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Prediction and analysis of tumor
infiltrating lymphocytes across 28 cancers
by TILScout using deep learning
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The density of tumor-infiltrating lymphocytes (TILs) serves as a valuable indicator for predicting anti-
tumor responses, but its broad impact across various types of cancers remains underexplored. We
introduce TILScout, a pan-cancer deep-learning approach to compute patch-level TIL scores from
whole slide images (WSIs). TILScout achieved accuracies of 0.9787 and 0.9628, and AUCs of 0.9988
and 0.9934 in classifying WSI patches into three categories — TIL-positive, TIL-negative, and other/
necrotic—on validation and independent test sets, respectively, surpassing previous studies. The
biological significance of TILScout-derived TIL scores across 28 cancers was validated through
comprehensive functional and correlational analyses. A consistent decrease in TIL scores with an
increase in cancer stage provides direct evidence that the lower TIL content may stimulate cancer
progression. Additionally, TIL scores correlated with immune checkpoint gene expression and
genomic variation in common cancer driver genes. Our comprehensive pan-cancer survey highlights
the critical prognostic significance of TILs within the tumor microenvironment.

Growing evidence suggests that the tumor microenvironment significantly
influences cancer development, progression, therapeutic response, out-
comes, and resistance through complex interactions of its components'™.
Tumor-infiltrating lymphocytes (TILs), a vital population of immune cells
in the tumor microenvironment, play a crucial role in effective anti-tumor
immune responses. High densities of TILs have been associated with
improved outcomes of immune checkpoint blockade (ICB) therapy and
prognosis in breast cancer*”, melanoma®, colon cancer’, non-small cell lung
cancer'"", gastric cancer", and laryngeal squamous cell carcinoma'. Dis-
tinct spatial patterns of TILs have been linked to survival in melanoma'>"".
However, for tumors with low immunogenicity, such as adenoid cystic
carcinoma, TIL patterns do not seem to affect prognosis, even in the pre-
sence of abundant lymphocytes'’, suggesting that effects of TILs on prog-
nosis and therapy response vary depending on the molecular mechanisms
underlying cancer progression. A comprehensive and systematic investi-
gation of the relationships between TILs and therapeutic response and
prognosis across diverse cancers has so far been lacking.

As the gold standard in cancer diagnosis, histopathology slides provide
awealth of information about tumor tissue architecture, encompassing both
tumor cells and the surrounding microenvironment. Due to the subjective

nature and lack of reproducibility in manual assessments of histopatholo-
gical images, computational analyses have gained prominence in recent
years'®"”. Numerous studies have explored prognostic features from whole
slide images (WSIs) using deep learning models across various cancer
types™ . As the most critical component of anti-tumor response in the
tumor microenvironment, TILs exhibit distinctive morphological char-
acteristics, facilitating their computational identification in pathological
images. Typically appearing as small, round cells with high nuclear-to-
cytoplasmic ratios and darkly stained nuclei, TILs are easily distinguishable
from tumor cells, which generally feature enlarged nuclei, irregular cell
shapes, and increased nucleocytoplasmic ratios. The large size of WSIs
makes it challenging for pathologists to evaluate TIL proportions
throughout the entire tissue slides, which is laborious and time-consuming.
Therefore, machine learning-aided approaches emerge as an efficient tool
for WSI analysis.

In the past five years, computer-based methodologies have made
notable advancements in the detection of TILs from hematoxylin-eosin
slides, particularly in the context of individual cancer types such as breast
cancer®” ™ and lung cancer'"'>”". These approaches have primarily
focused on cellular-level identification and evaluation of TILs. Despite
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Fig. 1 | Workflow of model training and TIL score prediction.

variations in methodology and some deviation from the visual TIL
assessment (VTA) guidelines of The International Immuno-Oncology
Biomarker Working Group on Breast Cancer (TILs-WG)¥, the out-
comes of these studies have consistently demonstrated excellent con-
cordance with VTA and statistical association with the prognosis.
Notably, applications of many of these algorithms relied on initial
manual annotation of tumor regions by pathologists. Moreover, there is
a shortage of evidence regarding the applicability of these approaches to
slide images of other cancer types, while the prediction accuracy remains
below 90%~.

The patch-based approach is one of three main computational
approaches for quantifying tissues and cells in slide images”. A pivotal study
by Saltz et al.”* presented patch-level mapping of TILs based on slide images
in 13 cancer types. Their methodology incorporated a semi-supervised
convolutional neural network (CNN) for patch-level classification of infil-
trated lymphocytes and necrosis segmentation. However, the approach of
Saltz et al. requires integrating multiple separate deep learning-based
methods and manual analytical steps, which complicates its use in clinical
applications. Additionally, the model initially published by Saltz et al.
achieved a patch-level prediction accuracy of 0.7956, and the best accuracy
of their updated deep-learning workflow reached 0.8743 across 23 cancer
types”. The DeepTILs approach developed by Xu et al.”’ for patch-level TILs
prediction showed a test accuracy value of 0.8006 in colorectal cancer.
Another study by Le et al.”” developed two types of convolutional neural
network models for detecting breast cancer regions and TILs at the patch
level, while the optimal accuracy for TIL patch classification was 0.89.
A more accurate, easy-to-use, and pan-cancer-applicable model for TIL
detection and assessment in WSIs would thus be essential in the context of
immunotherapy.

Building upon the experience of the previous studies, we developed a
pan-cancer applicable deep learning-based approach named TILScout for
fully automatic TIL assessment at the patch level from WSIs. The reliability
and practicality of TILScout-generated TIL scores in evaluating the extent of
TIL infiltration across various cancers were validated through compre-
hensive analyses encompassing both qualification and quantification. We
also investigated the influence of genomic variation on TIL infiltration.

Furthermore, prognostic models integrating clinical characteristics were
established to comprehensively explore the prediction performance of TIL
scores for survival and therapeutic response and elucidate potential appli-
cation in clinical practice.

Results

Overview of the study

The goal of this study was to develop a computational method to predict
the amount of tumor infiltration lymphocytes (TIL) present in tumor
tissues based on whole slide images (WSI) (Fig. 1). WSIs were split into
thousands of patches, which were manually labeled as TIL-positive,
TIL-negative, and non-tumor/necrotic by experienced pathologists.
This dataset was used to train and test nine machine-learning models,
with InceptionResNetV2 emerging as the optimal classifier for pre-
dicting patch labels. Iterative manual improvement and relabeling of the
patch dataset was performed according to the confusion matrix of the
InceptionResNetV2 classifier, after which it was retrained and the best
model resulting from the ten-fold cross-validation was chosen as the
final model for patch prediction. We provide our approach called
TILScout to compute TIL scores (the fraction of TIL-positive patches in
tumor regions of a given WSI) and to construct TIL maps illustrating the
extent of TIL infiltration within tumor tissue.

Selection of an optimal patch classifier

Eight pre-trained convolutional neural networks (VGGI16, VGGI19,
ResNet34, ResNet50, Xception, InceptionV3, InceptionResNetV2, UNI),
CAE-based clustering were utilized to discriminate between TIL-positive,
TIL-negative, and non-tumor/necrotic patches in the initial dataset of
90,488 patches. InceptionResNetV2 showed the best performance on the
validation set with the highest accuracy (0.9838), Kappa value (0.9753),
AUC (0.9989), precision (0.9838), recall (0.9838), specificity (0.9909), and
F1 score (0.9838) (Supplementary Table 10) and the lowest loss value
(Supplementary Fig. 2). On the other hand, unsupervised learning methods
CAE-based deep clustering yielded the least favorable results, with the
lowest accuracy value (0.5096). Consequently, InceptionResNetV2 was
chosen for retraining the final classifier.
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Manual improvement and re-labeling of the patch dataset

As described in “Methods”, a team of experienced pathologists at the
Third Xiangya Hospital of Central South University conducted manual
improvement of patches for which the prediction results did not match
the actual labels based on the confusion matrix. These potentially
erroneously labeled patches were reviewed and relabeled. After one
iteration of manual improvement, the final dataset of 90,488 patches
was produced.

Model retraining to obtain the final classifier for patch prediction
The final dataset of patches was randomly split into a training (72,272
patches) and a validation (18,216 patches) set. We retrained the
InceptionResNetV2-based model using 10-fold cross-validation,
which achieved an average accuracy of 0.9842 on the training set and
0.9820 on the cross-validation set (Fig. 2A). The best results were
obtained on fold 9), with excellent accuracy (0.9787), Kappa (0.9669),
AUC (0.9988), precision (0.9788), recall (0.9787), specificity (0.9705),
and F1 score (0.9787) on the validation set (Supplementary Table 10,
Vimi)- According to the confusion matrix (Fig. 2B) in the validation set,
the model is able to discriminate between distinct label categories.
Furthermore, we conducted a separate analysis on a subset of 5512
patches in the validation set that originated from cases different from
those in the training set. The results indicate that the model achieved an
accuracy of 0.9777 and an AUC of 0.9991 (Supplementary Table 10,
Visub)> demonstrating its ability to generalize effectively even when
dealing with patches from entirely new slides. The model achieved an
average accuracy of 0.9628 (RUMC-BRCA: 0.9643, CPTAC-LUAD:
0.9613, CPTAC-LUSC: 0.9627) and an average AUC of 0.9934
(RUMC-BRCA: 0.9925, CPTAC-LUAD: 0.9917, CPTAC-LUSC:
0.9960) on the independent test set (Supplementary Table 10). The best
model from fold 9 was selected as the final TILScout predictor and
subsequently applied for patch prediction and TIL score calculation.
This model was compared with the previously published models
(Supplementary Table 11).

