0.880)
Multimodal 0.918 (0.838-0.924)

0.851 (0.793-0.869)

0.896 (0.833-0.918)

0.888 (0.861-0.895)

0.866 (0.819-0.891)

0.885 (0.830-0.896)

Test cohort 1 (n=51)

0.703 (0.649-0.745)

0.727 (0.647-0.763)

0.738 (0.689-0.759)

0.724 (0.680-0.725)

0.729 (0.680-0.737)

0.817 (0.775-0.836)

0.859 (0.805-0.869)

0.867 (0.821-0.882)

0.833 (0.783-0.870)

0.855 (0.810-0.865)

WSIs 0.776 (0.746-0.792)
us 0.823 (0.751-0.829)
Multimodal 0.882 (0.854-0.920)

0.851 (0.791-0.856)

0.878 (0.828-0.893)

0.855 (0.826-0.868)

0.840 (0.775-0.864)

0.864 (0.789-0.884)

Data in parentheses are 95% confidence intervals.

ACC accuracy, AUC area under the receiver, SENS sensitivity, SPEC specificity, PPV positive predictive value, NPV negative predictive value.

Table 5 | Performance of SE-CrossT models that incorporate clinicopathological baseline characteristics

ACC

AUC

SENS

SPEC

PPV

NPV

Validation cohort (n = 49)

SE-CrossT 0.918 (0.838-0.924)

0.851 (0.793-0.869)

0.896 (0.833-0.918)

0.888 (0.861-0.895)

0.866 (0.819-0.891)

0.885 (0.830-0.896)

SE-CrossT based  0.918 (0.861-0.933)

0.873 (0.834-0.898)

0.883 (0.842-0.886)

0.894 (0.839-0.898)

0.861 (0.831-0.885)

0.874(0.823-0.898)

Test cohort 1 (n=51)

SE-CrossT 0.882 (0.854-0.920)

0.851 (0.791-0.856)

0.878 (0.828-0.893)

0.855 (0.826-0.868)

0.840 (0.775-0.864)

0.864 (0.789-0.884)

SE-CrossT based  0.902 (0.858-0.916)

0.875 (0.835-0.890)

0.859 (0.828-0.887)

0.878 (0.833-0.917)

0.845 (0.766-0.884)

0.859 (0.779-0.867)

Multifocal lesion test cohort (n = 105)

SE-CrossT 0.848 (0.808-0.858)

0.713 (0.649-0.714)

0.794 (0.727-0.815)

0.803 (0.789-0.826)

0.815 (0.780-0.820)

0.777 (0.759-0.805)

SE-CrossT based 0.886 (0.830-0.928)

0.819 (0.764-0.868)

0.772 (0.703-0.792)

0.816 (0.781-0.830)

0.809 (0.760-0.821)

0.777(0.725-0.793)

Data in parentheses are 95% confidence intervals.

ACC accuracy, AUC area under the receiver, SENS sensitivity, SPEC specificity, PPV positive predictive value, NPV negative predictive value, SE-CrossT based adding clinicopathological baseline

characteristics.
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Fig. 5 | Receiver operating characteristic (ROC) curves for predicting pCR levels
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multifocal lesion test cohort (TC2). SE-CrossT based adding clinicopathological
baseline characteristics.

conduct more rigorous evaluations of DL methods and models. Second, the
current framework still requires specialists to manually select tumor regions,
and this simplistic approach makes the workflow cumbersome. Tackling
this matter may entail the development of fully automated image segmen-
tation techniques and investigating their effectiveness when incorporated
into the NAC response prediction framework. Furthermore, with the
continuous development of new drugs for NAC, certain medications such as

pyrotinib, daparicyclin, and apatinib, which can enhance the pCR rate, have
become potential treatment options for some patient groups’*. In the
future, additional chemotherapy regimens confirmed to improve pCR and
disease prognosis can be incorporated into the model. However, due to
limited data volume at present, they have not been included in the model
training. Furthermore, it is well-known that different tumor subtypes
exhibit distinct responses to chemotherapy drugs. While multifactorial
analyses of baseline information before treatment have underscored the
importance of these subgroups in predicting response, our study did not
specifically delve into intra-subgroup investigations. Despite this, our model
demonstrates greater versatility. It is worth noting that, in terms of model
input selection, although WSIs are obtained through the invasive procedure
of biopsy, this diagnostic process is an essential step in BC management.
Additionally, US examinations do not impose additional physical or eco-
nomic burdens on patients. Therefore, the model exhibits enhanced cost-
effectiveness. Therefore, the proposed method in this study holds promise
for potential application in clinical practice, providing robust evidence for
clinical decision-making. Moreover, it may be applicable for analyzing
multimodal data in other types of tumors. in subsequent investigations, we
intend to incorporate more comprehensive clinical data and additional
functional imaging information for analysis. This aims to acquire valuable
data from multiple modalities early in treatment, enhancing the predictive
efficiency of our model. Our goal is to provide a foundation for clinicians to
implement early personalized precision treatment based on individual
patient characteristics.

