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Multi-omics analysis to uncover the
molecular basis of tumor budding in head
and neck squamous cell carcinoma
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Tumor budding (TB) is a prognostic biomarker in HPV-negative and HPV-positive head and neck
squamous cell carcinoma (HNSCC). Analyzing TCGA andCPTACmutation, RNA, andRPPA data and
performing proteomics and IHC in two independent in-house cohorts, we uncovered molecular
correlatesof TB in anunprecedentedly comprehensivemanner.NSD1mutationswere associatedwith
lower TB in HPV-negative HNSCC. Comparing budding and nonbudding tumors, 66 miRNAs,
including the miRNA-200 family, were differentially expressed in HPV-negative HNSCC. 3,052
(HPV-negative HNSCC) and 360 (HPV-positive HNSCC) RNAs were differentially expressed. EMT,
myogenesis, and other cancer hallmarks were enriched in the overexpressed RNAs. In HPV-negative
HNSCC, 88 proteins were differentially expressed, significantly overlapping with the differentially
expressed RNAs. CAV1 andMMP14 protein expression investigated by IHC increased gradually from
nonbudding tumors to the bulk of budding tumors and tumor buds. The molecular insights gained
support new approaches to therapy development and guidance for HNSCC.

Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most
common cancer worldwide and one of the leading causes of cancer-related
deaths1,2. Tumor budding (TB), defined as the detachment of clusters of four
or fewer tumorcells fromthemain tumormass that infiltrate into theadjacent
stroma3,4, is amorphologicalmarker associatedwith aggressive tumorbiology
and unfavorable clinical outcome in several squamous cell carcinomas,
including HNSCC and squamous cell carcinomas of the lung, but also in
adenocarcinomas, e.g., of the colorectum3,5–9. TB is associated with nodal and
distant metastases, early relapse, and poor survival10–16.

Epithelial-to-mesenchymal transition (EMT) describes the loss of
epithelial characteristics of cells in favor of a more mesenchymal

phenotype17,18. In tumors, EMT correlates with tumor cell dissemination
and invasion19. Recent research shows that EMT in HNSCC is not a binary
switching from an epithelial to a mesenchymal gene expression program,
but is better described as a continuous transition including gene expression
signatures exhibiting both epithelial andmesenchymal properties to various
extents (as reviewed in ref. 20)—this spectrum is often referred to as partial
EMT (p-EMT)19.

TB has been described as a morphological correlate of EMT in color-
ectal cancer and across cancer types5,21. The upregulation of several tran-
scription factors (TFs), including theEMT-TFs SNAIL and SLUG, aswell as
of genes included in mesenchymal transcription programs (e.g., VIM,
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PDPN, andMMPs) were reported in parallel to the downregulation of genes
involved in epithelial differentiation (e.g., cytokeratins, integrins)3. Among
all canonical EMT-TFs, SLUG is the only TF associated with p-EMT sig-
natures in several HNSCC cohorts, and SLUG-associated p-EMT prog-
nosticates overall survival22,23. In oral squamous cell carcinomas, an
increased protein expression of vimentin, TGF-β and β-catenin, and a
decreased expression of E-cadherin was suspected to render tumor buds an
EMT-phenotype6. However, the majority of studies on correlation of TB
with EMT focused on single genes, were based on immunohistochemistry,
and/or were performed on colorectal cancer5,21.

For locoregionally confined HNSCC, surgery, in some instances
combined with radiotherapy (RT) and chemotherapy (CT), stays the
therapeutic mainstay1. For locally advanced HNSCC, cetuximab combined
with RT or the longer-in-use cisplatin-based radiochemotherapy are stan-
dards of care with demonstrated improved efficacy over RT alone24,25. In a
recent phase II trial including patients unfit for cisplatin, immune check-
point inhibitors (ICI) concomitant with RT did not improve tumor control
compared to cetuximab-RT, but appeared less toxic26.Asdifferent treatment
regimes are available for locally advanced HNSCC, the development of
predictive biomarkers could contribute to better therapy guidance in this
setting. For recurrent or metastatic HNSCC, ICI with or without CT has
replaced the earlier standards of care following the Keynote-048 and
CheckMate 141 studies27,28.Nevertheless, the prognosis remains poor for the
advanced stages of HNSCC calling for the development of new therapies.
The aim of the current study is to uncover the molecular underpinnings of
TB, which is a hallmark of tumor aggressivity and progression, to support
the development of predictive biomarkers and the identification of ther-
apeutically exploitable targets.

To our knowledge, the molecular basis of TB in HNSCC has not yet
been investigated in a comprehensive way that includes various molecular
levels and large cohorts of budding and nonbudding tumors5,29,30. To fill this
gap, we generated and analyzed TB and multi-omics data of HPV-negative
and HPV-positive HNSCC. First, we analyzed the association of TB with
mutations, miRNA data, whole transcriptome data, and reverse-phase
protein array (RPPA) protein data of the TCGAHNSCCcohort (referred to
as TCGA-HNSC). Second, we performed immunohistochemistry (IHC) of
two selected proteins and liquid chromatographymass spectrometry-based
(LC-MS-based) proteomics in two HNSCC cohorts from the Technical
University of Munich (TUM). We screened our findings for genes and
signatures with the potential to be developed further into prognostic or
predictive markers for HNSCC.

Results
The study cohorts included the TCGA-HNSC dataset and two additional
HNSCCcohorts profiled by IHCandLC-MS-based proteomics at theTUM
(Fig. 1 and Supplementary Table 1). Furthermore, the CPTAC-HNSCC
cohortwas used as an additional validation cohort (SupplementaryTable 1).
In all these cohorts, tumor budding was evaluated by two board-certified
pathologists analyzing the digitized H&E slides as detailed in Stögbauer
et al.8 and in “Methods”. Primarily, we sought to compare molecular data

between budding (any number of tumor buds detected) and non-budding
(no tumor buds detected) tumors. Secondarily, we sought to analyze the
correlation of molecular markers with the level of TB. We analyzed four
cohorts of HPV-negative HNSCC (Supplementary Table 1): TCGA (292
tumors, 88% with TB), CPTAC (89 tumors, 74% with TB), the Munich
cohort TUM-LC-MS (104 tumors, 70% with TB), and another Munich
cohort of selected cases TUM-IHC (21 tumors, 62%with TB).We analyzed
two cohorts of HPV-positive HNSCC (Supplementary Table 1): TCGA (33
tumors, 61%withTB) and aMunich cohort of selected cases TUM-IHC (20
tumors, 40% with TB). The prevalence of TB is dependent on the clin-
icopathological cohort characteristics, and the results for the investigated
cohorts are in line with the values reported in the literature6,8,11,31.

Analysis of mutations
Starting from the TCGA mutation calls, tumor mutational burden (TMB)
was calculated as the total number of missense mutations. Levels of tumor
mutational burden (TMB) did not significantly differ between budding and
nonbudding tumors of the TCGA cohort, neither in HPV-negative nor in
HPV-positive HNSCC. In addition, the single base substitution (SBS)
mutational signatures were extracted using FitMS32. The mutational sig-
natures SBS1, SBS2, SBS3, SBS4, SBS5, SBS13, SBS1, and SBS94 were
detected in at least five HPV-negative HNSCC samples and the mutational
signatures SBS1, SBS2, and SBS13 in at least 5 HPV-positive HNSCC
samples. SBS18, connected to damage by reactive oxygen species, was sig-
nificantly lower in budding compared to non-budding tumors in the HPV-
negative subcohort (FC =−2.4, P = 0.005). The levels of all other analyzed
mutational signatures did not significantly differ betweenbudding andnon-
budding tumors, neither in HPV-negative nor in HPV-positive HNSCC.