TIL score computation by TILScout and construction of
patch-level TIL maps for WSls

Using the final trained model, we conducted large-scale classification of TIL
patches and calculated TIL scores in 8,888 WSIs derived from 7,699 samples
across 28 cancer types (ACC, BLCA, BRCA, CESC, CHOL, COAD-READ,
ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, MESO, OV,
PAAD, PCPG, PRAD, SARC, SKCM, STAD, TGCT, THCA, THYM,
UCEC, UCS, UVM).

According to the kernel density estimation distribution presented in
Fig. 2C, TIL scores are concentrated between 0.000 and 0.339 (densities
greater than 1.0), accounting for 79.4% of all values. The TIL score corre-
sponding to the highest density value was around 0.064. Only a few WSIs
exhibited TIL scores greater than 0.750 (3.3%).

In Fig. 2D, we present two examples explaining individual predictions
by the SHapley Additive exPlanations (SHAP)*'. Shapley values reflect the
importance of imputed features, where each imputed feature for every patch
corresponds to the RGB value of each pixel. Positive SHAP values signify a
positive contribution to the prediction, while negative values indicate a
negative contribution. In accordance with our defined criteria (Method,
2.2.2), patches containing more than one tumor cell (blue arrows) and three
lymphocytes (indicated by red arrows) would be predicted as TIL-positive.
Conversely, patches with more than one tumor cell and fewer than three
lymphocytes would be predicted as TIL-negative, while patches devoid of
any tumor cells would be predicted as other/necrotic. The predictive model
successfully identifies TIL-positive patches based on the criteria specified in
“Methods”. Figure 3D illustrates the predicted labels and their correspon-
dence to the actual labels.

Additionally, we present two instances of patch-level TIL map con-
struction (TCGA id: TCGA-66-2794-01Z-00-DX1, TCGA-85-8532-01Z-
00-DX1) (Fig. 2E). Different colors were employed to delineate distinct

predicted labels of patches in accordance with the prediction results. The
construction of the patch-level TIL map involved positioning each patch
within its corresponding WSIL.

Association of TIL scores with clinical characteristics of patients
Across multiple cancers, the overall mean TIL score was 0.219,
with thymoma (THYM) and ovarian cancer (OV) exhibiting the
highest (0.664) and the lowest (0.088) average TIL scores, respectively
(Fig. 3A). We assessed correlations between TIL scores and clinical and
pathological characteristics, including age, gender, stage, and histo-
logical grade, across 28 cancer types (Fig. 3B). Notably, a significant
association between TIL scores and cancer stages were identified in 9
out of 25 (36.0%) cancer types. A consistent decreasing trend in TIL
scores with the increase in cancer stage was observed (Fig. 3F) (average
TIL scores across all cancer types: stage I, 0.245; stage IT, 0.233; stage I11,
0.209; stage IV, 0.189).

TIL scores reflect the extent of TILs infiltration in tumor
microenvironments

TIL scores exhibit a significant positive correlation with lymphocyte
fractions (estimated by the CIBERSORT algorithm) in 23 out of
28 cancer types, primarily due to the contribution of CD8 + T cells
(Fig. 3C). Notably, an inverse correlation was observed in KICH, which
is a specific type of renal cell carcinoma (RCC) with significantly
decreased immune cell gene-specific signatures compared to other
RCC types'**’. However, TIL scores exhibited a notably positive cor-
relation with regulatory T cells in KICH.

TIL scores as predictive pan-cancer biomarkers

The high TIL score group exhibited reduced risks of death (OS benefits) in
22 out of 28 cancer types, reduced risk of cancer-specific death (DSS ben-
efits) in 22 out of 28 cancer types and reduced risk of recurrence (PFI
benefits) in 20 out of 28 cancer types (HR < 1) (Fig. 3D). High TIL score
groups demonstrated significant overall survival (OS) benefits in 12 out of
28 cancer types (BLCA, BRCA, CESC, COADREAD, HNSC, KIRC, LIHC,
MESO, OV, PAAD, SARC, SKCM) with a 29-61% decrease in the risk of
death (HR 0.39-0.71). Disease-specific survival (DSS) benefits were evident
in 15 out of 28 cancer types (BLCA, BRCA, CESC, HNSC, KIRC, KIRP,
LIHC, LUAD, MESO, OV, PAAD, SKCM, STAD, UVM), presenting a
34-69% decrease in the risk of death (HR 0.31-0.66). Progression-free
interval (PFI) benefits were observed in 11 out of 28 cancer types (BLCA,
BRCA, CESC, CHOL, HNSC, KIRC, LIHC, MESO, SKCM, STAD, UVM)
with a 27-67% decrease in the risk of recurrence (HR 0.33-0.73). However,
the low TIL score group in three cancer types (PCPG, PRAD, THCA)
showed significant PFI benefits, possibly due to the heterogeneity of dif-
ferent cancers. Overall, the high TIL scores group exhibited a 35% decrease
in the risk of death (OS, HR 0.65, 95 CI [0.58, 0.74], random-effects model),
a 45% decrease in the risk of cancer-specific death (DSS, HR 0.55, 95 CI
[0.50, 0.62], fixed-effects model), and a 19% decrease in the risk of cancer
recurrence (PFI, HR 0.81, 95 CI [0.67, 0.97], random-effects model)
(Fig. 3D) across all cancer types.

TIL scores exhibit strong positive correlations with the
expression of immune checkpoint genes

We investigated the associations between TIL scores and the expression
levels of nine common ICGs (Fig. 3E). In addition to the identified
negative correlation between the expression of CD276 and TIL scores,
the remaining 8 ICGs (PDCDI1, CD274, CTLA4, LAG3, TIGIT,
HAVCR?2, BTLA, C100rf54) displayed significant positive correlations
with TIL scores across most cancer types (Pearson P < 0.05), with the
highest correlation observed in TGCT. Notably, expression levels of two
pivotal ICGs, PDCD1 and CTLA4, which are mainly expressed on
lymphocytes*, exhibited correlations with TIL scores in 20 out of 28
cancer types. Overall, TIL scores showed a statistically significant cor-
relation with ICG expression in most cancers, which was substantially
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matrix of the fold-9 InceptionResNetV2 model on the validation set. 0, TIL-positive
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predictions by SHAP visualization. SHAP values for each imputed feature (RGB
values of each pixel) were computed and visualized according to the trained model.
Positive values indicate a positive contribution to the prediction, while negative
values indicate a negative contribution. E Two examples of WSIs, patch prediction
and patch-level TIL map construction. Different colors mark different patch labels
according to prediction results. A patch-level TIL map was constructed according to
the positions of each patch within the WSL

higher than the same values for randomly chosen sets of 9 human genes
(Supplementary Fig. 5). Moreover, TIL scores exhibited a positive cor-
relation with immune scores in 21 out of 28 cancer types and IPS in 10
out of 28 cancer types, while showing a negative correlation with TIDE
scores in 14 out of 28 cancer types (Fig. 3G). These findings suggest that

tumor microenvironments of patients with high TIL scores are char-
acterized by elevated ICGs expression in most cancer types, which might
contribute to potential response to immunotherapy. Regarding TMB,
correlations with TIL scores were observed in only five cancer types
(CESC, THYM, UCEC, OV, SARC) (Fig. 3G).
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types. Blue dashed line: the average TIL score across all cancer types; blue dots: mean
values of TIL scores for each cancer type. B Correlations between TIL score and
clinical features. Color-filled squares indicate a significant relationship between TIL
scores and features (Kruskal-Wallis test, P < 0.05). Grey squares indicate that no
information about these features was provided for the corresponding cancer types.
C Correlations between TIL scores and immune cell fractions. PCCs Pearson cor-
relation coefficients. Color-filled squares indicate significant relationships

(P <0.05). D Forest plots of survival analysis. HR values below and greater that

1 indicate that TIL scores are associated with a decrease and increase in the risk
of death (OS and DSS) or recurrence (PFI), respectively. 95% CI 95% confidence
interval (CI) of HR. Blue squares indicate significant effects of TIL scores on out-
comes (OS, DSS, PFI) (the upper 95% CI less than 1). I’ inter-group heterogeneity
test index, assessing the degree of variability among studies (different cancer types in

our study) that was attributable to heterogeneity rather than to chance***. A value of
P> 0.1 indicates a lack of heterogeneity among effects (different cancer types). A
fixed-effects model was used if the P-value of I’ was greater than 0.1, otherwise, a
random-effects model was considered®. The size of the square represents the weight
or contribution of each cancer type to the overall effect estimate. E Pearson corre-
lations between TIL score and expressions of immune checkpoint genes (ICGs).
Color-filled circles indicate a significant relationship (P < 0.05). F TIL score dis-
tribution in different stages across 25 cancer types. A P < 0.05 indicates that TIL
score distribution has a significant difference. “*”, P < 0.05; “**”, P < 0.01; “***”,
P <0.001. G Correlations between TIL scores and Immune scores, TIDE scores, IPS
and TMB values. The vertical solid line is the dividing line where the P-value equals
0.05. Cancer types with P < 0.05 are labeled. H Correlations between TIL scores and
OS-based TME risk scores. The vertical solid line is the dividing line where the
P-value equals 0.05. Cancer types with P < 0.05 are labeled.
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Fig. 4 | Gene Set Enrichment Analysis. NES normalized enrichment score. Z-NES, Z-score normalized NES.