Methods

Patient recruitment and selection

The investigation followed the principles outlined in the Declaration of
Helsinki and received approval from the Ethics Committee at Harbin
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Fig. 6 | Whole slide images (WSIs) patches and
B-mode ultrasound (US) images, along with cor-
responding feature heatmaps generated by grad-
CAM from the SE-CrossT network. Instances of
pathologic complete response non-pCR (a) and pCR
(b) cases. The US-0 ultrasound images were
acquired within the initial week preceding neoad-
juvant chemotherapy (NAC), while the US-1 ultra-
sound images were captured during two cycles post-
chemotherapy. In the domain of WSIs patches,
emphasis is placed on regions hosting tumor-
infiltrating lymphocytes (TILs), with invasive car-
cinoma securing the second position in terms of
significance. Transitioning to ultrasound images,
noteworthy regions often encompass a substantial
portion of the primary tumor lesion area or are
situated peripherally in the tumor’s periphery.

Input images

WSI patch

us-0

us-1

a non-pCR case b

Input images

el §
L

Heatmaps

PCR case

Medical University Cancer Hospital (protocol code XJS2023-03, 12 April
2023). Given its retrospective design, the study was exempt from obtaining
informed consent from patients. The study retrospectively collected data
from 596 individuals diagnosed with invasive breast carcinoma during their
hospitalization period from July 2017 to July 2022. The cohort was divided
into two distinct groups: The pCR category (155 cases) and the non-pCR
category (441 cases). The process of patient selection for model develop-
ment is outlined in Fig. 1, which includes a subsequent set of criteria: (1)
Biopsy specimens were initially acquired through CNB and confirmed by
pathological examination as female patients with unilateral primary invasive
BC who met the indications for NAC; (2) All patients underwent NAC
treatment within 1 week after biopsy and did not receive any other treat-
ments before chemotherapy; (3) US examinations were performed 1 week
before biopsy and during the treatment process, with US images saved; (4)
Surgical intervention was performed within 1 month after completing NAC,
and tissue pathology results were obtained. The exclusion criteria for this
study are: (1) a history of malignant tumors or concurrent other malig-
nancies, severe infections, hematologic diseases, or autoimmune disorders;
(2) failure to complete the prescribed NAC regimen or not receiving stan-
dard treatment, particularly for human epidermal growth factor receptor 2
(HER2)-positive tumors not treated with trastuzumab; (3) Poor US image
quality, absence of tumor display, lack of visualization of tumor boundaries,
or inconsistency between US findings and pathological descriptions may
pose diagnostic challenges; (4) Lack of CNB pathology slides or poor quality
of WSIs may lead to uncertain diagnoses; (5) In patients with unilateral
multifocal tumors, where US findings and biopsy or postoperative patho-
logical analysis remain uncertain, the diagnosis may be challenging; (6)
Incomplete clinical medical records required for this study.

All patients received NAC treatment based on standardized
protocols outlined by the National Comprehensive Cancer Network™
and the Chinese Anti-Cancer Association Breast Cancer Guidelines®”
before surgery. The NAC regimens primarily included anthracycline
with taxane, Taxane- and platinum-based, and other taxane-based
regimens. Additionally, HER2-positive patients received chemother-
apy based on taxanes in combination with anti-HER2 agents. Pre-
ceding NAC, data were extracted from medical records, encompassing
comprehensive clinical information (including age, BMI, and meno-
pausal status), US findings (tumor dimensions, breast imaging
reporting and data system (BI-RADS) assessment) and detailed
pathological characteristics (estrogen receptor (ER), progesterone
receptor (PR), human epidermal growth factor receptor 2 (HER2)
status, Ki67 status and pathological staging). Surgical resection was
conducted for all patients within 2-3 weeks following the completion

of the entire NAC regimen®', and postoperative pathological reports
were utilized to determine the pCR classification (Fig. 2a, d).

US data and preoperative pathological WSIs collection

US examination: Breast US examinations were conducted using Siemens
(ACUSON2000), Philips (EPIQ5), or Mindray (Resona?7) US machines.
Skilled radiologists with over 5 years of experience in breast US exam-
inations acquired all US images. From the breast imaging database, we
retrieved and analyzed US scans, selecting a pair of optimal static images
from 15 to 20 captured during each B-mode US scan of the entire tumor
at two time points: the first week before NAC (US-0) and two cycles after
chemotherapy (US-1). These selected images, from the same plane, were
saved. Using Image] software (version 1.48, National Institutes of
Health, USA), irrelevant breast tissue information such as instrument
model, scanning or imaging time, and patient information were
removed from the images. Square regions of interest (ROI) were then
selected on the remaining images, centered around the tumor and
encompassing the surrounding area of the largest tumor. In cases of
multifocal tumors, priority was given to selecting the US image that best
represented the largest tumor. If the tumor became invisible after NAC
treatment, the ROI images were cropped based on the tumor’s pre-NAC
position (Fig. 2c). Two breast radiologists with 10 years of clinical
experience independently reviewed the US images, and consensus was
diligently reached in cases of disagreement.

