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Applying a multi-task and multi-instance
framework to predict axillary lymph node
metastases in breast cancer
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Wenjun Yi3,4, Yan Xu7, Yixiong Liang5 & Yan Cheng1,2,4

Deep learning (DL) models have shown promise in predicting axillary lymph node (ALN) status.
However, most existing DLmodels were classification-only models and did not consider the practical
application scenarios ofmulti-view joint prediction. Here, we propose aMulti-Task Learning (MTL) and
Multi-Instance Learning (MIL) framework that simulates the real-world clinical diagnostic scenario for
ALN status prediction in breast cancer. Ultrasound images of the primary tumor and ALN (if available)
regionswere collected, each annotatedwith a segmentation label. Themodelwas trained on a training
cohort and tested on both internal and external test cohorts. The proposed two-stage DL framework
using one of the Transformer models, Segformer, as the network backbone, exhibits the top-
performing model. It achieved an AUC of 0.832, a sensitivity of 0.815, and a specificity of 0.854 in the
internal test cohort. In the external cohort, this model attained an AUC of 0.918, a sensitivity of 0.851
and a specificity of 0.957. The Class Activation Mapping method demonstrated that the DL model
correctly identified the characteristic areas of metastasis within the primary tumor and ALN regions.
This frameworkmay serve as an effective second reader to assist clinicians in ALN status assessment.

Breast cancer is the most commonly diagnosed malignancy among females
worldwide1. A majority of breast cancers are detected at an early stage,
making surgery a cornerstone for their management. Axillary lymph node
(ALN) status is a critical factor influencing surgical planning and deter-
mining the need for neoadjuvant treatment. The presence of ALN metas-
tasis is also the most important predictor of overall recurrence and survival
for breast cancer patients2,3. Therefore, a precise determination of ALN
status is imperative for effective breast cancer management. In routine
clinical practice, the detection of ALN status is typically through presurgical
ALN biopsy for those with palpable ALNs or surgical ALN dissection for
those with clinically negative ALN. However, both of the procedures are
invasive, and in some cases, the axillary surgery is unnecessary for patients
whowere sentinel lymph node positive but ALNnegative4. Hence, there has
been active exploration on developing noninvasive approaches capable of
preoperatively discerning ALN metastasis, hoping for improving clinical
axillary management.

Ultrasound examination is a preferred method for breast cancer pre-
operative assessment since it can provide a direct visualization of both the
primary tumors and ALNs in a convenient, cost-effective and harmless
manner5,6. Several ultrasound ALNmanifestations, such as enlarged lymph
nodes, irregular shapes, hypoechoic appearance, and loss of fatty hilum, are
suspicious signs indicative of metastasis. Additionally, certain ultrasound
features of breast cancer, including tumor size and distance of breast cancer
from the skin and the nipple, can also suggest ALN metastasis. However,
solely relying on these characteristics to diagnose ALN status can often lead
to inconsistence andmisdiagnosis, as it heavily depends on the experience of
individual physicians, and naked eye inspection alone sometimes overlooks
image details indicative of micrometastasis7. In this regard, algorithmic
models such as clinical-pathological nomograms and radiomics-based
models have been developed to predict ALN status. However, these models
have shortcomings in clinical application. Nomogrammodels often achieve
high diagnostic efficacy only after incorporating postoperative pathological
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parameters into the model8. Radiomics, which relies on machine learning
algorithms for the model construction, can quantify ultrasound manifes-
tations from different perspectives; however, the quantification process
requires time-consuming manual pixel-by-pixel delineation, which also
makes this method difficult for clinical translation9,10.

Artificial intelligence, particularly deep learning (DL) models, is
expected to change the diagnosis and treatment landscape due to their
abilities to recognize even subtle features that hold predictive significance on
medical images and make quantitative evaluations in a reproducible and
labor-free way11–13. It has proven effective in various medical applications.
For instance, Jiang et al. successfully constructed an effective DL model
using CT images as input to predict prognosis and cancer immunotherapy
response14; Qian et al. developed a DL model for prospective assessment of
breast cancer risk from ultrasound images, with the AUC exceeding 0.915.
Specifically, usingultrasound images forDLmodel constructionalsoproved
to achieve satisfactory outcome for predicting breast cancer ALN status in
previous studies16,17. These studies have well demonstrated the feasibility of
DL models for different clinical diagnostic purposes in breast cancer.