TIL scores are significantly associated with TME risk scores
across most cancer types

We developed three separate TME risk scoring systems for predicting
the OS in 17 cancer types (Supplementary Table 5), DSS in 17 cancer types
(Supplementary Table 7), and PFI in 18 cancer types (Supplementary Table
9). Notably, the TME risk scoring systems exhibited robust prognostic
predictive capabilities. The high TME risk score group demonstrated a 2.61
times higher risk of death (OS, HR 2.61, 95% CI [2.39, 2.86], fixed-effects
model) (Supplementary Fig. 6), a 3.37 times higher risk of cancer-specific
death (DSS, HR 3.37, 95% CI [2.70, 4.19], random-effects model) (Sup-
plementary Fig. 7), and a 3 times higher risk of cancer recurrence (PFI, HR
3.00, 95% CI [2.51, 3.59], random-effects model) (Supplementary Fig. 8).
More importantly, TIL scores revealed statistically significant correlations
with OS-based TME risk scores in 9 out of 17 cancer types (BLCA, BRCA,
CESC, HNSC, KIRC, LUSC, SARC, SKCM, UCEC) (Fig. 3H), with parti-
cularly strong correlations observed in BRCA and SKCM. TIL scores also
showed statistically significant correlations with DSS-based TME risk scores
in 9 out of 17 cancer types (BLCA, BRCA, CESC, HNSC, KIRC, KIRP,
SARC, SKCM, UCEC) (Supplementary Fig. 9A), and with PFI-based TME
risk scores in 8 out of 18 cancer types (BLCA, BRCA, CESC, HNSC, KIRC,
PRAD, SKCM, UCEC) (Supplementary Fig. 9B). These findings provide
robust evidence supporting the potential relevance of TIL scores on prog-
nosis across different cancer types.

Elevated TIL scores reflect upregulated immune activity in the
tumor microenvironments

Gene set enrichment analysis was conducted for three types of gene
annotations (GO, Reactome, and Hallmark). We identified 432 significantly

enriched biological functional gene sets/pathways (354 GO terms, 13 hall-

mark gene sets, and 65 Reactome pathways) correlated with TIL scores

(Supplementary Data 3). The top-ranked gene sets/pathways of each type

(30 GO terms, 13 hallmark gene sets, and 30 Reactome pathways) are

presented in Fig. 4. To ensure comparability across different cancer types for

selected terms or pathways, we normalized the NES of each term/pathway
by Z-score. All 52 upregulated gene sets/pathways (NES > 0) were associated
with the immune system. These gene sets/pathways were identified as
upregulated in more than 75% of cancer types, encompassing the entire
process of the adaptive immune response, including antigen processing and
presentation, immune cell activation, and immune killing. For example, GO
terms “regulation of lymphocyte activation”, “leukocyte cell—cell adhesion”
and “ T cell differentiation” were enriched in 27 out of 28 cancer types.
Reactome pathways such as “PD-1 signaling” and “co-stimulation by the
CD28 family” were highly upregulated in 26 out of 28 cancer types. The
Hallmark gene set “HALLMARK_ALLOGRAFT_REJECTION,” a direct
reflection of immune system activation, exhibited the highest positive NES
score and was upregulated in 24 out of 28 cancer types. At the same time,
some cancer types, especially KICH, exhibited significant downregulation
of these gene sets/pathways. This phenomenon might be attributed to the
specificity and heterogeneity of KICH itself, which has been discussed
before"**. The 21 gene sets/pathways (NES < 0), which were predominantly
involved in the regulation of biological processes in tumor cells (metabolic
activity, protein synthesis and secretion, cell proliferation, invasive and
migratory), were found to be downregulated in most cancer types, but with
significant heterogeneity observed across different cancer types. These
results underscore that the TIL score can be considered a valuable biomarker
for the immune activity in the tumor microenvironment.
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The impact of genome variation on the extent of TME infiltration
by TiLs

We systematically investigated the impact of SNV and CNV on TIL score
distribution across all cancer types. Regarding the SNV status of 25 pro-
minent cancer driver genes (Fig. 5A), UCEC exhibited the highest cumu-
lative mutation frequency. SN'Vs in 16 out of 25 genes significantly influence
TIL score distributions in UCEC. The four cancers most significantly
affected by SNV were UCEC, COAD_READ, HNSC and CESC (Supple-
mentary Fig. 10). A discernible trend emerged, indicating that patients
harboring SNVs in common driver genes exhibited higher TIL scores than
those without SN'Vs. However, patients with TP53 mutations displayed
inconsistent TIL score distributions across different cancer types (Supple-
mentary Fig. 11A). BRCA patients showed an increase in TIL scores, while
HNSC, KIRP, and STAD patients exhibited decreased trends in TIL scores.
The incidence of TP53-based co-mutations was generally low across all
cancer types, with the highest cumulative mutation frequency observed in
LUSC, reaching 0.3854 across 24 driver genes (Supplementary Fig. 11B).
Among the top ten cancer types with the highest cumulative mutation
frequency, 13 out of 24 TP53-based co-mutations resulted in a significant
decrease in TIL scores in HNSC (Supplementary Fig. 11B, C). In the realm of
CNVs, copy deletion (Fig. 5B) and amplification (Fig. 5C) of 25 driver genes
significantly influenced TIL score distributions across different cancer types.
LUSC and ACC exhibited the highest cumulative copy deletion frequency
and cumulative amplification frequency, respectively. The top four cancers
impacted by copy deletions were HNSC, LUAD, STAD and PAAD (Sup-
plementary Fig. 12). Significant decrease of TIL score values was evident in
24 out of 25 genes in STAD, 8 out of 25 genes in LUAD, and 9 out of 25 genes
in HNSC and PAAD. Similarly, the top four cancers impacted by amplifi-
cations were LUAD, HNSC, STAD, and KIRC (Supplementary Fig. 13). TIL
scores were significantly lower in 20 out of 25 genes in LUAD, 10 out of 25
genes in STAD, as well as in 7 out of 25 genes in HNSC and KIRC. A
discernible trend was observed that patients harboring CNVs in common
driver genes exhibited lower TIL scores than those without SNVs. These
findings reflect the potential influence of genome variation on shaping the
tumor immune microenvironment.

TIL scores improve patient risk stratification across different
cancer types

As outlined in “Methods”, we employed clinical prognostic models to assess
the influence of TIL scores on patient survival and their potential use in risk
stratification. Cancer types were included in the analysis only if their TIL
scores significantly impacted survival (Log-rank test P-value < 0.1) during
the initial evaluation, as depicted in Fig. 3D. Cases with missing clinical
feature values, especially stage and histological grade, were excluded. Fur-
thermore, cancer types with fewer than 120 patients were also excluded.
Subsequently, survival analyses were conducted for 10 cancer types to
predict OS for BLCA, BRCA, CESC, HNSC, KIRC, LIHC, LUAD, PAAD,
SARC, and SKCM, DSS for the same cancer types, and PFI for BLCA,
BRCA, CESC, HNSC, KIRC, LIHC, SKCM, STAD, THCA, respectively.
The random survival forest (RSF) technique was employed to train two
distinct prognostic models: M1, which utilizes clinical data only, and M2,
which combines clinical data with TIL scores.

Patients with high TIL scores demonstrated improved OS across all 10
cancer types, with statistical significance observed in 7 cancer types (BRCA,
CESC, HNSC, KIRC, LIHC, SARC, and SKCM, log-rank test P <0.05)
(MO in Fig. 6B and Supplementary Fig. 14A). M2 achieved an overall
average C-Index of 0.6695, surpassing the average C-Index of 0.6262 for M1.
This trend was consistent across all 10 cancer types, reflecting the superior
performance of M2 in terms of C-Indices. Additionally, M2 exhibited
substantial improvement in risk stratification for predicting OS in 9 out of
the 10 cancer types (BLCA, CESC, HNSC, KIRC, LIHC, LUAD, PAAD,
SARC, and SKCM) compared to M1 (M2 and M1 in Fig. 6B and Supple-
mentary Fig. 14A). This improvement was reflected by increased HR values
and decreased P-values. The average aggregated SurvSHAP(t) values
highlighted the high importance of TIL scores (ranked in the top two among

all variables) for M2 models in 6 out of the 10 cancer types (CESC, LIHC,
LUAD, PAAD, SARC, and SKCM) (Fig. 6C and Supplementary Fig. 14B).