Investigating the genes that weremutated in at least 10% of the tumors
in the TCGA cohort, we detected a single significant association with TB;
NSD1mutations were associated with lower TB in the HPV-negative sub-
cohort (Fig. 2). A high proportion (72%) of the detected NSD1 mutations
were truncating mutations (frame-shift indels or nonsense mutations) and
most probably associated with loss of function of the mutated protein.
Analyzing TB as a dichotomized variable, the absence of TB was more
frequent in NSD1-mutated compared to non-mutated NSD1 tumors (36%
vs. 9%, P = 2e-05). Analyzing TB as a continuous variable, TB levels were
lower inNSD1-mutated compared toNSD1wild type tumors (FC =−1.41,
P = 5e-04). Analyzing the clinicopathological tumor characteristics, NSD1
mutations weremore frequent in tumors of smokers (P = 0.002), associated
with the absence of nodal metastasis (P = 0.002), and associated with tumor
localization in the larynx (P = 0.0001, Supplementary Table 2). Bivariate
logistic regression showed that NSD1 mutation (P = 0.017) and TB
(P = 0.0009) were independent predictors of nodal metastasis.

Analysis of molecular subtypes
We analyzed the relation of TB with the previously validated gene expres-
sion subtypes of HNSCC33,34 and detected a significant association in the
HPV-negative, but not in the HPV-positive subcohort. The atypical (at)
HPV-negative cases exhibited the lowest (on average) tumor budding score,

Fig. 1 | Overview of the study cohorts, -omics pro-
filing platforms, and resulting data.We analyzed
mutation, miRNA expression, mRNA expression and
RPPA protein expression data from the TCGA
HNSCC cohort (TCGA-HNSC). In addition, a first
in-house HNSCC cohort (TUM-IHC) was analyzed
for IHC forCAV1andMMP14anda second in-house
HNSCC cohort (TUM-PROT) was analyzed by
LC-MS-based proteomics. Only samples with histo-
pathologically confirmed HNSCC and evaluable TB
were included in the analyses. Sample sizes refer to the
numbers of non-budding and budding tumors.
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significantly lower than the mesenchymal (mes) and basal (b) HPV-
negative cases (FCb/at = 2.5, pb/at = 0.004 and FCmes/at = 3, pmes/at = 0.002,
Supplementary Fig. 1a). Similar trends were observed in the TCGA-HNSC
HPV-positive cohort, although statistical significance was not reached,
probably due to the low number of cases with non-atypical molecular
subtypes (Supplementary Fig. 1b).

miRNA analysis
TCGA-HNSC miRNA data were available for 289 (36 nonbudding) HPV-
negative and 32 (12 nonbudding) HPV-positive cases and included 743
miRNAs. We identified 66 miRNAs differentially expressed between the
budding and non-budding cases inHPV-negativeHNSCC (Supplementary
Fig. 2). By contrast, no differentially expressed miRNAs were identified in
HPV-positive HNSCC, potentially due to the lower statistical power in this
subgroup. Regulation of themiR-200 family consisting of 5members (miR-
200a, miR-200b, miR-200c, miR-141, miR-429) is known to be associated
with tumor initiation, cancer progression, and EMT35. In HPV-negative
HNSCC, all five members of the miR-200 family were significantly down-
regulated in the budding tumors with fold changes between −1.39 and
−1.85. For miR-200 and miR-141, only the 5p arms were differentially
expressed, while the 3p arms were not.

Transcriptome analysis
For the detection of differential expressed genes (DEGs) and significantly
correlating genes (SCGs) in the TCGA-HNSC gene expression data, we
conducted two setsof analyses; adifferential gene expressionanalysis between
budding and non-budding tumors and a correlation analysis of each gene’s
expression levelwith the extent ofTB, excluding the non-budding cases. Each
analysis was performed separately for the HPV-negative and the HPV-
positive subcohort (Fig. 3).We identified3052DEGs (|FC | ≥1.5 at FDR10%)
in the HPV-negative subcohort (Fig. 3a, d) and 360 DEGs in the HPV-
positive subcohort (Fig. 3a, e). In addition, we detected 123 SCGs (|ρ | ≥ 0.25
at FDR 10%) in theHPV-negative budding subcohort (Fig. 3a). Intersections
of DEGs in the HPV-negative and HPV-positive TCGA-HNSC (P = 7e-45,
Fig. 3b), as well as of theHPV-negative TCGA-HNSCDEGs and SCGswere

significant (P= 3e-48, Fig. 3c). The top 15 upregulated and top 15 down-
regulated genes are shown in Fig. 3d (HPV-negative TCGA-HNSC) and
Fig. 3e (HPV-positive TCGA-HNSC). To further validate ourHPV-negative
transcriptome-based findings, we used the CPTAC cohort and performed a
differential gene expression analysis, using the same methodology. We
identified 1504 DEGs between the budding and non-budding tumors
(|FC | ≥1.5 at FDR 10%), and we could validate 858 (28%) of our HPV-
negative TCGA-HNSC DEGs using the CPTAC-HNSCC cohort.

Functional analysis
To gain functional insight, the sets of TCGA-HNSC DEGs and SCGs
were analyzed for enrichment of the hallmark gene sets in the MSigDB
v7.5 database. Two enrichment analyses were performed for each of the
subcohorts shown in Fig. 4a; one using the upregulated DEGs/posi-
tively correlating SCGs and one using the downregulated DEGs/
negatively correlating SCGs. The upregulated DEGs/positively corre-
lating SCGs of all subcohorts were significantly enriched in
epithelial–mesenchymal transition (EMT) genes with a fourfold
(P = 2e-22), eightfold (P = 1.7e-5), and threefold (P = 3e-4) enrichment
fold change values for the HPV-negative DEGs, HPV-negative SCGs,
and HPV-positive DEGs, respectively (Fig. 4a). Furthermore, the
upregulated DEGs in the HPV-negative and HPV-positive subcohorts
were significantly enriched in myogenesis genes (MSigDB hallmark
gene set, Fig. 4a) with a fivefold (P = 4.8e-32) and an eightfold
(P = 5.5e-18) enrichment fold change respectively. In addition, the
downregulated HPV-negative DEGs were enriched for the “KRAS
signaling (down)”, “estrogen response (early)”, and “xenobiotic
metabolism” gene sets (Fig. 4a). Moreover, we could validate the
enrichment of the EMT (fourfold, P = 1.7e-05), as well as the KRAS
signaling (down) (fourfold, P = 4e-04) and coagulation (fourfold,
P = 0.003) pathways using the upregulated DEGs of the CPTAC-
HNSCC cohort.

To uncover the mechanism of EMT regulation, we performed an
in-depth analysis of 36 EMT-associated transcription factors (Fig. 4b) using
a previously published gene list36. TWIST1, SNAI2, RUNX2, and KLF10

Fig. 2 |Analysis ofNSD1mutations inHPV-negativeHNSCC (TCGA-HNSCdata). aLollipop plot showing the location of themutations in theNSD1 gene. b Significantly
higher TB in NSD1wt compared with NSD1-mut tumors.
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were overexpressed in theHPV-negativeHNSCC tumors, while SNAI3was
underexpressed. FOSL1 and FOXC1 were overexpressed in the HPV-
positive HNSCC tumors (Fig. 4b).

To further investigate the gene expression patterns of the EMT and
myogenesis hallmark gene sets, we performed an unsupervised hierarchical

clustering analysis. Tumors were grouped according to the membership in
the two clusters at the lowest level of the clustering hierarchy. In the HPV-
negative subcohort (Fig. 5), the comparison of the two tumor clusters
revealed a significant increase in the number of budding cases in the EMT-
upregulated andmyogenesis-upregulated clusters (P = 0.003 andP = 0.002,

Fig. 3 | Analysis of differential mRNA expression between budding and non-
budding tumors (TCGA-HNSC data). a Overview of the performed analyses.
b Intersection of the sets of DEGs detected in HPV- and in HPV+HNSCC.
c Intersection between the DEGs and SCGs detected in the HPV- HNSCC.

d Volcano plot showing the significantly upregulated (red) and downregulated
(green) DEGs in the HPV-negative HNSCC (“pval” refers to the adjusted P values).
e Same as (d), but for HPV-positive HNSCC.
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respectively) and as well as an increase in the number of NSD1-mutated
cases in the EMT-downregulated and myogenesis-downregulated clusters
(p = 0.003 and P = 0.03, respectively). Similar analyses in HPV-positive
HNSCCdid not lead to significant results, probably due to the small sample

size of the HPV-positive subcohort (Supplementary Fig. 3). Heatmap
analysis of the combined EMT and myogenesis gene sets resulted in three
clusters in HPV-negative HNSCC; an EMT-downregulated and
myogenesis-downregulated cluster, an EMT-upregulated and myogenesis-

Fig. 4 | Functional analysis of the sets of DEGs and SCGs. a Enrichment analysis of the sets of DEGs and SCGs with respect to the 50 categories in the cancer hallmark
catalog (MSigDB v.7.5). b Significantly up- and downregulated transcripts in a set of 36 analyzed EMT transcription factors.
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downregulated cluster, and an EMT-upregulated and myogenesis-
upregulated cluster, with the latter exhibiting higher TB than the first two
in the HPV-negative cohort (Supplementary Fig. 4). Interestingly, genes
within the EMT and within the myogenesis gene sets showed similar gene
expression patterns, while gene expression patterns were different between
the two gene sets.