Despite these promising results onDL, its real-world utility is hindered
by various factors. First, DL is often criticized as a black box that lacks
interpretability. This makes clinicians confused about its outputting out-
comes, anddoubtwhether themodel had really learned the intrinsical image
features. Second, clinical image diagnosis is often based on multi-view
images. However, many of the existing DL models did not consider this
practical application scenario17–19, which is easy to cause bias. Importantly,
there are no DL models incorporating both the primary tumor and ALN
ultrasound images for predicting ALN status. The main reason for this
phenomenon is that ultrasound examination sometimes doesn’t detect a
visible ALN for a part of clinically ALN negative patients. However, this is
unreasonable since the ultrasound ALNmanifestation is the main criterion
for presurgical ALN status diagnosis, and relying solely the primary breast
cancer images to predict ALN metastasis is unconvincing.

Hence, we aimed to propose a DL model to predict ALN status for
breast cancer patients that simulates the real-world clinical diagnostic sce-
narios.We suppose thisDLmodel to use both the primary andALN images
for ALN prediction for those with visible ALNs, and primary breast cancer
images alone for those with ALN unseen to ultrasound examination. To
achieve this goal, we designed a two-stage DL framework. At the first-stage,
we used a multi-task learning (MTL) framework to simultaneously detect
the primary tumor and ALN areas within the ultrasound images and make
an image-level predictiononALNstatus.By integrating lesion segmentation
into the prediction process, our model is constrained to learn features from
clinically significant areas, which can enhance clinical trust to some extent.
In the second stage, to mimic the real-world scenario of ALN diagnosis, we
adopted a multi-instance learning (MIL) framework to integrate the image
features from different tumor and ALN (if available) lesions to make a
patient-level diagnosis. Besides, for selecting the best performing model,
different CNN and Transformer models were assessed respectively for
image feature extraction to construct this two-stage DL framework.

Results
Clinical characteristics of the involved patients
The clinical characteristics of the patients involved in this study are depicted
inTable 1. Themedian ageswere 50, 49 and 51 years in the training, internal
test and external test cohorts, respectively. Themajority of the patients were
diagnosedwith clinicalT1orT2 stage andcategorized intoBI-RADS4Cand
5 tumor grades across the cohorts. Patient in the training and internal test
cohorts had comparable characteristics regarding pathological indicators,
including ER, PR and CerbB-2 status, Ki67 expression level, as well as
lymphovascular and perineural invasions. However, more patients in the
external cohort exhibited hormonal receptor positive, Ki67 level 51–100%,
and lymphovascular invasion, suggesting population heterogeneity during
the retrospective patient enrollment process in different clinical centers. The
distribution of the clinical characteristics in breast cancer patients with or
without ALNmetastasis is listed in Table S1. Of the enrolled patients, 64.2%

(N = 735), 67.4% (N = 184) and 67.1% (N = 94) were pathologically
confirmed to have ALNmetastasis in the training, internal test and external
test cohorts, respectively. Compared to patients with negative ALN, these
patients were more likely to have an advanced T stage and a higher
ultrasound-reportedBI-RADSgrade in the training and internal test cohort,
and were more likely to present with lymphovascular invasion in all three
cohorts.