Similarly, patients with high TIL scores exhibited DSS benefits across
all 10 cancer types, with statistical significance observed in all 10 cancer types
(MO in Supplementary Figs. 15B and 16A). M2 achieved an overall average
C-Index of 0.6740, surpassing the average C-Index of 0.6401 for Ml
(Supplementary Fig. 15A). The superiority of M2 models was evident in 9
out of the 10 cancer types (excluding STAD) in terms of C-Indices. Addi-
tionally, M2 models demonstrated significant improvement in risk strati-
fication for predicting DSS in 9 out of the 10 cancer types (BLCA, BRCA,
CESC, HNSC, KIRC, LUAD, PAAD, SARC and SKCM) compared to M1
models (M2 and M1 in Supplementary Figs. 15B and 16A). The average
aggregated SurvSHAP(t) values revealed that TIL scores ranked high
importance among all variables for M2 models in 6 out of the 10 cancer
types (BRCA, CESC, LIHC, LUAD, SKCM, and STAD) (Supplementary
Figs. 15C and 16B).

Patients with high TIL scores exhibited PFI benefits across all 9 cancer
types, with statistical significance observed in 7 out of 9 cancer types (BLCA,
BRCA, CESC, KIRC, SKCM, STAD and THCA, Log-rank test P < 0.05)
(MO in Supplementary Figs. 17B and 18A). M2 models achieved an overall
average C-index of 0.6672, outperforming the average C-index of 0.6410 for
the M1 models (Supplementary Fig. 17A). M2 models achieved higher
C-Indices in 8 out of 9 cancer types (BLCA, BRCA, CESC, HNSC, KIRC,
STAD, THCA, and UCEC). Moreover, M2 models significantly improved
risk stratification in 8 out of 9 cancer types for predicting PFI (BLCA, BRCA,
CESC, KIRC, PAAD, SKCM, STAD and THCA) (M2 and M1 in Supple-
mentary Figs. 17B and 18A). The average aggregated SurvSHAP(t) values
revealed that TIL scores ranked high importance among all variables for M2
models in 6 out of 9 cancer types (BLCA, BRCA, CESC, STAD, THCA and
LIHC) (Supplementary Figs. 17C and 18B).

In summary, these findings imply that TIL scores significantly enhance
patient risk stratification in most cancer types and can serve as a critical
indicator for predicting survival (OS and DSS) and therapy response (PFI).

Discussion

Tumor-infiltrating lymphocytes (TILs) are emerging as promising bio-
markers for treatment responses and clinical outcomes in various cancer
types. Manual assessment of TILs in hematoxylin-eosin slides according to
the guidelines issued by The International Immuno-Oncology working
group has become a standard practice in biomedical research, but this
approach is laborious and subjective™"*. In this study, we address this
limitation by developing TILScout, a fully automatic approach for analyzing
TILs from WSIs. TIL scores generated by TILScout facilitate the evaluation
of TIL infiltration extent in tumor tissues based on pathological images. We
demonstrate the potential of TIL scores as a pan-cancer prognostic predictor
and present the most comprehensive to date survey of TIL infiltration and
its molecular as well as clinical correlates across 28 cancer types.

Compared to previously published tools (Supplementary Table 12),
TILScout offers several advantages. It is the first integrated, fully automatic
pan-cancer approach using original WSIs as the only input. This differs
from previous studies that require either manual annotation or an addi-
tional machine learning model to initially identify cancer regions. TILScout
has shown superior accuracy across various cancer types compared to other
methods.

To validate the reliability and practicality of TIL scores for assessing the
extent of TIL infiltration, we conducted comprehensive functional and
correlational analyses. Gene set enrichment analysis revealed that all 52 top-
upregulated gene sets/pathways associated with TIL scores were linked to
the immune system across a broad spectrum of cancer types. These path-
ways covered different phases of the adaptive immune response. TIL scores
demonstrated a significant positive correlation with lymphocyte fractions
estimated using the CIBERSORT algorithm in over 95% of cancer types,
primarily driven by the contribution of CD8+ T cells. Furthermore, TIL
scores exhibited a positive correlation with immune scores in 67.8% of
cancer types. These findings provide compelling evidence that TIL scores
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Fig. 5 | Effects of SNVs and CNVs of 25 cancer driver genes on TIL score dis-
tributions. A Effects of SNV on TIL score distributions. TIL scores were compared
in SNV and non-SNV patient groups. B Effects of CNV (copy deletion) on TIL score
distributions. TIL scores were compared in the deletion and non-deletion patient
groups. C Effects of CNV (copy amplification) on TIL score distributions. TIL scores
were compared in the amplification and non-amplification patient groups.

Weighted Amplification Frequency

Color-filled squares indicate significant differences in TIL score distributions for
two groups (SNV and non-SNV, CNV and non-CNV) (t-test). Gray squares indicate
the number of SNV and CNV cases for a gene in a cancer type is 0. Filled numbers
represent the patient numbers and proportions of CNV or SNV for each gene in each
cancer type. “*”, P < 0.05; “**”, P <0.01; “***”, P<0.001.
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Fig. 6 | Performance of different prognostic models for predicting OS in CESC,
LIHC, LUAD, SARC, and SKCM. MO, effects of TIL scores on OS; M1, prognostic
models based on clinical data only; M2, prognostic models established by clinical

data combined with TIL scores. A C-indices of M1 and M2 in each cancer type in a

five-fold cross-validation. Horizontal lines indicate average C-indices across all

cancer types for two types of models. B Kaplan-Meier curves of patient stratification

Time (years)

Aggregated SurvSHAP(t)

for OS across different cancer types under different models. MO, Effects of TIL scores
on OS. C The corresponding average aggregated SurvSHAP(t) values of each vari-
able for M2 models. SurvSHAP(t) is a kind of time-dependent explanations of

machine learning survival models. An aggregated SurvSHAP(t) value of one variable

represents its importance measure in one case. Average aggregated SurvSHAP(t)
value of one variable represents its global importance across all samples in the model.
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indeed reflect the extent of TIL infiltration in tumor tissues across diverse
cancer types.

Immunotherapy has significantly transformed the therapeutic land-
scape in modern oncology, with immune checkpoint inhibitors (ICIs) such
as anti-PD-1, anti-PD-L1, and anti-CTLA4 emerging as established stan-
dards of care for various tumor types, particularly at advanced stages.
However, the clinical efficacy achieved with ICI treatments displays con-
siderable variability. Presti et al. conducted a systematic review of evidence
about the role of TILs as a predictive biomarker of response to immu-
notherapy in solid tumors. The data provided primarily originates from
translational sub-analyses conducted within the context of phase II and
phase III randomized clinical trials, with a minimal proportion of clinical
trials derived from observational studies. Patients with higher TIL density
exhibited improved response to immunotherapy in most cancer types,
especially in breast cancer and melanoma. However, TIL assessments in
these studies relied on manual evaluation of either HE-stained slides or
immunohistochemistry (IHC). Our study presents a convenient method for
automatically calculating TIL scores from HE-stained slides, offering a user-
friendly approach for clinical applications. Besides, according to our study,
two crucial immune checkpoint genes, PDCD1 (PD-1) and CTLA-4, sig-
nificantly correlate with TIL scores across most cancer types. Therefore, we
expect TIL scores to be a potential predictor of immunotherapy response.

There has been a longstanding debate over whether driver mutations
can potentially influence the cancer immune phenotype. So far substantial
evidence establishing a connection between T cell immunity in cancer and
the presence of driver genetic mutations has been lacking. Li et al.” pre-
sented compelling evidence indicating that cancer-associated epigenetic
driver mutations, exemplified by ARID1A mutations, can potentially shape
tumor immune phenotype and contribute to immune evasion in various
cancer types. Even though our study revealed no significant correlations
between TIL scores and tumor mutation burden (TMB) in most cancer
types, a noteworthy discovery emerged. For the first time, we observed that
within most cancer types and common cancer driver genes, TIL infiltration
is associated with the genomic variations of individual driver genes.
Although the magnitude of these effects varies across different cancer types,
a discernible trend emerged, indicating that patients harboring single
nucleotide variations (SNVs) in individual driver genes tended to exhibit
higher TIL scores than those without SNVs. Conversely, patients harboring
copy number variations (CNVs) in individual driver genes exhibited lower
TIL scores than those without CNVs. These findings might offer valuable
insights for guiding clinical treatment decisions.

Elevated proportion of TILs has been associated with improved survival
outcomes in various cancers**™, but the prognostic significance of this
effect remains a subject of controversy. In this context, we systematically
investigated pan-cancer prognostic implications of TILs using TIL scores.
Despite variations in the impact of TILs on prognosis among different cancer
types, the high TIL scores group demonstrated a 32% reduction in the risk of
death (OS), a 41% reduction in the risk of cancer-specific death (DSS), and a
26% reduction in the risk of cancer recurrence (PFI) across all cancer types.
Furthermore, analyses based on clinical prognostic models revealed a
noteworthy enhancement in risk stratification for predicting OS, DSS, and
PFI through the incorporation of TIL scores in specific cancer types.