A landmark study investigating single-cell transcriptomics in HNSCC
revealed a set of genes associated with a p-EMT gene expression program22.
The top 15 “common” p-EMT genes (as defined in the publication) were
selected for our downstream analysis. Remarkably, many of these genes in
the gene expression program were included in the lists of TB-associated
genes identified in the current study. In our TCGA-HNSC HPV-negative

Fig. 5 | Unsupervised clustering analysis.
a Clustering of HPV-negative tumors and genes
with respect to the EMT category of the cancer
hallmark catalog. b Same as (a), but for the myo-
genesis category. For both clusterings, TB and the
proportion of NSD1 mutations were significantly
different between the two main tumor clusters.
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subcohort, all 15 genes of the gene expression programwere included in the
list of DEGs (P = 3.2e-20) and in our TCGA-HNSC HPV-positive sub-
cohort, 5 genes of the gene expression program (SERPINE1, MMP10,
LAMC2, LAMA3, and INHBA) were included in the list of DEGs
(P = 2.0e-08).

We also performed hierarchical clustering with respect to a set of 22
epithelial, 15mesenchymal markers, and HNSCC-specific p-EMTmarkers
(Supplementary Figs. 5 and 6). In HPV-negative HNSCC, the cluster ana-
lysis resulted in five clearly separated tumor clusters, and the highest TB
scores were observed in the clusters characterized by upregulation of
mesenchymal markers regardless of the expression of epithelial markers
(Supplementary Fig. 6).

Immunohistochemical profiling
The differential protein expression analysis of the RPPATCGA-HNSC
HPV-negative cohort revealed one protein, Caveolin-1 (CAV1), being
upregulated in the budding cases (P = 0.001) (Fig. 6c). A similar trend
can be observed in the HPV-positive cases (Fig. 6d) with an even
greater difference between budding and non-budding cases, however,
the difference is not statistically significant, potentially due to the small
sample size. The upregulation of CAV1 in at least the HPV-negative
cohort is in line with the upregulation of the CAV1mRNA in both the
HPV-negative (P = 2e-07) and HPV-positive (P = 1e-05) subcohorts
(Fig. 6a, b).

For validation of these results by an orthogonal experimental
method as well as to gain insight in the cell type-specific and spatial
distribution of protein expression, 20 HPV-negative and 20 HPV-
positive tumors were stained for CAV1. A significantly higher H-score
was observed in the tumor buds compared to the tumor bulk of the
same cases in the HPV-negative subcohort (FC = 2, P = 0.003, Fig. 6e).
At the same time, the tumor bulk of the budding cases showed sig-
nificantly higher H-scores when compared to the tumor bulk of the
non-budding cases in both the HPV-negative and HPV-positive sub-
cohorts (Fig. 6e, f). Thus, there is an evident gradient of increasing
CAV1 expression from the bulk of the non-budding cases, to the bulk
of the budding cases, and finally to the tumor buds themselves.

In addition, we stained for MMP14, which was one of the highest
upregulated genes in both the HPV-negative and HPV-positive TCGA-
HNSC subcohorts, performed the same analysis as for CAV1, and observed
similar results with a strong association of increased MMP14 expression in
the tumor buds in both the HPV-negative and HPV-positive subcohorts
(Supplementary Fig. 7).

Proteome profiling
LC-MS-based proteomics analysis was performed in a cohort of 104
HPV-negative HNSCC cases (70 budding and 34 non-budding). The
proteome profiling resulted in the identification and quantification of
7771 proteins. Comparing the budding and non-budding cases, we

Fig. 6 | Inter- and intra-tumor analysis of CAV1 gene and protein expression in
HPV-negative and HPV-positive HNSCC. a Increased mRNA expression in
budding compared with non-budding HPV-negative tumors (TCGA-HNSC RNA-
Seq data). b Same as (a), but for HPV-positive tumors. c Increased protein
expression in budding compared with non-budding HPV-negative tumors (TCGA-

HNSC RPPA data). d Same as (c), but for HPV-positive tumors. e Stepwise
increasing protein expression from the bulk of non-budding tumors to the bulk of
budding tumors to the buds of budding tumors in HPV-negative HNSCC (TUM-
IHC cohort). f Same as (e), but for HPV-positive HNSCC.
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detected 88 differentially expressed proteins (DEPs). Figure 7a shows the
top 15 upregulated and top 15 downregulated proteins. There was a
significant overlap between the DEGs detected during the TCGA-HNSC
analysis (HPV-negative subcohort) and the DEPs of the in-house TUM-
LC-MS cohort (P = 1e-07, Fig. 7b). The list of DEPs included two pro-
teins (SERPINE1 and TNC) of the 15-gene-p-EMT gene list (P = 0.002),

with 13 of the genes covered by the proteomics profiling. The enrich-
ment analysis using the hallmark gene set of the MSigDB database and
the DEPs confirmed our TCGA-HNSC findings, with the DEPs being
enriched in EMT genes (enrichment FC = 9.9, P = 3e-15), coagulation
genes (enrichment FC = 4.4, P = 0.002), and myogenesis genes
(enrichment FC = 3.7, P = 0.005).

Fig. 7 | Analysis of differential protein expression between budding and non-
budding HPV-negative tumors (TUM-LC-MS cohort). a Volcano plot showing
the upregulated (red) and downregulated (green) DEPs (“pval” refers to the adjusted
P values). b Intersection of the sets of detected DEPs and DEGs in HPV-negative

HNSCC. c Unsupervised clustering of HPV-negative tumors and proteins with
respect to the EMT category of the cancer hallmark catalog. d Same as (c), but for the
myogenesis category.
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Hierarchical clustering with respect to the genes in the hallmark EMT
gene set resulted in two clearly separated tumor clusters that strongly cor-
related with TB (81% vs. 48% of budding tumors, P = 6e-04, Fig. 7c).
However, the same comparison was not significant for the hallmark myo-
genesis gene set (myogenesis-downregulated: 57% vs myogenesis-upregu-
lated: 74%, P = 0.09, Fig. 7d). Furthermore, we utilized our in-house TUM-
LC-MS DEPs and conducted a complementary protein expression analysis
using the CPTAC-HNSCC protein expression cohort. This approach
enabledus to validate 29 (36%) of theDEPs identified in the in-houseTUM-
LC-MS cohort.

Network analysis
To analyze the organization of the gene expression programs underlyingTB
in HNSCC, we generated correlation networks including the most strongly
DEGs and DEPs (Fig. 8 and Supplementary Fig. 8). The network of DEGs
included 67 overexpressed and 12 underexpressed genes for the TCGA-
HNSC HPV-negative cohort, while it included 68 overexpressed and 22
underexpressed genes for the TCGA-HNSC HPV-positive cohort. Out of
the overexpressed genes, ARS1, CAV1, LAM2C, LINC02535, and MMP10
were shared by both networks, but none of the underexpressed genes. The
oncogenic role of the long non-coding RNA LINC03535, its relation to
EMT, and its negative association with OS have recently been elucidated in
HNSCC and other cancer types37.