Algorithm performance of the clinical model, DL frameworks
using different CNN and Transformer models as network
backbone
In the multi-task DL stage, four CNN models (HRNet, ResNet, Unet and
MobileNet) and two Transformer models (Swin and Segformer) were
respectively utilized as the backbone of the DL framework for image
structure extraction. As shown in Table 2, the algorithmic performance of
these models was assessed using indicators including the area under the
curve (AUC), accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV) and F1 score. Among the fourCNN
models, theHRNet andUnetmodels had higherAUCs,with 0.811 (95%CI:
0.751–0.872) for the HRNetmodel and 0.806 (95%CI: 0.752–0.860) for the
Unet model, and both of these models were statistically superior to the
clinical model (HRNet model vs. clinical model, p = 0.009; Unet model vs.
clinical model, p = 0.007; DeLong test) in the internal test cohort. Similarly,
both of the Transformer models achieved significantly higher AUCs than
the clinicalmodel, with 0.858 (95%CI: 0.812–0.904) for the Swinmodel and
0.832 (95% CI: 0.780–0.885) for the Segformer model (Swin model vs.
clinical model, p < 0.001; Segformer model vs. clinical model, p < 0.001;
DeLong test) in the internal test cohort. Besides, both the Transformer
models achieved significantly higher AUCs than the single T model (Swin
model vs. the single T model, p = 0.003; Segformer model vs. the single T
model, p = 0.031; DeLong test). In the external test cohort, the CNNHRNet
model still yielded a higher AUC than the clinical model (AUC: 0.823; 95%
CI: 0.739–0.906; HRNet model vs. clinical model, p = 0.016; DeLong test),
while the Unet model exhibited comparable performance with the clinical
model. In addition, both the Transformermodels outperformed the clinical
model (Swin model vs. clinical model, p = 0.027; Segformer model vs.
clinical model, p < 0.001; DeLong test), and the superiority was evident for
the Segformer model, which exhibited a favorable AUC of 0.918 (95% CI:
0.869–0.967). It also had a significantly higher AUC compared to the single
T model (p < 0.001).

For the internal test cohort, among the six DL frameworks, accuracies
ranged from 0.670 (the ResNet model) to 0.828 (the Segformer model);
sensitivities ranged from 0.592 (the ResNet model) to 0.864 (the HRNet
model); specificities ranged from 0.742 (the HRNet model) to 0.854 (the
Segformermodel); PPVs ranged from0.865 (theMobileNetmodel) to 0.920
(the Segformermodel); andNPVs ranged from0.497 (theResNetmodel) to
0.725 (the HRNet model). For the external test cohort, accuracies ranged
from 0.593 (the Unet model) to 0.886 (the Segformer model); sensitivities
ranged from 0.564 (the Unetmodel) to 0.904 (the Swinmodel); specificities
ranged from 0.630 (the ResNet model) to 0.957 (the Segformer model);
PPVs ranged from 0.768 (the Unet model) to 0.976 (the Segformermodel);
and NPVs ranged from 0.423 (the Unet model) to 0.791 (the Swin model).
These indicators suggested that, numerically, the HRNet and Segformer
models had relatively good performance than other CNN and Transformer
models. Figure 1 summarizes the DeLong test p values of the comparisons
between distinct MTL and MIL frameworks. Considering the superior
discrimination abilities of the HRNet and Segformer models, we next used
these two models as representatives of the CNN and Transformer models,
respectively, for further analyses.

Clinical performance assessments using receiver operating
characteristic (ROC), precision-recall (PR) and decision curve
analysis (DCA)
The confusion matrices of the clinical model, the single T model, CNN
model (HRNet), and Transformer model (Segformer) in the training,
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internal, and external test cohorts were shown in Fig. 2. For the internal
test cohort, the mistake diagnostic rate was 0.337 (clinical model),
0.391 (single T model), 0.258 (CNN model) and 0.146 (Transformer
model). The omission diagnostic rates were relatively higher for the
clinical (0.315) and single T model (0.266) compared to the CNN
(0.136) and Transformer model (0.158). In the external test cohort, the
Transformer model exhibited an excellent discrimination ability, with
a mistake diagnostic rate of 0.043 and an omission rate of 0.149. To
further analyze these models, ROC, PR and DCA curves were plotted
(Fig. 3). Both ROC and PR analyses suggested the superior

performance of the Transformer model compared to the other two
models (Fig. 3A, B). According to the results of the DCA, if the
threshold probability was greater than 0.43 in the internal test cohort
and 0.27 in the external cohort, using the Transformermodel to predict
ALN metastasis gains more benefits than treat-all or treat-none tactics
and more benefits than the clinical and CNN models (Fig. 3C). Taken
together, we propose that the MTL and MIL framework using Seg-
former, one of the Transformer models, as the backbone for image
feature extraction exhibited the best performance and clinical benefit
and can be potentially utilized for further clinical application.