To conclude, we developed TILScout, which uses deep learning for
the automatic classification of WSI patches and the computation of TIL
scores. The reliability and practicality of TIL scores in evaluating the
extent of TIL infiltration across various cancers were validated through
comprehensive analyses encompassing both qualification and quanti-
fication. Additionally, our investigation revealed that TIL infiltration is
associated with genomic variations in common cancer driver genes in
tumor tissues, offering potential therapeutic insights for patients with
the corresponding genomic variations. Our comprehensive pan-cancer
survey indicated that TIL scores could serve as a potential prognostic
indicator and predictor of anti-tumor response in different cancer types,
although in some cancers their predictive value may be limited by sample
size and the tumor microenvironment’s heterogeneity. Despite the

promising results, the predictor requires validation in real-world clinical
practice to ensure its effectiveness and reliability.

Methods

Whole-slide images (WSIs) and multi-omic data acquisition

We obtained 10,029 Hematoxylin and Eosin (H&E)-stained histopathology
WSIs from the Cancer Genome Atlas (TCGA) database across 28 solid
cancer types via the Genomic Data Commons (GDC; https://portal.gdc.
cancer.gov/). Three additional WSIs datasets were obtained from Clinical
Proteomic Tumor Analysis Consortium Lung Adenocarcinoma (CPTAC-
LUAD, 47 WSIs), Lung Squamous Cell Carcinoma (CPTAC-LUSC,
50 WSIs) cohorts (https://www.cancerimagingarchive.net/), and Radboud
University Medical Center Breast Cancer (RUMC-BRCA, 48 WSIs) cohort.
TCGA provides images for two types of slides: flash-frozen and formalin-
fixed paraffin-embedded (FFPE) tissue slides. Only FFPE tissue slide images
were taken into consideration due to the extremely low quality of flash-
frozen slide images. WSIs with bubbles, overlapping tissues, poor staining
and artificial markings were manually excluded from consideration. Cor-
responding clinical, genomics, and transcriptomics for each patient were
obtained via GDC. Clinical data included age, gender, histological grade,
and cancer stage. We also obtained data on overall survival (OS), disease-
specific survival (DSS), and progression-free interval (PFI)' from UCSC
Xena (https://xena.ucsc.edu/).

WSiIs processing

Figure 1 outlines the workflow of WSI processing. Each WSI (at x20
magnification) was automatically segmented into thousands of patches of
150 x 150 pixels without overlap using the open-source library OpenSlide in
python. Each patch represents an RGB image, and each pixel combines
three color channels - red, green, blue. The values of each channel range
from 0 to 255. Patches with average values of RGB>230 ((Vred +
Vgreen + Vblue)/3 >230) and the corresponding standard deviation
values < 15 were considered blank and ignored. This step is required to
ensure that the included patches have enough tissues for classification and
model training. Then selected patches were color-normalized with
Macenko’s method™ to eliminate the influence of subtle differences caused
by different hues in different HE images.

Classification of patches and dataset preparation

Our multiclass classification strategy is similar in spirit to the approach
described by Chen et al.”’. For each patch with a size of 150 x 150 pixels, we
defined a patch as TIL-positive if it contained at least 3 detected lymphocytes
and at least 1 detected tumor cell, TIL-negative if it contained at least 1
detected tumor cell and less than 3 detected lymphocytes, non-tumor/
necrotic if it did not contain any tumor cells, regardless of the number of
lymphocytes. This labeling strategy and classification approach differ sig-
nificantly from other studies that did not explicitly define the number of
lymphocytes required to classify a patch as TIL-positive”*** or just focused
on marking only the central area of a patch (sub-patch) of a fixed size”. Our
assessment of TILs does not distinguish between stromal TILs (sTILs) and
intratumoral TILs (iTILs), as each patch may contain both types, and our
classification approach inherently considers the overall presence of lym-
phocytes without separating them based on their specific location.

Out of millions of patches available in our dataset (Supplementary
Table 1), representative patches were manually selected and labeled by three
experienced pathologists in which both tumor cells and lymphocytes
exhibited clear and distinct morphologies. Our initial goal was to constructa
dataset of approximately 90,000 patches covering 28 cancer types from
TCGA database. However, 12 cancer types with insufficient number of cases
(such as CHOL, ACC, UCS, UVM, MESO, PAAD, PCPG, ESCA, TGCT,
THYM, KICH, and OV) were merged into three groups—CAUM, PAPE,
and TTKO—Ileaving us with 19 cancer types and approximately 90,000/
19 = 4750 patches targeted for each cancer type on average. We aimed to
maintain a consistent ratio of three patch labels in each tumor type at
1:1.5:1.5, inspired by a previous study” in which the 1:3 ratio of positive

npj Precision Oncology | (2025)9:76

10


https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.cancerimagingarchive.net/
https://xena.ucsc.edu/
www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-00866-0

Article

patches to all patches was shown to be optimal. This adjustment might
decrease the false-positive rate. In instances where the number of patches for
a specific label was insufficient for a particular cancer type—often due to
significant variance in TIL distribution across different cancers, resulting in
a scarcity of TIL-positive patches—we compensated this lack of data by
increasing the number of patches under the same label in other cancer types
to preserve the overall dataset’s label ratio of approximately 1:1.5:1.5. Fur-
thermore, efforts were made to include as many WSIs as possible to ensure
comprehensive coverage of various cancer types. In total, 90,488 patches
were ultimately selected from an initial pool of 102,538,441 patches gen-
erated from 2487 WSIs across 28 cancer types. The distribution of labeled
patches was as follows: TIL-positive (22,148), TIL-negative (34,186), and
non-tumor/necrotic (34,154). Detailed information on dataset generation
is available in Supplementary Table 1 and Data 2. To select the best-
performing model, patches for each label were randomly split into an initial
training and validation dataset with an 8:2 ratio (Supplementary Fig. 1). To
create an independent test set, 9000 patches (3000 for each cancer type:
RUMC-BRCA, CPTAC-LUAD, CPTAC-LUSC) (TIL-positive: 677, TIL-
negative: 4345, non-tumor/necrotic: 3978) were randomly selected from
145 WSIs and labeled. Detailed information on the independent test set
generation is available in Supplementary Table 2.

Machine learning models

In order to select an optimal model for the prediction of TIL scores, we tested
a number of deep-learning approaches, including supervised learning by 8
pre-trained neural networks (VGG16>, VGG19”, ResNet34™, ResNet50™,
Xception™, InceptionV3™, InceptionResNetV2*’), UNT** and unsupervised
learning by K-means clustering and Convolutional Autoencoder”. For the
pre-trained neural networks, we utilized models initialized with parameters
trained on ImageNet, updating only the final layers to leverage their feature
extraction capabilities. Custom fully connected layers were appended,
including a dense layer with 512 units and an output layer with 3 units,
adapted for our three-class classification task.

For supervised learning models, the parameters of each network were
initialized using the pre-trained model. Patches were resized to the neural
network input size (224 x 224 pixels). The output of the last layer of the
networks corresponds to the probabilities of three classes: TIL-positive, TIL-
negative, non-tumor/necrotic regions. We calculated the cross-entropy loss
between the predicted and the actual labels using the function “sparse_ca-
tegorical_crossentropy” from the Keras package and used the “adaptive
moment estimation” as a fast optimizer, with the number of epochs set to 50
and the EarlyStopping callback to 4. The best model was automatically saved
according to improved loss value during the training process. We compared
each network’s accuracy and loss values (Supplementary Fig. 2) and selected
InceptionResNetV2 as the classification network for subsequent analysis.

We tested a convolutional Autoencoder-based K-means strategy for
deep clustering. Convolutional autoencoders (CAEs) are mainly applied for
compressing the input images while keeping most of the essential infor-
mation, and extracting robust features®. Patches were resized (152 x 152
pixels) to fit the convolutional Autoencoder model. The architecture of the
convolutional Autoencoder model is shown in Supplementary Table 3. We
calculated the loss using the function “mean_squared_error” and used the
“adaptive moment estimation” as a faster optimizer. The number of epochs
was set to 50. Then the compressed features were extracted from the model
for K-means clustering. Manual labeling and analysis were then conducted
based on unsupervised classification results.

Iterative manual improvement of patch labels and final model
training

After initial model training and validation, we selected InceptionResNetV2
as the classification network for subsequent analyses. According to the
confusion matrix and the error plot, we selected patches for which the
prediction results did not match the actual labels. These potentially erro-
neously labeled patches were reviewed and relabeled by pathologists. We
implemented a double-blind re-labeling strategy involving multiple

annotators to mitigate subjective bias. Specifically, the pathologists per-
forming the re-labeling were unaware of the model’s predictions for these
patches. After the iteration of manual improvement, the data within each
label in each cancer type were randomly split into the training and validation
set with an approximate ratio of 8:2, ultimately resulting in a dataset com-
prising 72,272 patches for training and 18,216 patches for validation
(Supplementary Fig. 1). The training set was used for model training and 10-
fold cross-validation, while the validation set and independent test set were
used for performance evaluation of the final model. Special care was taken to
ensure that information gained during the model selection stage (e.g., fea-
ture distributions or patterns) does not influence the final training and
evaluation stages. First, the experimental design is structured as two rela-
tively independent steps. The dataset was completely re-split after label
correction, and the final training phase only used the new splits. This ensures
that the model selection process is insulated from the subsequent training
phase. Secondly, the final model is trained from scratch, ensuring that no
learned parameters or information from the model selection step influence
the training process. Additionally, the test set remains strictly independent
and was not used during model selection, training, or validation phases.