In HPV-negative HNSCC, the following 10 overexpressed genes were
members of the hallmark EMT category: AREG, INHBA, ITGA5, LAMA3,
LAMC1,MMP1,MMP3, SERPIN1, TGFBI, andVEGFC. TGFBI is induced
by transforming growth factor-beta (TGFB) and encodes a protein inhi-
biting cell adhesion. In a recent preclinical study, an antibody targeting
TGFBI with diagnostic and therapeutic potential was investigated in col-
orectal cancer models38. In these models, TGFBI silencing reduced tumor
growth and angiogenesis. Based on these observations, blockage of TGFBI
and other components of the TGFB signaling pathway warrants further
investigation in HNSCC.

As blockade of EGFR signaling and ICI are the two main targeted
treatment approaches in clinical use forHNSCC, we annotated the genes
in the network by the gene ontology categories “immune response”
(n = 1882) and “EGFR signaling pathway” (n = 123). A very low number
of two (CAV1 and CSF2) and five (AV1, CLCF1, PGLYRP1, RAG1,
THBS1) immune genes were in the gene expression networks of HPV-
negative andHPV-positive HNSCC, respectively. Moreover, none of the
14 immune cell populations identified from the RNA-Seq data by an
earlier publishedmethod39 correlatedwithTB in any of the two subtypes.
These two results support the view that TB and immune contexture are
largely independent in HNSCC.

Of the genes contributing to EGFR signaling, amphiregulin (AREG)
was the only one in the network of HPV-negative HNSCC, while GPRC5A
was the only one in the network of HPV-positive HNSCC. The protein
product ofAREG is a ligand for the EGF/TGF-α receptorwith connection to
EMT, increased tumor cell migration and proliferation, and has been
reported as a prognostic biomarker for treatment targeting EGFR in other
cancer entities40–43. AREG should be further investigated as a potential
biomarker that could be exploited for prognosis prediction and therapy
guidance in HNSCC.

Survival analysis
Performingmulti-omics analyses,we identified variousmolecular correlates
of TB, but observed imperfect correlations of the identified molecular
markers and signatures with TB resulting in different ways to stratify
HNSCC. To gain insight into the prognostic relevance of the different
stratifications, analysesof overall survival (OS) andprogression-free interval
(PFI) were performed (Fig. 9 and Supplementary Figs. 9–11). In HPV-
negative HNSCC, low TB, NSD1 mutation, and impaired H3K36 methy-
lation (a correlate of NSD1 mutation44) were positive prognostic markers,
while clustering of the tumorswith respect tomiRNA-200 andEMT-related
mRNAs was not significantly associated with prognosis. In HPV-positive

HNSCC, low TB was a positive prognostic marker, while impaired H3K36
methylation samples were not analyzed because they are uncommon in this
subtype, and the miRNA-200 and EMT clusterings were again not sig-
nificantly associated with prognosis. Among the two cutpoints investigated,
TB reached statistical significance in HPV-negative HNSCC only for the
higher cutpoint of 6, while TB reached statistical significance in HPV-
positive HNSCC only for the lower cutpoint of 1.

The subset of HPV-negative HNSCC defined by NSD1 mutation
included 38 (13%) tumors, while the subset defined by H3K36methylation
impairment included 41 (15%) tumors. These subsets had a large and sig-
nificant intersection of 28 tumors. The subset of non-budding tumors had a
similar size (35 tumors, 12%), but the intersection with NSD1-mutated
tumorswas smaller (n = 14). The subset of low-budding tumors (cutpoint 6)
was much larger and included 130 (46%) tumors, 28 of which wereNSD1-
mutated. For TB, all significant results were observed simultaneously for
both investigated clinical endpoints. ForNSD1 andH3K36 inHPV-negative
HNSCC, significancewas reachedonly forOS,while it was narrowlymissed
for PFI.

Discussion
We performed a comprehensive multi-omics analysis to uncover the
molecular alterations underlying TB in HNSCC. We took the opportunity
to analyze mutation, miRNA expression, and mRNA expression data
available from the TCGA combined with TB data generated by the eva-
luation of the digital histopathological slides. Additionally, proteomics and
IHC profiling were performed in in-house cohorts and proteomics data
were available for theCPTAC cohort. All analyses were performed stratified
forHPVstatus compliantwith the distinction betweenHPV-associated and
-independent HNSCC introduced in the WHO 2022 classification45. As
previously published studies repeatedly generated evidence that tumor
budding is associated with poor prognosis and predictive for lymph node
metastasis in HPV-negative HNSCC6,11,46 and—as recently shown by our
group—as well in HPV-positive oropharyngeal squamous cell
carcinomas8,31, the main focus of the current study was to unravel the
biology behind tumor budding on transcriptomic and proteomic level
including spatially resolved analysis.

Analyzing tumor genetics, NSD1 was the only gene that significantly
correlated with TB in HPV-negative HNSCC, while no significant corre-
lations were detected in HPV-positive HNSCC. In HPV-negative HNSCC,
NSD1-damagingmutationswere associatedwith lowerTB and longerOS in
line with earlier reports on a favorable prognosis of NSD1-mutated HPV-
negative HNSCC47,48. NSD1 is a member of the NSD family of histone
methyltransferases which act as mono- and dimethyltransferases for
H3K3649. Papillon-Cavanaghet al. identified a cluster ofHNSCCwith global
DNA hypomethylation by unsupervised clustering of DNA methylation
data44. The tumors in this cluster eitherhaddamaging alterations inNSD1or
K36M-encoding mutations in one of the H3 genes and the authors con-
cluded that it is defining a subtype of HNSCC with impaired H3K36
methylation. In the HPV-negative tumors of the TCGA, 68% of the tumors
of this subtype had NSD1mutations. Here, we showed that HPV-negative
tumors of the H3K36 subtype had numerically lower TB and significantly
improved OS compared to other HPV-negative tumors. Altogether, these
data support the view that tumorswith impairedH3K36methylation and in
particular damagingNSD1mutations build a less aggressive tumor subtype
of HPV-negative HNSCC less prone to metastasize. By contrast, the
advantage of gaining NSD1 mutations during tumor evolution is most
probably due to crosstalk with immune-regulatory pathways resulting in
immune exclusion50,51.

A high number (3052) ofDEGswas detected between the budding and
non-budding tumors of the TCGA-HNSC HPV-negative cohort. The
protein products of 547 genes out of these were detectable by the in-house
proteomics profiling in an independent cohort of HPV-negative HNSCC
and 22 proteins could be confirmed to be differentially expressed. In
addition, the proteomics analysis revealed 66 DEPs for which the corre-
sponding mRNAs were not differentially expressed. The intersection of the
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Fig. 8 | Correlation networks of the strong DEGs between budding and non-
budding tumors (TCGA-HNSC data). a Network for HPV-negative HNSCC
including 67 over- and 12 underexpressed genes. b Network for HPV-positive
HNSCC including 68 over- and 22 underexpressed genes. Genes were included in
the networks when being significant after multiple testing correction (FDR = 10%)

and showing both |FC | ≥2 and AUC ≥ 0.7. Genes were connected by an edge when
correlating with |Spearman ρ | ≥ 0.6. Black node font: overexpressed gene, red node
font: underexpressed gene. Green ellipse: transcription factor, blue rectangle: EMT
gene. Gray edge: positive correlation, red edge: negative correlation. Only genes
correlating above the threshold with at least one other gene are shown.
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Fig. 9 | Analysis of OS (indicated in the month) in HPV-negative HNSCC
(TCGA-HNSC cohort). a Comparison of budding and non-budding tumors.
b Comparison of highly budding (TB ≥ 6) and lowly budding tumors (TB < 6).
c Comparison of NSD1-mut and NSD1wt tumors. d Comparison of H3K36

methylated and non-methylated tumors. eComparison ofmiR-200 family clusters 1
and 2. f Comparison of EMT clusters 1 and 2. For comparability, all markers are
presented dichotomized to illustrate their respective prognostic impact on overall
survival.
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finding of the transcriptome and proteome analyses was statistically sig-
nificant and some of the differences might be explained by technical lim-
itations including detection limits of the proteomics platform for the
detection of lowly expressed proteins. Nevertheless, we believe that most
findings of differential protein expressionbutunchangedmRNAexpression
reflect tumor biology, namely post-transcriptional regulation in the absence
of transcriptional regulation. We also analyzed the correlation of mRNA
expressionwith the levelofTB. In this analysis,we excludedall non-budding
tumors to strictly separate the presence and the extent of TB with possibly
different underlying molecular processes. In the TCGA-HNSC HPV-
negative cohort, we identified 123 SCGs, of which more than half were also
differentially expressed, suggesting that similar biological processes drive
both the initiation of TB and the regulation of its intensity.