WSISs acquisition: tissue samples were obtained via US-guided tumor
CNB, and were formalin-fixed and paraffin-embedded (FFPE). Following
standard hematoxylin and eosin (HE) staining, all processed sections were
scanned at a x20 magnification using a Leica digital pathology scanner. Two
pathology experts, each with a decade of clinical experience, manually
delineated rectangular blocks representing the most representative invasive
cancer areas in the biopsy WSIs using ImageScope software (www.
leicabiosystems.com) at a x10 magnification (Fig. 2b). Additionally, two
other experts with a decade of experience reviewed and confirmed the
accuracy at a x20 magnification.

Data preprocessing

Prior to training, a dataset comprising 491 patients with a total of 1473
images, including 491 WSIs from biopsy pathology and 982 US images at
two time points for each unifocal lesion, was randomly partitioned into
training (80%), validation (10%), and test (10%) cohorts, following an 8:1:1
data ratio. A total of 391 patients were utilized for training, with 49 and 51
patients assigned to the validation and test cohorts, respectively. Addi-
tionally, 105 patients with multifocal lesions were set aside as an
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Fig. 7 | SE-CrossT architecture. Before inputting each modality image into the

network, position encoding is applied. Then, the images are fed into a series of four-
stage network modules. The Patho-Ult Net extracts pathology-ultrasound features,
while the Dou-Ult Net incorporates a position-sharing module to capture time and

position-related features. Finally, the pathological-ultrasound features derived
from the Patho-Ult Net (purple dashed box) output and the dual-ultrasound
features generated by the Dou-Ult Net (Red solid box) are input into the
classification head.

independent test cohort. Considering the dataset’s pCR to non-pCR ratio of
approximately 0.37, up-down and level-flipping techniques were applied to
the pCR dataset in the training cohort to ensure a balanced ratio of
approximately 1:1. Meanwhile, the original data distribution was preserved
for the validation and test cohorts.

To prevent overfitting, we applied data augmentation techniques
such as random rotations up to 10° and random scaling on various image
classes. As a result, our training cohort has been expanded to
3005 samples, comprising 3005 pairs of US images and 3005 pathology
images. Dealing with pathology images presented additional challenges
during training due to the extensive information and large image scope
inherent in WSIs. Therefore, we initially standardized the image size to
1536 x 1536. Subsequently, each image was divided into nine non-
overlapping small image blocks with dimensions of 512 x 512 (following
the approach by Byra et al., resizing images to 224 x 224%"). Through this
segmentation method, when training networks using patch-based
pathology images, the quantity of images is sufficient for the network
to adequately learn image features, thus avoiding the phenomenon of
network overfitting. However, when training multi-time point US
models, the smaller dataset size may lead to overfitting. To address this
issue, we additionally augmented the ultrasound images, increasing their
quantity fourfold, resulting in a final training cohort size of 12,020. The
implementation of this strategy ensures consistency in reducing network
overfitting between pathology and ultrasound images. Therefore, in the
final training of the multimodal model based on pathology and US
images, we applied one round of data augmentation to pathology images
and two rounds of data augmentation to ultrasound images. Prior to

inputting the data into the network, all images underwent standardi-
zation to expedite the network convergence process. To distinguish
between test cohorts, the unifocal test cohort was labeled as test cohort 1
(TC1), and the multifocal test cohort was labeled as test cohort 2 (TC2)
(Fig. 2e).

Model construction

In this investigation, we devised a novel DL vision architecture, SE-CrossT,
to construct a multimodal model, as illustrated in Fig. 7. The architecture
primarily comprises three components. (1) Input stage: The input image
sizeis setto [3, 512, 512] by comparing the range of ROI and the images are
standardized to facilitate feature extraction and network convergence; (2)
Feature extraction stage: Employing a multi-pathway CrossFormer, the
pathological-ultrasound net (Path-Ult Net) is utilized to extract pathological
features and baseline US features. The double ultrasound net (Dou-Ult Net)
is employed to extract US features at two distinct time points; (3) Output
stage: Utilizing an adaptive pooling algorithm, the pathological vector and
the ultrasound vector are obtained at the same size. Consequently, the Path-
Ult Net and the Dou-Ult Net each output an 8-dimensional vector. At the
network’s output stage, baseline characteristics are incorporated, resulting
in a 20-dimensional vector (8+8+4). The image features and baseline
features are inputted into the classification network to determine the clas-
sification results.