Calculation of TIL scores and construction of TIL maps for all
patients

For a given WSI a TIL score is the ratio between the number of predicted
TIL-positive patches to the sum of the number of predicted TIL-positive and
TIL-negative patches obtained by the trained InceptionResNetV2 model.
For each patient with more than one WSI, the TIL score is calculated as the
ratio of the sum of TIL-positive patches to the sum of both TIL-positive and
TIL-negative patches across all WSIs:

m i
Z i=1 NTILf positive

TIL Score = —5——; ;
Zi:l(NTIL—positive + NTIL—negative)

)

where m is the number of WSIs for each patient, Nty _posiive is the total
number of predicted TIL-positive patches in each WSI, and Ny _negative i
the total number of predicted TIL-negative patches in that WSL

According to the prediction results we constructed TIL maps, which
display the patch-level distribution of TILs across each WSI. Figure 2E
presents two examples of TIL maps.

TME risk scores for each type of cancer

We have previously developed a tumor microenvironment-related risk
(TME risk) scoring system for predicting the overall survival (OS) of LUAD
patients’’ based on gene expression levels in the TME. In this work we
constructed TME risk scores for the cancer types with more than 100 cases
in a similar fashion.

TPM normalized RNA-seq data and clinical data for all patients
were downloaded via the GDC (https://portal.gdc.cancer.gov/repository).
Immune and stromal scores for each patient were calculated using the
ESTIMATE algorithm®. Patients were subdivided into groups with high
and low immune and stromal scores according to the optimal cut-off point
associated with survival differences determined by maximally selected rank
statistics using the Log-rank test, as implemented in the R package maxstat.
To ensure close sample sizes of the two groups, the sample ratio was con-
trolled such that each of the two groups contained at least 40% and no more
than 60% of all samples (maxstat parameters minprop = 0.4 and max-
prop = 0.6). Supplementary Fig. 3 illustrates optimal cut-off point selection
and the outcome distributions for one cancer type (BLCA). Differentially
expressed genes (DEGs) between the high and low stromal score group as
well as between high and low immune score group were identified using the
R package limma with the screening criteria of logFoldChange > 1 and
adjusted P-value < 0.05. Weighted gene co-expression network analysis
(WGCNA; Langfelder et al.”) was used to identify co-expressed gene
modules strongly related to the immune and stromal scores using the R
package WGCNA (Supplementary Fig. 4A). Gene lists obtained by
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differential expression analysis and WGCNA were merged to create the
final list of TME-related genes (Supplementary Fig. 4A).

Least absolute shrinkage and selection operator (LASSO) regression
analysis as implemented by the glmnet R package” was conducted to
identify TME-related genes whose expression levels were significantly
associated with patient survival. The individual impact of each gene on
survival was assessed by univariate Cox regression analysis and for genes
with a P-value less than 0.1 (to identify as many variables that could impact
survival as possible), risk coefficients were obtained by multivariate Cox
regression analysis.

For each cancer type a TME risk score (Supplementary Fig. 4B) was
calculated as:

K
TME risk score = Z B *Exp(i) 2

i=1

where k is the number of genes with a P-value less than 0.1 (ensuring that
more potentially important variables are considered) selected by univariate
Cox regression analysis, f; is the risk coefficient of gene i determined by
multivariate Cox regression, and Exp(i) is the expression value of gene i. We
developed three separate TME risk scoring systems for predicting the overall
survival (OS) (Supplementary Tables 4 and 5), disease-specific survival
(DSS) (Supplementary Tables 6 and 7), and progression-free interval (PFI)
(Supplementary Tables 8 and 9) for each type of cancer.

Genomic data

Single nucleotide variation (SNV) data were downloaded from the TCGA
database using the R package TCGAbiolinks”. The tumor mutational bur-
den (TMB) value for each patient was computed by the R package maftools®.
Copy number variation (CNV) data, encompassing information about
deletions and amplifications, were obtained for all TCGA cohorts from the
UCSC Xena (https://xena.ucsc.edu). The SNV data (containing two groups:
wild and mutation for each gene) and CNV data (containing two groups:
normal and copy deletion/amplification for each gene) for 25 prominent
cancer driver genes, as annotated in the Cancer Gene Census”* were collated
and extracted. Additionally we analyzed mutations occurring in the TP53
gene along with mutations in other genes within the same cells or tissues
(TP53-based co-mutations), which play a crucial role in the pathogenesis,
biology, microenvironmental interactions, and prognosis of cancers”.

Gene set enrichment analysis

The top 2000 genes with the highest Spearman correlation between expression
values and TIL scores across all samples were selected and ranked according to
the correlation coefficients for subsequent gene set enrichment analysis by
GSEA”. Although the authors of GSEA recommend using gene lists con-
taining up to 500 entries as a general guideline (docs.gsea-msigdb.org/), we
increased this number to 2000 genes to account for the heterogeneity of
expression profiles in different cancers. Gene set enrichment analysis was
conducted on this ranked list for three types of gene annotation—GO (gene
ontology) terms’"”, hallmark gene sets”*”*,-and Reactome’* pathways—using
the R packages clusterProfiler”* and ReactomePA”. Significantly enriched
annotations were identified based on the following thresholds: normalized
enrichment score (NES) > 2 and nominal P-value < 0.05.

Comprehensive analysis of TIL scores

Statistical association between TIL scores and clinical features obtained from
TCGA (age (<65 and >65), gender (male and female), histological grade
(high grade and low grade, or G1, G2, G3,and G4), and cancer stage (stage I,
stage II, stage III, and stage IV)) was analyzed utilizing the Kruskal-Wallis
test. We also computed Pearson correlation between TIL scores and mul-
tiple parameters, including TMB values, TME risk scores, and expression
values of common immune checkpoint genes (ICGs)”. Putative propor-
tions of different immune cell types for all samples were estimated based on
gene expression levels using the CIBERSORT algorithm™. We then

conducted a Pearson correlation analysis to confirm the consistency
between TIL scores and established lymphocyte fractions. Furthermore, we
computed the Pearson correlation coefficients between TIL scores and
tumor immune dysfunction and exclusion (TIDE) scores” as well as
immunophenoscores (IPS)*. These scores serve as reliable surrogate bio-
markers for predicting the potential response to immunotherapy. To
investigate the impact of CNV and SNV on the extent of lymphocyte
infiltration within the TME, a systematic assessment of TIL score dis-
tribution differences under different states of SNV (wild and mutation) and
CNV (normal and copy deletion, normal and copy amplification) for 25
prominent cancer driver genes was conducted. A P-value of less than 0.05 is
considered statistically significant.

Pan-cancer survival analysis of TIL scores

Forest plots were used to conduct survival analysis (OS, DSS and PFI) of high
and low TIL score groups across 28 cancer types. To investigate the predictive
performance of TIL scores for patient risk stratification, prognostic models
were constructed by integrating TIL scores with clinical parameters such as
age, gender, stage, and histological grade in selected cancer types (cancer
types with fewer than 100 cases and for which the TIL score had no significant
effect on survival (P > 0.1, log-rank test) were excluded). Firstly, the effects of
TIL scores on survival were assessed separately (model M0). Secondly, ran-
dom survival forest (RSF) was employed to establish prognostic models using
the Python module scikit-survival. The average Harrel’s concordance index
(C-index)* over the five-fold cross-validation was used to compare the
performance of different models. Two types of models were established for
each selected cancer type: M1, using clinical data only, and M2, using clinical
data combined with TIL scores. Cox proportional hazard regression analysis
was performed to obtain the risk coefficients of each variable in the models,
which were used to calculate risk scores for patient risk stratification. Patients
were stratified into groups with high- and low risk scores according to the
optimal cut-off point associated with survival differences determined by
maximally selected rank statistics using the Log-rank test as mentioned
above. Kaplan-Meier curves were generated to compare the survival rates
and visualize patient stratification between low- and high-risk groups for
each cancer type, using P-values less than 0.05 as the significance level. We
also calculated and visualized average aggregated SurvSHAP(t)* values for
variables in the model, which provide explanations of the whole distribution
of each variable in the context of the survival function.

All steps of WSI processing, analysis, and deep learning were imple-
mented using Python (version 3.9.3) and run on the Intel 64 architecture
server with 64-core CPUs and the NVIDIA A40 GPU. Python packages
included openslide (version 1.2.0), tensorflow (version 2.10.0), scikit-learn
(version 1.2.1), pandas (version 1.4.4), matplotlib (version 3.7.0), and
numpy (version 1.23.5). OMICs data processing and TIL score-related
analysis were implemented using the R packages limma (version 3.50.3),
estimate (version 1.0.13), survival (version 3.5-5), survminer (version 0.4.9),
maxstat (version 0.7-25), pheatmap (version 1.0.12), WGCNA (version
1.72-1), glmnet (version 4.1-7), and clusterProfiler (version 4.1.1).