Gene set enrichment analysis revealedEMTandmyogenesis as the two
most strongly enriched functional categories among the genes upregulated
in budding HNSCC. A significant enrichment of these categories was
observed in both the TCGA-HNSC HPV-negative and HPV-positive
subcohorts. Correlation analyses of the DEGs annotated to the categories
EMT and myogenesis revealed distinct gene expression patterns of the two
categories inHNSCC (Supplementary Fig. 4). This observation supports the
view that the two categories represent two independent biological processes
that can be active or inactive in distinct sets of HNSCC rather than two
annotations of a single biological process. The enrichment of genes anno-
tated for EMT is in line with the broadly accepted view identifying tumor
budding as the phenotype associatedwith EMTor p-EMT, the latter being a
spectrum of cell states characterized by gainingmesenchymalmarker while
not completely losing the epithelial markers19–21. Myogenesis is the forma-
tion ofmuscle fibers, i.e., mesodermal tissue. Thus, genes annotated toEMT
and myogenesis share the property to promote the production of
mesenchymal cells. In line with our results, enhancedmyogenesis in gastric
cancer was recently reported to be associated with EMT, angiogenesis, and
poor clinical outcomes52.

Downregulation of the miRNA-200 family has been implicated in
cancer initiation, progression, and metastasis53,54. We detected down-
regulation of all five members of the miRNA-200 family in budding com-
pared to non-budding HPV-negative HNSCC. This result is in line with
earlier intra-tumoral analyses in oral and colorectal cancer showing
downregulation of the miR-200 family in tumor buds compared to tumor
bulk55,56. Mechanistically, members of the miR-200 family were found to
directly repress the EMT-TFs ZEB1 and ZEB2 and uphold the epithelial
phenotype, while their inhibition reducedCHD1 expression, increasedVIM
expression, and induced EMT57–59. The results from cell culture experiments
together with the observations in the current and earlier studies analyzing
cancer tissues are in line with a contribution of reduced expression of the
miRNA-200 family to EMT and in turn to TB inHPV-negative HNSCC by
releasing the inhibition of ZEB1/2 expression.

HPV status for the TCGA tumors was determined based on the RNA
expression of the virus genes (Supplementary Fig. 12). By contrast, p16 IHC
is typically used for this purpose in clinical routine diagnostics. For the
TCGA cohort, p16 data are incomplete, while both HPVDNA andmRNA
data are available. Published studies support the view that mRNA-based
HPV classification monitoring active transcription of the virus genes most
accurately reflects the unique clinical behavior and tumor biology of HPV-
positive HNSCC60,61. While the three methods for HPV determination
disagree for a significant proportion of tumors61–63, the RNA-basedmethod,
offering the cleanest separation with respect to tumor biology and clinical
outcome, was used in the current study.

We observed a prognostic relevance of the TB level in HPV-negative
and in HPV-positive HNSCC in line with earlier reports8,64,65. Of note, the
definition ofHPV status (based ondetection of viral RNA)differed from the
definition (basedon thedetectionof viralDNA)used in an earlier analysis of
the same TCGA dataset8. As described above, the RNA-based detection
method focuses on the detection of tumors with active virus gene tran-
scription and resulted in a smaller stratum of HPV-positive tumors and a
larger stratum of HPV-negative tumors at the same time. Prognostic

relevance was retained when using a TB cutpoint of 6 in HPV-negative
HNSCC, but using a lower TB cutpoint of 1 in HPV-positive HNSCC. Of
note, using the lower cutpoint, noprogressions andnodeathswere observed
within the first four years after surgery in the HPV-positive stratum.

For a long time, it has been observed that the intensity of TB and the
percentage of budding tumors are considerably lower in HPV-positive
HNSCC comparedwithHPV-negativeHNSCC. Some authors have argued
that since HPV-positive HNSCC tumors typically do not exhibit tumor
budding and TB-based stratification might be misleading in this subtype13.
By contrast, two recent studies demonstrated and confirmed that the
prognostic value of TB in HPV-negative HNSCC extends to HPV-positive
HNSCC8,31. In line with these studies, we detected 360 DEGs between
budding and non-budding HPV-positive tumors. Comparison with the
results for HPV-negative HNSCC revealed that 99 genes were shared and
that both lists ofDEGswere enriched for the functional categories EMTand
myogenesis. The molecular analysis supports the view that TB is a valid
biomarker in HPV-positive HNSCC that should be further analyzed in the
context of treatment guidance. Rather than patients with high-budding
tumors, ones with non- or low-budding tumors should be preferred as
candidates for treatment de-escalation.

AlthoughcorrelatingwithTB,neitherclusteringof tumorswith respect
to the expression of the miRNA-200 family nor with respect to mRNA
expression of EMT-related genes hadprognostic relevance inHPV-negative
and HPV-positive HNSCC. In HPV-negative HNSCC, a favorable prog-
nosis was observed for the small (10–15%) subgroup of NSD1-mutated
tumors. In HPV-positive HNSCC, no prognostic molecular markers that
could replace TBwere identified. Asmutation analysis is not part of today’s
routine diagnostic workflow for HNSCC tissue samples, the determination
of TB from H&E tissue slides remains by far the easiest to implement and
most cost-effective method among the investigated biomarkers for prog-
nostication of HNSCC.

We performed bulk tissue transcriptomics and proteomics analyses to
uncover inter-tumor differences associated with TB. While these analyses
identified large sets of differentially expressed mRNAs and proteins, it is a
limitation that these analyses do not address intra-tumor heterogeneity.
Studies based on laser-capture microdissection to investigate tumor het-
erogeneity have uncovered intra-tumor expression changes between tumor
buds and tumor bulk in HNSCC and other cancer types55,56,66. In con-
cordance with the current results, the detected gene sets in the micro-
dissection studies were enriched for EMT and other processes involved in
invasion andmetastasis. By contrast, the interpretation of the enrichment of
lists of DEGs for myogenesis is less clear, as the differential gene expression
could either arise from the tumor cells, the tumor microenvironment
(TME), or both. A full understanding of inter- and intra-tumor hetero-
geneity of TB can only be gained by a spatially resolved analysis of both
budding andnon-budding tumors. In the current study, we performed such
an analysis for CAV1 and MMP14 and observed a gradually increasing
protein expression from the bulk of non-budding tumors to the bulk of
budding tumors to the buds of budding tumors. These results support the
view that both inter- and intra-tumor molecular differences contribute to
TB. In line with our observations, CAV1 has been reported to promote
tumor cell migration and tumor invasion in various cancer types, including
HNSCC, in cell lines, mouse models, and human patients67–69 and its
association with cancer invasion and poor prognosis was connected to
increased expression of matrix metalloproteinases in hepatocellular
cancer70. These reports combinedwith our data suggest that high expression
ofCAV1 is amarkerof highTB, aggressive tumorbehavior, andunfavorable
prognosis in HNSCC.NSD1mutations are an example of a spatial constant
tumor-specific determinant of TB that is not influenced by tumor hetero-
geneity. Spatial -omics technologies offer the opportunity to obtain a
comprehensive spatially resolved portrait of TB including separate profiling
of tumor cells and cells in the TME.