The original hierarchical structure of CrossFormer consists of the
following components: Cross-scale embedding layer (CEL), CrossFormer
block, and classification head®. In the CEL layer, we introduced an SE block
to comprehensively extract feature information from images
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(Supplementary Fig. 1). This module enhances channel features in the
feature maps, directing the network to focus more on features related to
PCR. The cross-scale embedding layer model based on the SE block is shown
in Supplementary Fig. 2. With the SE-CEL module, strong correlation is
added between features of different dimensions and global relevance of
information is also ensured. In the Dou-Ult Net, we designed an US
coherence network (Supplementary Fig. 3). This algorithm ensures posi-
tional coherence between network inputs while incorporating feature-
sharing functionality. In contrast to existing feature fusion methods, the US
coherence network shares features between the feature vectors of US at
different time points. It effectively utilizes fusion when extracting low-level
features, facilitating efficient training, and capturing key features, including
changes in the pre- and post-lesion areas, which are crucial for pCR
classification.

Experiments

Initially, we preprocessed the image data and baseline characteristics, split-
ting them into training, validation, and test cohorts. Using identical para-
meters, we compared our approach with five widely utilized methods in
clinical image analysis: VGG16, ResNet50, DenseNet121, ViT and Swin-
Transformer. Each of these methods was pretrained on ImageNet (http://
www.imagenet.org/, accessed on 1 October 2022). In addition, we conducted
ablation experiments building unimodal pathology or multi-time point US
models for comparison. Simultaneously, ablation experiments were per-
formed on the added SE block within the network to validate the necessity of
incorporating SE blocks. All experiments were conducted on an RTX3090
graphics card using the Adam optimizer, with a fixed learning rate of 0.001
for all training networks. During the training process, the network was
trained for 60 epochs using binary cross-entropy loss. At the 40th epoch, the
model exhibiting the highest ACC over the preceding 20 epochs was chosen.

Evaluation of pathological results

PCR was evaluated based on the descriptions in the postoperative patho-
logical reports. All reports underwent standard postoperative pathological
examination and analysis following the guidelines of the American Joint
Committee on Cancer. pCR” was defined as the absence of invasive cancer
in the primary breast lesion (with potential ductal carcinoma in situ) and
negative regional lymph nodes, specifically classified as primary lesion MP5
grade®™ and negative axillary lymph nodes. Two pathologists, each with over
8 years of experience, analyzed all cases and resolved discrepancies through
mutual agreement.

Systematic evaluation

The data processing and statistical analysis were conducted using R software
(version 4.1.0), Python software (version 3.8.0), and IBM SPSS Statistics 27
(Armonk, NY, USA). For inter-group comparisons, continuous variables
were expressed as ranges and mean * standard deviations (SDs) and ana-
lyzed using the Mann-Whitney U test or independent samples #-test.
Categorical variables were represented as percentages and counts and
analyzed using the chi-squared test or Fisher’s exact test. Univariate com-
parisons were applied to assess the relationship between each feature in the
cases included in the study and pCR. Predictive variables correlated with
pCR (P<0.05) were selected. Subsequently, multivariate analysis was
employed for ultimately filtering features for constructing a DL prediction
model incorporating clinicopathological characteristics. Diverse DL meth-
ods were trained using the training cohort, and the model demonstrating
optimal performance in the validation cohort was subsequently chosen for
validation across the test cohorts. Matlab and GraphPad 9.0 software were
used to calculate ROC curves for evaluating the diagnostic performance of
the DL models. The AUC with a 95% confidence interval (CI) was com-
puted and the DeLong test was used to compare the difference between
AUGs. Accuracy (ACC), sensitivity (SENS), specificity (SPEC), positive
predictive value (PPV), and negative predictive value (NPV) were com-
pared. AUC curves were plotted to assess the accuracy of different models.

All statistical analyses were two-sided, and P < 0.05 was considered statis-
tically significant.

The gradient-weighted class activation mapping (Grad-CAM)
method was employed to generate visual heatmaps®. This method fur-
nishes detailed insights into the specific image regions that exert the
greatest influence on the classification output for a given category,
thereby enhancing the interpretability of network decisions. A meticu-
lous visual examination of the produced heatmaps was undertaken to
meticulously evaluate and compare the efficacy of attention mechanisms
across a spectrum of networks.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability

The data used in the study were collected in a real-world healthcare setting,
and access to these data is restricted for privacy and proprietary reasons.
Derived data supporting the findings of this study have been provided in the
paper and its supplementary materials.
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