Data availability

The TCGA WSIs data and corresponding clinical, genomics, and tran-
scriptomics can be downloaded via the GDC(https://portal.gdc.cancer.
gov/). The CPTAC-LUAD and CPTAC-LUSC WSI data (https://
cancerimagingarchive.net), and the RUMC-BRCA WSI data (https://
breastpleomorphism.grand-challenge.org/) are publicly available. All
datasets related to model training and evaluation can be accessed via the
link: https://zenodo.org/records/14628242.

Code availability
All code and the trained model related to TILScout are available via the
GitHub repository.

Received: 30 July 2024; Accepted: 6 March 2025;
Published online: 19 March 2025

npj Precision Oncology | (2025)9:76

12


https://xena.ucsc.edu
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://cancerimagingarchive.net
https://cancerimagingarchive.net
https://breastpleomorphism.grand-challenge.org/
https://breastpleomorphism.grand-challenge.org/
https://zenodo.org/records/14628242
https://github.com/huibozh/TILScout
www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-00866-0

Article

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Binnewies, M. et al. Understanding the tumor immune
microenvironment (TIME) for effective therapy. Nat. Med. 24, 541-550
(2018).

Hinshaw, D. C. & Shevde, L. A. The tumor microenvironment innately
modulates cancer progression. Cancer Res. 79, 4557-4566 (2019).
Wu, T. & Dai, Y. Tumor microenvironment and therapeutic response.
Cancer Lett. 387, 61-68 (2017).

Stanton, S. E. & Disis, M. L. Clinical significance of tumor-infiltrating
lymphocytes in breast cancer. J. Immunother. Cancer 4, 59 (2016).
Tramm, T. et al. Tumor-infiltrating lymphocytes predict improved
overall survival after post-mastectomy radiotherapy: a study of the
randomized DBCG82bc cohort. Acta Oncol. 61, 153-162 (2022).
Sun, P. et al. A computational tumor-infiltrating lymphocyte
assessment method comparable with visual reporting guidelines for
triple-negative breast cancer. EBioMedicine 70, 103492 (2021).
Albusayli, R. et al. Artificial intelligence-based digital scores of stromal
tumour-infiltrating lymphocytes and tumour-associated stroma
predict disease-specific survival in triple-negative breast cancer. J.
Pathol. 260, 32-42 (2023).

Maibach, F., Sadozai, H., Seyed Jafari, S. M., Hunger, R. E. & Schenk,
M. Tumor-infiltrating lymphocytes and their prognostic value in
cutaneous melanoma. Front. Immunol. 11, 2105 (2020).
Saberzadeh-Ardestani, B. et al. Association of tumor-infiltrating
lymphocytes with survival depends on primary tumor sidedness in
stage Il colon cancers (NCCTG N0147) [Alliance]. Ann. Oncol. 33,
1159-1167 (2022).

Wang, X. et al. Spatial interplay patterns of cancer nuclei and tumor-
infiltrating lymphocytes (TILs) predict clinical benefit for immune
checkpoint inhibitors. Sci. Adv. 8, eabn3966 (2022).

Rakaee, M. et al. Association of machine learning-based assessment
of tumor-infiltrating lymphocytes on standard histologic images with
outcomes of immunotherapy in patients with NSCLC. JAMA Oncol. 9,
51-60 (2023).

Park, S. et al. Artificial intelligence-powered spatial analysis of tumor-
infiltrating lymphocytes as complementary biomarker for immune
checkpoint inhibition in non-small-cell lung cancer. J. Clin. Oncol. 40,
1916-1928 (2022).

Liu, D. H. W. et al. Tumour infiltrating lymphocytes and survival after
adjuvant chemotherapy in patients with gastric cancer: post-hoc
analysis of the CLASSIC trial. Br. J. Cancer 128, 2318-2325 (2023).
Hoesli, R. et al. Proportion of CD4 and CD8 tumor infiltrating
lymphocytes predicts survival in persistent/recurrent laryngeal
squamous cell carcinoma. Oral. Oncol. 77, 83-89 (2018).

Thomas, N. E. et al. Tumor-infiltrating lymphocyte grade in primary
melanomas is independently associated with melanoma-specific
survival in the population-based genes, environment and melanoma
study. J. Clin. Oncol. 31, 4252-4259 (2013).

Azimi, F. et al. Tumor-infiltrating lymphocyte grade is an independent
predictor of sentinel lymph node status and survival in patients with
cutaneous melanoma. J. Clin. Oncol. 30, 2678-2683 (2012).
Doescher, J. et al. Patterns of tumor infiltrating lymphocytes in
adenoid cystic carcinoma of the head and neck. Cancers (Basel) 14,
1383 (2022).

Gurcan, M. N. et al. Histopathological image analysis: a review. IEEE
Rev. Biomed. Eng. 2, 147-171 (2009).

Klauschen, F. et al. Scoring of tumor-infiltrating lymphocytes: from
visual estimation to machine learning. Semin. Cancer Biol. 52,
151-157 (2018).

Chen, R. J. et al. Pan-cancer integrative histology-genomic analysis
via multimodal deep learning. Cancer Cell 40, 865-878 (2022).
Wang, X. et al. Predicting gastric cancer outcome from resected
lymph node histopathology images using deep learning. Nat.
Commun. 12, 1637 (2021).

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Shi, J. Y. et al. Exploring prognostic indicators in the pathological
images of hepatocellular carcinoma based on deep learning. Gut 70,
951-961 (2021).

Huang, B. et al. Accurate diagnosis and prognosis prediction of
gastric cancer using deep learning on digital pathological images: a
retrospective multicentre study. EBioMedicine 73, 103631 (2021).
Courtiol, P. et al. Deep learning-based classification of mesothelioma
improves prediction of patient outcome. Nat. Med. 25, 1519-1525
(2019).

Saillard, C. et al. Predicting survival after hepatocellular carcinoma
resection using deep learning on histological slides. Hepatology 72,
2000-2013 (2020).

Bilal, M. et al. Development and validation of a weakly supervised
deep learning framework to predict the status of molecular pathways
and key mutations in colorectal cancer from routine histology images:
a retrospective study. Lancet Digit. Health 3, e763-e772 (2021).

Bai, Y. et al. An open-source, automated tumor-infiltrating
lymphocyte algorithm for prognosis in triple-negative breast cancer.
Clin. Cancer Res. 27, 5557-5565 (2021).

Thagaard, J. et al. Automated quantification of sTIL density with H&E-
based digital image analysis has prognostic potential in triple-
negative breast cancers. Cancers (Basel) 13, 3050 (2021).

Le, H. et al. Utilizing automated breast cancer detection to identify
spatial distributions of tumor-infiltrating lymphocytes in invasive
breast cancer. Am. J. Pathol. 190, 1491-1504 (2020).
Swiderska-Chadaj, Z. et al. Learning to detect lymphocytes in
immunohistochemistry with deep learning. Med. Image Anal. 58,
101547 (2019).

Pan, X. et al. Computerized tumor-infiltrating lymphocytes density
score predicts survival of patients with resectable lung
adenocarcinoma. iScience 25, 105605 (2022).

Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes
(TILs) in breast cancer: recommendations by an International TlLs
Working Group 2014. Ann. Oncol. 26, 259-271 (2015).

Shvetsov, N. et al. A pragmatic machine learning approach to quantify
tumor-infiltrating lymphocytes in whole slide images. Cancers (Basel)
14,2974 (2022).

Shaban, M. et al. A digital score of tumour-associated stroma
infiltrating lymphocytes predicts survival in head and neck squamous
cell carcinoma. J. Pathol. 256, 174-185 (2022).

Verdicchio, M. et al. A pathomic approach for tumor-infiltrating
lymphocytes classification on breast cancer digital pathology images.
Heliyon 9, e14371 (2023).

Amgad, M. et al. Joint region and nucleus segmentation for
characterization of tumor infiltrating lymphocytes in breast cancer.
Proc SPIE Int Soc Opt Eng 10956 (2019).

Thagaard, J. et al. Pitfalls in machine learning-based assessment of
tumor-infiltrating lymphocytes in breast cancer: a report of the
International Immuno-Oncology Biomarker Working Group on Breast
Cancer. J. Pathol. 260, 498-513 (2023).

Saltz, J. et al. Spatial organization and molecular correlation of tumor-
infiltrating lymphocytes using deep learning on pathology images.
Cell Rep. 23, 181-193 (2018).

Abousamra, S. et al. Deep learning-based mapping of tumor
infiltrating lymphocytes in whole slide images of 23 types of cancer.
Front. Oncol. 11, 806603 (2021).

Xu, H. et al. Spatial analysis of tumor-infiltrating lymphocytes in
histological sections using deep learning techniques predicts survival
in colorectal carcinoma. J. Pathol. Clin. Res. 8, 327-339 (2022).

. Lundberg S., Lee S.-I., editors. A unified approach to interpreting

model predictions. Proceedings of the 31st International Conference
on Neural Information Processing Systems (NeurlPS) (2017).

. Ricketts, C. J. et al. The Cancer Genome Atlas comprehensive molecular

characterization of renal cell carcinoma. Cell Rep. 23, 313-326 (2018).

npj Precision Oncology | (2025)9:76

13


www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-00866-0

Article

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Linehan, W. M. &Ricketts, C. J. The Cancer Genome Atlas of renal cell
carcinoma: findings and clinical implications. Nat. Rev. Urol. 16,
539-552 (2019).