ICI and blockade of the EGFR signaling are the main therapeutic
approaches currently in use for the treatment of HNSCC beyond surgery,
RT, and CT. Tumor infiltrating lymphocytes and in particular T cells are
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now used as a prognostic marker for HNSCC patients not receiving ICI71,72,
whileB-cell infiltrationwas recently shown tobe associatedwith the survival
of ICI-treated HNSCC patients73. By contrast, TB did not correlate with the
levels of immune cell populations in the current study. While CAV1 has
been shown to regulate the organization of isotype-specific B-cell antigen
receptors and in turn B-cell tolerance73,74, IHC analysis in the study cohort
showed thatCAV1 is implicated inTBvia the expression on tumor cells, not
on immune cells. These results support the view that TB and the contexture
of the TME are largely independent factors in HNSCC. Analysis of the
strongly overexpressed genes in budding tumors revealed amphiregulin
(AREG) as the only gene implicated in EGFR signaling in HPV-negative
HNSCC and GPRC5A as the only such gene in HPV-positive HNSCC.
Preclinical models of EGFR wild-type HNSCC and lung cancer producing
high levels of amphiregulin evaluated by ELISA were more likely to be
growth inhibited in response to both gefitinib and cetuximab75. By contrast,
patients with high amphiregulin evaluated by IHC had shortened OS and
PFS in a phase II clinical trial of HNSCC patients receiving cetuximab and
docetaxel75,76. Further investigation is needed to determine the optimal
molecular level and measurement method for amphiregulin as a predictive
biomarker, as well as strategies to inhibit the related autocrine activation of
EGFR signaling in HNSCC.

In conclusion, our comprehensive multi-omics analysis of TB in
HNSCC revealed associations on variousmolecular levels in both theHPV-
negative and the HPV-positive subtype. While NSD1 mutation in HPV-
negative tumors was the only tumor genetic correlate, massively different
miRNA,mRNA, andprotein expressionpatternswere found tobe related to
the TB state, indicating that the molecular underpinnings of TB are more
related to transcriptomic and proteomic signatures than to specific gene
mutations. Network analysis revealed AREG and TGFBI as potential ther-
agnostic markers in HNSCC that warrant further investigation. Altogether,
the multifaceted insights gained contribute to a better understanding of the
molecular processes driving TB in HNSCC and identified new potential
opportunities for future therapeutic interventions in this devastating
disease.

Methods
TCGA and CPTAC data
The TCGA-HNSC cohort consisted of 528 patients with a total of 471
digitized H&E-stained slides available from the GDC Data Portal (https://
portal.gdc.cancer.gov)77. An additional 140 cases had to be excludeddue to a
different tumor entity, too small tissue fragments not allowing for the
analysis of 10 high-power fields, an insufficient scan quality, duplicates, a
history of neoadjuvant treatment, and cancer tissue without surrounding
stroma precluding the analysis of tumor budding as described in Stögbauer
et al.8. Similarly, the tumorbudding status and intensity couldbedetermined
in 90 patients of the CPTAC-HNSCC cohort78.

Primary tumor TCGA-HNSC RNA-Seq BAM files were downloaded
using gdc-tool v.1.6.177. We calculated the number of reads mapped to the
Human Papillomavirus (HPV) genome, as described in the TCGA-HNSC
publication61, and normalized the read counts to counts permillion (CPM).
Two distinct clusters of samples were formed; samples with a HPV CPM
sum of greater than 2 were considered HPV-positive and constituted the
HPV-positive subcohort (n = 33), while the rest constituted the HPV-
negative subcohort (n = 292) (Supplementary Fig. 12a). At the same time,
we applied TCGA’s methodology of HPV status determination61, where
cases with more than 1000 reads mapped to the Human Papillomavirus
(HPV) genome were considered HPV-positive and the rest HPV-negative
(Supplementary Fig. 12b); the classification of the samples (HPV-positive or
HPV-negative) using normalized counts was identical to the classification
using the TCGA-HNSC’s raw read count method. The HPV status of the
CPTAC-HNSCC samples was extracted from Huang et al. 2021, where it
was estimated in the same way as described above for the TCGA-HNSC
cohort79. Therewas only oneHPV-positive sample,whichwas omitted from
the analyses, and the final CPTAC-HNSCC cohort consisted of 89 HPV-
negative samples.

The TCGA-HNSC mutation data were downloaded from the TCGA
Pan-Cancer analysis project80 (file: mc3.v0.2.8.PUBLIC.maf.gz, accessed on:
13.02.2024). Mutation data were available for 282 HPV-negative and 30
HPV-positive cases. Only non-synonymous mutations and mutations at
splice sites were further considered.

TCGA-HNSC miRNA gene expression data (normalized) were
downloaded from the Cancer Genome Atlas Pan-Cancer analysis
project80 (file: pancanMiRs_EBadjOnProtocolPlatformWithoutReps
WithUnCorrectMiRs_08_04_16.csv, accessed on: 13.02.2024). Data
were available for 289 (36 nonbudding) HPV-negative and 32 (12
nonbudding) HPV-positive cases and included 743 miRNA genes.

Primary tumor TCGA-HNSC and CPTAC-HNSCC RNA-Seq raw
count data and transcript permillion (TPM) values were downloaded using
gdc-tool v.1.6.177. The raw gene counts were additionally normalized to
counts per million (CPM). Raw read count data andDESeq281 were used to
perform the differential gene expression analyses. The molecular subtypes
atypical, classical, mesenchymal, and basal, as described in the HNSCC
study by the TCGA61, were downloaded for available cases from the sup-
plementarymaterial of theTCGA-HNSCpublication (SupplementaryData
7.2) and we investigated the tumor budding score differences in the afore-
mentioned molecular subtypes. H3K36M HNSCC subgroup information
was retrieved from Papillon-Cavanagh et al.44. Abundances of 14 immune
cell populations from the TCGA RNA-Seq data were calculated using an
earlier published method39.

TCGA-HNSC reverse-phase protein array (RPPA) normalized data
were downloaded from cBioPortal (cohort: HNSC with 143 HPV-negative
and 11 HPV-positiveHNSCC samples profiled for 191 proteins; file https://
cbioportal-datahub.s3.amazonaws.com/hnsc_tcga_pan_can_atlas_2018.tar.
gz)82 and CPTAC-HNSCC mass spectrometry-based normalized protein
expression valueswere downloaded from the LinkedOmics database (cohort:
HNSCwith 108 samplesHPV-negative and 1HPV-positive samples profiled
for 11561 proteins; file: https://cptac-pancancer-data.s3.us-west-2.
amazonaws.com/data_freeze_v1.2_reorganized/HNSCC/HNSCC_
proteomics_gene_abundance_log2_reference_intensity_normalized_
Tumor.txt)83.Datawereavailable for143HPV-negative and11HPV-positive
cases and included 191 proteins. Using the above data, we assessed the dif-
ferences between the budding and non-budding cases in terms of miRNA
gene expression and protein expression.

Immunohistochemical profiling
TheTUM-IHCcohort consisted of 41 resection specimens ofHNSCC from
patients treatedat theKlinikumrechts der Isar of theTechnicalUniversityof
Munich (TUM). Analysis of the cohort was conducted in accordance with
the Declaration of Helsinki and authorized by the ethics commision of the
University Hospital Rechts der Isar (vote 2023-543-S-SB). The cohort was
selected to include a similar number of HPV-negative and HPV-positive
tumors and a similar number of budding and non-budding tumors for both
subtypes. 13 patients (31.7%) were female, and themedian age was 62 years
(interquartile range 13.5 years). 21 (51.2%) of the tumorswere located in the
oral cavity and 20 (48.8%) located in the oropharynx. Applying the guide-
lines of the College of American Pathologists84, 20 (48.8%) tumors were
immunohistochemically p16-positive, while the remaining 21 tumors were
p16-negative. The TUM-IHC cohort of 21 HPV-negative (13 with tumor
budding) and 20 HPV-positive (8 with tumor budding) HNSCC samples
was stained for CAV1 (anti-CAV1 antibody #3238, 1:200, Cell signaling,
detected with Bond Polymer Refine Red Detection, Leica) and MMP14
(anti-MMP14 antibody ab51074, 1:500, Abcam, detected with Bond Poly-
mer Refine Detection, Leica) on Leica Bond RX. Supplementary Figure 13
presents examples of CAV1 and MMP14 IHC stains alongside corre-
sponding H&E stains for non-budding cases, as well as bulk and budding
regions of budding cases. One non-budding CAV1-stained sample was
removed from the analysis (low quality).

A “histo-score” (H-score) was calculated for each sample. H-score is
defined as the intensity of staining multiplied by the percentage (P) of cells
staining negative (0), weak (1+), moderate (2+), and strong (3+), giving
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an analytical range for 0 to 30085. For the budding cases, we calculated two
H-scores; one for the tumor cells of the non-budding regions andone for the
tumor buds. The resulting H-scores were divided by 3, leading to values
ranging from 0 to 100.

Proteomics profiling
TheTUM-Proteomics cohort consisted of 104HPV-negativeHNSCCcases
and is a subcohort of 157 treatment-naive cases of resection specimens of
OSCC (tongue, floor of mouth) published earlier64. From the published
cohort,we excluded10p16-positive cases aswell as 43 cases forwhich tumor
purity was too low or protein extraction was insufficient for downstream
analysis. Analysis of the cohort was conducted in accordance with the
Declaration of Helsinki and authorized by the ethics commission of the
University Hospital Rechts der Isar (vote 296/17 S). TUM-Proteomics
included 70 budding and 34 non-budding tumors that were profiled for
7771 proteins.

Tissue microdissection and protein extraction. Tumor microdissec-
tion was performed aftermarking of the tumor on anH&E-stained slide by
experienced head and neck pathologists (MB). The percentage of vital
tumor cells was documented and was >60% for all included samples.
Subsequently, samples of FFPE tissue sections were cut in 5 µm and
deparaffinized according to our optimized protocol. In detail, FFPE tissue
sections were incubated in a heating oven for 30min at 60 °C and subse-
quently deparaffinized in washing solutions as the order of 100% xylene for
20min, 100%Ethanol, 96%Ethanol, 70%Ethanol andprotease-free ddH2O
for 10min respectively. Tumor cells from the marked area were scratched
from deparaffinized tissue and transferred to 1.5ml polypropylene
microcentrifuge tubes containing 400 µl protein extraction buffer consist-
ing of 0.5M Tris-HCl pH 9.0, 10mM DTT, 4% SDS(w/v). After shortly
spinning on a table vortex mixer, all samples were incubated in a Ther-
momixer (Eppendorf) for 1 h at 100 °C followed by shearing DNA and
debris via sonication using a Bioruptor Pico (15 cycles, 1 min on and 30 s
off). After sonication, the protein products were pelleted at 14,000 rpm for
10min (Eppendorf, Centrifuge 5430 R). The supernatants were transferred
in fresh 1.5 ml tubes and stored at −20 °C until the next step.

Protein purification and digestion for mass spectrometry analysis.
Prior to tryptic digestion, the detergent was removed from lysates by SP3
cleanup, following the protocol as described86. Briefly, the lysate was
mixed with SP3 beads and proteins were precipitated in a 50:50 mixture
of Sera-Mag Speed Bead types A and B (Thermo Fisher Scientific) in 70%
acetonitrile. Beadswerewashed twicewith 80% ethanol inwater and once
with acetonitrile. Disulfide bonds were reduced with 10 mM TCEP
(tris(2-carboxyethyl)phosphine) for 45 min at 37 °C, followed by alky-
lation of cysteines with 55 mM CAA for 30 min at room temperature in
50 μL of digestion buffer (2 mM CaCl2 in 40 mM Tris-HCl, pH 7.8).
Trypsin [1:50 (wt/wt) enzyme-to-protein ratio] was added, and bead-
precipitated proteins were digested at 37 °C for 3−4 h. The same amount
of trypsin was added again, and the digestion was allowed to continue
overnight. The next day, beads were settled using a magnet, and the
supernatant was transferred to a new tube. Beads were washed by the
addition of 50 μL water, sonicated (3 × 30 s), and the supernatants were
combined. Samples were acidified with FA to pH <3. Subsequently,
peptides were loaded onto Evotips. For the optimization of the extraction
procedure, samples were desalted using a C18 SepPak 96-well desalting
plate before measurement.

Whole proteome analysis MS method. Samples were analyzed as
described previously87. Briefly, 2 × 600 ng of each sample were loaded
onto two single-use trap columns (Evotips) according to the manu-
facturer’s protocol and analyzed on an Evosep One LC-system coupled
to an Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scien-
tific) equipped with a high-field asymmetric-waveform ion-mobility
spectrometry (FAIMS) unit (Thermo Fisher Scientific). The peptides

were separated on an Evosep C18 column (3-µm particle size,
150 µm inner diameter) using the 15 samples per day (SPD; 88 min)
method. Each sample was analyzed twice with two different sets of
compensation voltages (CVs; set1: −30 |− 40 |− 50 |− 60 |− 70 V,
set2: −35 |− 45 |− 55 |− 65 |− 75 V). The mass spectrometer was
operated in positive ionization (spray voltage of 2300 V) and data-
dependent acquisition mode, automatically switching betweenMS1 and
MS2 scanswith afixed cycle time of 3 s.MS1 spectrawere acquired over a
mass-to-charge (m/z) range of 360–1300 m/z at an Orbitrap resolution
of 60,000 (atm/z 200) using amaximum injection time (maxIT) of 45 ms
and a normalized AGC target value of 100% (1 × 106). Themonoisotopic
precursor selection filter was activated and set to the peptide mode. The
charge statefilter was set to 2–6. ForMS2, precursors were isolatedwith a
width of 1.3 Th, collected using a standard maxIT of 25 ms and a nor-
malized AGC value of 100% (1 × 105), fragmented by HCD at 28%NCE,
and the spectra were acquired on the Orbitrap at a standard resolution of
15,000 (at m/z 200). The dynamic exclusion duration of fragmented
precursor ions was set to 90 s. The dynamic exclusion list was set to be
shared across different experiments.

Proteomic data analysis. Analysis of raw data files including protein
identification and label-free quantification was performed with Fragpipe
(v18.0) using a reviewed human proteome Uniprot reference database
(access on 24.11.2020) and the following search settings in Fragpipe:
MBR ion FDR 0.5%, Min probability 0.5, Fragment mass tolerance
20 ppm, MBR peptide FDR 1%, MBR top runs 410. False discovery rate
for peptide/protein identification was set to 1% on the peptide and
protein level. Missing values for a given protein were defined as missing
not at random (MNAR) when it was detected in more than 90% of or in
less than 10% of all samples. Missing values of all other protein groups
were defined as missing at random (MAR) and were imputed with the
package missRanger (v2.2.1). The MNAR values were subsequently
imputed with a row-wise imputation of a random distribution -5 log
values away from the row minimum and with a range of plus the row
standard deviation and minus the row standard deviation.

We investigated the difference between the budding and non-budding
cases in terms of protein expression. In addition, within the budding group,
we investigated the correlation between the tumor budding score and each
protein’s expression. Functional analysis was performed as described below
for the differentially expressed genes.

Determination of tumor budding
For all three datasets, tumor buds were defined as clusters of up to four
tumor cells dissociating from the tumor mass and infiltrating into the
surrounding stroma5,9. TB was assessed as described in detail in Stögbauer
et al.8. In short, TB was counted irrespective of the location within the
tumor, i.e., tumor center or periphery and was documented as the absolute
number of tumor buds in ten consecutive high-power fields (HPFs) with
one HPF covering an area of 97,464 μm2 in digitized HE-stained slides,
corresponding to a field diameter of 0.35mm in light microscopy, starting
with the HPF including the highest amount of buds (“hotspot”). TB was
evaluated by two experienced pathologists (FS and MB). In case of
ambiguous results, cases were discussed, and a consensus rating was
reached. We did not analyze interobserver agreement for this study as
previous studies already showed high interrater agreement for tumor
budding scoring in squamous cell carcinomas88,89 and our focus for the
current study was directed towards the molecular background of tumor
budding.Diverging from the recommendations of the International Tumor
Budding consensus conference for colorectal cancer, we evaluated a 40×-
field andnot a 20×-field, aswe aimed to apply amethodology comparable to
other studies carried out in squamous cell carcinomas3,6,8.