Rudd, C. E., Taylor, A. & Schneider, H. CD28 and CTLA-4 coreceptor
expression and signal transduction. Immunol. Rev. 229, 12-26
(2009).

Presti, D. et al. Tumor infiltrating lymphocytes (TILs) as a predictive
biomarker of response to checkpoint blockers in solid tumors: A
systematic review. Crit. Rev. Oncol. Hematol. 177, 103773 (2022).
Van Bockstal, M. R. et al. Interobserver variability in the assessment of
stromal tumor-infiltrating lymphocytes (sTILs) in triple-negative
invasive breast carcinoma influences the association with
pathological complete response: the IVITA study. Mod. Pathol. 34,
2130-2140 (2021).

Li, J. et al. Epigenetic driver mutations in ARID1A shape cancer
immune phenotype and immunotherapy. J. Clin. Invest. 130,
2712-2726 (2020).

Galon, J. et al. Type, density, and location of immune cells within
human colorectal tumors predict clinical outcome. Science 313,
1960-1964 (2006).

Gooden, M. J., de Bock, G. H., Leffers, N., Daemen, T. & Nijman, H. W.
The prognostic influence of tumour-infiltrating lymphocytes in cancer:
a systematic review with meta-analysis. Br. J. Cancer 105, 93-103
(2011).

Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The
immune contexture in human tumours: impact on clinical outcome.
Nat. Rev. Cancer 12, 298-306 (2012).

Liu, J. etal. AnIntegrated TCGA Pan-Cancer Clinical Data Resource to
drive high-quality survival outcome analytics. Cell 173, 400-416
(2018).

Macenko, M. et al. A method for normalizing histology slides for
quantitative analysis[C]//2009 IEEE international symposium on
biomedical imaging: from nano to macro. (IEEE, 2009) 1107-1110.
Simonyan K. & Zisserman A. Very deep convolutional networks for
large-scale image recognition. Preprint at arXiv https://doi.org/10.
48550/arXiv.1409.1556 (2014).

He K., Zhang X., Ren S. & Sun J. Deep residual learning for image
recognition[C]. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2016) pp 770-778.

Chollet F. Xception: Deep learning with depthwise separable
convolutions[C]. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2017) pp 1251-1258.

Szegedy C., Vanhoucke V., loffe S., Shlens J. & Wojna Z. Rethinking
the inception architecture for computer vision[C]. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2016)
pp 2818-2826.

Szegedy C., loffe S., Vanhoucke V., Alemi A. A., Claims Al, editors.
Inception-v4, inception-ResNet and the impact of residual
connections on learning. Proceedings of the AAAI Conference on
Artificial Intelligence (2017).

Chen, R. J. et al. Towards a general-purpose foundation model for
computational pathology. Nat. Med. 30, 850-862 (2024).

Masci J., Meier U., Ciresan D. & Schmidhuber J. Stacked
convolutional auto-encoders for hierarchical feature extraction[C].
Artificial Neural Networks and Machine Learning—ICANN 2011: 21st
International Conference on Artificial Neural Networks, Espoo,
Finland, June 14-17, 2011, Proceedings, Part | 21. (Springer Berlin
Heidelberg, 2011) pp 52-59.

Pintelas, E., Livieris, |. E. & Pintelas, P. E. A convolutional autoencoder
topology for classification in high-dimensional noisy image datasets.
Sensors (Basel) 21, 7731 (2021).

Wu, J. et al. A risk model developed based on tumor
microenvironment predicts overall survival and associates with tumor
immunity of patients with lung adenocarcinoma. Oncogene 40,
4413-4424 (2021).

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Yoshihara, K. et al. Inferring tumour purity and stromal and immune
cell admixture from expression data. Nat. Commun. 4, 2612 (2013).
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted
correlation network analysis. BMC Bioinforma. 9, 559 (2008). 29.
Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization
paths for Cox’s proportional hazards model via coordinate descent.
J. Stat. Softw. 39, 1-13 (2011).

Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for
integrative analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016).
Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C. & Koeffler, H. P.
Maftools: efficient and comprehensive analysis of somatic variants in
cancer. Genome Res. 28, 1747-1756 (2018).

Martinez-Jimenez, F. et al. Acompendium of mutational cancer driver
genes. Nat. Rev. Cancer 20, 555-572 (2020).

Sondka, Z. et al. The COSMIC Cancer Gene Census: describing
genetic dysfunction across all human cancers. Nat. Rev. Cancer 18,
696-705 (2018).

Skoulidis, F. & Heymach, J. V. Co-occurring genomic alterations in
non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 19,
495-509 (2019).

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles.
Proc. Natl Acad. Sci. USA 102, 15545-15550 (2005).

Ashburner, M. et al. Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium. Nat. Genet. 25, 25-29
(2000).

Gene Ontology, C. et al. The Gene Ontology knowledgebase in 2023.
Genetics 224, iyad031 (2023).

Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0.
Bioinformatics 27, 1739-1740 (2011).

Gillespie, M. et al. The reactome pathway knowledgebase 2022.
Nucleic Acids Res. 50, D687-D692 (2022).

Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16,
284-287 (2012).

Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for
interpreting omics data. Innovative 2, 100141 (2021).

Yu, G. & He, Q. Y. ReactomePA: an R/Bioconductor package for
reactome pathway analysis and visualization. Mol. Biosyst. 12,
477-479 (2016).

Pardoll, D. M. The blockade of immune checkpoints in cancer
immunotherapy. Nat. Rev. Cancer 12, 252-264 (2012).

Newman, A. M. et al. Determining cell type abundance and expression
from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773-782
(2019).

Jiang, P. et al. Signatures of T cell dysfunction and exclusion
predict cancer immunotherapy response. Nat. Med 24, 1550-1558
(2018).

Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal
genotype-immunophenotype relationships and predictors of
response to checkpoint blockade. Cell Rep. 18, 248-262 (2017).
Harrell, F. E. Jr, Califf, R. M., Pryor, D. B,, Lee, K. L. & Rosati, R. A.
Evaluating the yield of medical tests. J. Am. Med. Assoc. 247,
2543-2546 (1982).

Krzyzinski, M., Spytek, M., Baniecki, H. & Biecek, P. SurvSHAP(t):
Time-dependent explanations of machine learning survival models.
Knowl. Based Syst. 262, 110234 (2023).

Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-
analysis. Stat. Med. 21, 1539-1558 (2002).

Barili, F., Parolari, A., Kappetein, P. A. & Freemantle, N. Statistical
Primer: heterogeneity, random- or fixed-effects model analyses?
Interact. Cardiovasc Thorac. Surg. 27, 317-321 (2018).

Esposito, K., Chiodini, P., Colao, A., Lenzi, A. & Giugliano, D.
Metabolic syndrome and risk of cancer: a systematic review and
meta-analysis. Diab. Care 35, 2402-2411 (2012).

npj Precision Oncology | (2025)9:76

14


https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-00866-0

Article

Acknowledgements
This research was funded by the China Scholarship Council (grant No.
202208080018).

Author contributions

H.Z.: Conceptualization, data curation, formal analysis, funding acquisition,
methodology, software, visualization, writing—original draft. L.C. and L.L.:
Investigation, methodology, validation. Y. Liu: Data curation, resources. B. D
and S. Z: Investigation, methodology. J. T and Y. J: Data curation. S. T:
Methodology, writing — review & editing. Y. Y: Conceptualization,
supervision. D. F: Conceptualization, formal analysis, methodology, project
administration, resources, supervision, validation, writing — review & editing.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41698-025-00866-0.

Correspondence and requests for materials should be addressed to Yi Yao
or Dmitrij Frishman.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

npj Precision Oncology | (2025)9:76

15


https://doi.org/10.1038/s41698-025-00866-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjprecisiononcology

	Prediction and analysis of tumor infiltrating lymphocytes across 28 cancers by TILScout using deep learning
	Results
	Overview of the study
	Selection of an optimal patch classifier
	Manual improvement and re-labeling of the patch dataset
	Model retraining to obtain the final classifier for patch prediction
	TIL score computation by TILScout and construction of patch-�level TIL maps for WSIs
	Association of TIL scores with clinical characteristics of patients
	TIL scores reflect the extent of TILs infiltration in tumor microenvironments
	TIL scores as predictive pan-cancer biomarkers
	TIL scores exhibit strong positive correlations with the expression of immune checkpoint genes
	TIL scores are significantly associated with TME risk scores across most cancer types
	Elevated TIL scores reflect upregulated immune activity in the tumor microenvironments
	The impact of genome variation on the extent of TME infiltration by TILs
	TIL scores improve patient risk stratification across different cancer types

	Discussion
	Methods
	Whole-slide images (WSIs) and multi-omic data acquisition
	WSIs processing
	Classification of patches and dataset preparation
	Machine learning models
	Iterative manual improvement of patch labels and final model training
	Calculation of TIL scores and construction of TIL maps for all patients
	TME risk scores for each type of cancer
	Genomic data
	Gene set enrichment analysis
	Comprehensive analysis of TIL scores
	Pan-cancer survival analysis of TIL scores

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