Statistical analysis
TB was primarily analyzed as a dichotomized variable (budding vs. non-
budding) and secondarily as a continuous variable.
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Starting from the TCGA mutation calls, tumor mutational burden
(TMB) was calculated as the total number of missense mutations as
described previously90. Single base substitution (SBS) mutational signatures
were extracted using FitMS with the R package signature.tools.lib v2.4.432.
Only SBS signatures detected in at least five samples were subjected to
furtheranalysis. The levels ofTMBandof the SBS signatureswere compared
between budding and non-budding tumors using the Wilcoxon test. The
association of all genes mutated in at least 10% of samples with TB was
assessed using Fisher’s test andWilcoxon test. Differences of TB across the
molecular subtypes of HNSCC were assessed using the Kruskal–Wallis test
and post-hoc pairwise comparisons with the Wilcoxon test. Differences of
immune cell population abundances between the budding and non-
budding cases were assessedwith theWilcoxon test. The univariate analysis
comparing clinicopathological data in samples with and without NSD1
mutations was performed using the Fisher’s test. The bivariate logistic
regression analysis was performed using the generalized linear model
pN = 0.061×TB− 1.014 ×NSD1-status− 0.086, where pN represents the
lymph node status (metastasis vs no metastasis) as the dependent variable,
TB indicates the tumor budding (independent variable), and NSD1-status
refers to NSD1mutation status (independent variable).

Differential gene expression analysis comparing budding with non-
budding tumors was performed using the TCGA-HNSC and CPTAC-
HNSCC RNA-Seq raw counts and DESeq2 v.1.42.081. The CPTAC-
HNSCC cohort was used to validate the results detected in the analysis of
the HPV-negative TCGA-HNSC cohort. A differentially expressed gene
was considered validated if it was differentially expressed in the same
direction (up- or downregulation) with a one-sided p-value smaller than
0.05. Moreover, the correlation of the level of TB and gene expression
was assessed using Spearman correlations in the subset of budding
tumors. We then performed functional analyses using the cancer hall-
mark catalog of MSigDB v7.591–93 and the differentially expressed genes
(DEGs) and significantly correlating genes (SCGs). For each gene set, an
enrichment fold change of the percentages score was calculated using the
formula FC = (k/K)/(n/N), in which k refers to the number of genes in
theMSigDB gene set,K refers to the number of DEGs or SCGs, n refers to
the number of common genes between the k and K sets, and N refers to
the number of genes in the respective MSigDB catalog. The enrichment
analysis was conducted twice for each analysis; once using the upregu-
lated DEGs/positive SCGs and then using the downregulated DEGs/
negative SCGs. The enrichment of the functional categories in the cancer
hallmark catalog was assessed using Fisher’s test. Differential miRNA
expression (TCGA-HNSC miRNA) and differential protein expression
(TCGA-HNSC RPPA, CPTAC-HNSCC MS, TUM-IHC, and TUM-
Proteomics) between budding and non-budding tumors were assessed
using the Wilcoxon test. H-scores (TUM-IHC cohort) of the bulk and
the budding regions of the budding cases were compared using the
paired Wilcoxon test. The correlation of the level of TB and protein
expression in the subset of budding tumors was analyzed using Spear-
man correlations. Multiplicity in hypothesis testing was addressed by
correcting the p-values using the Benjamini–Hochberg method. Lists of
differentially expressed genes (DEGs) and differentially expressed pro-
teins (DEPs) were generated controlling the false discovery rate (FDR) at
10% and including only genes/proteins with absolute fold change above
1.5. Lists of significantly correlating genes (SCGs) were generated con-
trolling the false discovery rate (FDR) at 10% and including only genes
with |Spearman ρ | ≥ 0.25. We calculated the intersections of these gene
lists with the significance assessed using the Fisher’s test and the results
were visualized using venn diagrams (R packages GeneOverlap v1.38.0
and VennDiagram v1.7.3). In addition, we calculated the intersection of
the above gene lists with the common genes within the p-EMT program
as defined in Puram et al.22, using the top 15 genes.

Gene and protein expression patterns for selected gene sets were
visualized in heatmaps. For the underlying hierarchical clusterings, the
similarity of samples or genes was assessed using Pearson correlations
and the distance between clusters was calculated using the average

linkage method. The following gene sets were analyzed: the EMT and myo-
genesis MSigDB hallmark gene sets, a combined EMT/myogenesis gene set,
and a p-EMT gene set that includes well-established epithelial and mesench-
ymal markers (epithelial markers: CDH1, CLDN1, CLDN2, CLDN3, CLDN4,
CLDN5, CLDN6, CLDN7, CLDN8, CLDN9, CLDN10, CLDN11, CLDN12,
CLDN14,CLDN15,DSP,KRT6A,KRT8,KRT16,KRT18,KRT19, andOCLN;
mesenchymal markers: ACTA2, CDH2, FN1, GCLC, ITGB1, ITGB3, ITGB6,
MMP2, MMP3, MMP9, TWIST1, VIM, VTN, ZEB1, and ZEB2; HNSCC-
specific p-EMT markers: CDH1, ITGA5, SNAI2, and VIM20,94–97. For each
heatmap, the tumors were grouped in two clusters according to the highest
hierarchy in thedendrogramand thedifference ofTBbetween the clusterswas
assessed using Fisher’s test and Wilcoxon test. For the combined EMT/myo-
genesis gene set, we identified three clusters in the TCGA-HNSC negative
subcohort and the differences ofTB in the three clusterswas assessedusing the
Kruskal–Wallis test and ad-hoc pairwise Wilcoxon tests. Similarly, for the
p-EMT gene set, we identified five clusters in the TCGA-HNSC negative
subcohort and the differences of TB in the five clusters was assessed using the
Kruskal–Wallis test and ad-hoc pairwise Wilcoxon tests.

Differences in progression-free interval (PFI) and overall survival
(OS) were analyzed using Kaplan–Meier curves (R package survminer
0.4.9) and assessed for significance by the log rank-test (R package
survival v3.5_7).

For the interactions network analysis, we calculated the Spearman
correlations between the expression values of all DEGs or DEPs, as well as
the area under the curve (AUC) of the receiver operating characteristic
curve (R package pROC v1.18.5) when separating budding and non-
budding cases based on the expression of each gene or protein. We then
selected those DEGs or DEPs with |Spearman ρ | ≥ 0.6 and AUC ≥ 0.7 for
visualization. The network graph was generated using Cytoscape
(v3.10.2)98. Transcription factors (extracted from The Human Transcrip-
tion Factors database (v1.01, accessed on 15.05.2024)99 and EMT and
myogenesis MSigDB hallmark genes were annotated in the graph. The
genes/proteins in the networkwere additionally annotated to theMSiGDB
gene sets GOBP_IMMUNE_RESPONSE and GOBP_EPIDERMAL_-
GROWTH_FACTOR_RECEPTOR_SIGNALING_PATHWAY.

The analysiswas conducted for theTCGA-HNSCHPV-negativeDEGs,
the TCGA-HNSC HPV-positive DEGs, and the TUM-LC-MS HPV-
negative DEPs.

Many of the analyses included a multitude of molecular features
(mutations, miRNAs, mRNAs, and proteins) or functional categories. We
strictly addressed the multiplicity in hypothesis testing in each of the ana-
lyses by correcting the P values using the Benjamini–Hochbergmethod and
controlling the FDR at 10%.

Data availability
The TCGA and CPTAC data are available from public repositories, as
indicated. The in-house mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE100 partner
repository with the dataset identifier PXD058014. The IHC data are avail-
able from the corresponding author on reasonable request.

Code availability
Statistical analyses and graphics generation were performed using the sta-
tistical programming languageRv4.3.2.The followingpackageswereused to
generate graphics: ggplot2 v3.4.4, ggbeeswarm v0.7.2, ggdist v3.3.1, ggrepel
v0.9.4, plotrix v3.8_4, RColorBrewer v1.1_3, amap v0.8_19, and heatmap3
v1.1.9. The code is available from the corresponding author upon request.
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