Table 1 | Clinical characteristics of patients enrolled in this study

Characteristic Training
cohort (N = 1144)

Internal test
cohort (N = 273)

External test
cohort (N = 140)

p valuea p valueb p valuec

Age, median (IQR) 50 (44, 57) 49 (44, 56) 51 (46, 57) 0.534 0.315 0.241

Clinical T stage

T1 349 (30.5%) 92 (33.7%) 55 (39.3%) 0.196 0.028 0.346

T2 697 (60.9%) 164 (60.1%) 81 (57.9%)

T3 66 (5.8%) 15 (5.5%) 4 (2.9%)

T4 32 (2.8%) 2 (0.7%) 0 (0%)

Ultrasound reported BI-RADS 0.036 <0.001 0.030

4A 66 (5.8%) 29 (10.6%) 19 (13.6%)

4B 227 (19.8%) 51 (18.7%) 16 (11.4%)

4C 438 (38.3%) 103 (37.7%) 70 (50.0%)

5 413 (36.1%) 90 (33.0%) 35 (25.0%)

Pathological type 0.080 0.067 0.002

Invasive ductal 924 (80.0%) 233 (85.3%) 102 (72.9%)

Invasive lobular 22 (1.9%) 6 (2.2%) 5 (3.6%)

Invasive cancer mixed with in
situ cancer

171 (14.9%) 25 (9.2%) 31 (22.1%)

Others 27 (2.4%) 9 (3.3%) 2 (1.4%)

Receptor status

ER status 0.763 0.002 0.010

Positive 739 (64.6%) 179 (65.6%) 109 (77.9%)

Negative 405 (35.4%) 94 (34.4%) 31 (22.1%)

PR status 0.297 <0.001 <0.001

Positive 601 (52.5%) 153 (56.0%) 102 (72.9%)

Negative 543 (47.5%) 120 (44.0%) 38 (27.1%)

CerbB-2 status 0.183 0.205 0.813

Positive 405 (35.4%) 85 (31.1%) 42 (30.0%)

Negative 739 (64.6%) 188 (68.9%) 98 (70.0%)

Ki67 expression 0.204 0.014 0.004

1–10% 102 (8.9%) 34 (12.5%) 5 (3.6%)

11–50% 776 (67.8%) 178 (65.2%) 90 (64.3%)

51–100% 266 (23.3%) 61 (22.3%) 45 (32.1%)

Lymphovascular invasion 0.968 <0.001 <0.001

Yes 279 (24.4%) 65 (23.8%) 72 (51.4%)

No 367 (32.1%) 87 (31.9%) 46 (32.9%)

Unknown 498 (43.5%) 121 (44.3%) 22 (15.7%)

Perineural invasion 0.918 0.504 0.512

Yes 85 (7.4%) 19 (7.0%) 9 (6.4%)

No 537 (46.9%) 126 (46.2%) 73 (52.1%)

Unknown 522 (45.6%) 128 (46.9%) 58 (41.4%)

IQR interquartile range, BI-RADS breast imaging reporting and data system. Statistically significant P-values are highlighted in bold.
aComparison between the training and internal cohorts.
bComparison between the training and external cohorts.
cComparison between the internal and external cohorts.
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Table 2 | Algorithmic performance of the clinical model, the single T model and the two-stage frameworks using different CNN
and Transformer models as network backbone

Methods AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV F1 Score p valuea p valueb

Internal test cohort

Clinical model 0.681 (0.612–0.749) 0.678 0.685 0.663 0.808 0.504 0.741 Reference 0.263

Single T model 0.736 (0.667–0.805) 0.729 0.734 0.719 0.844 0.566 0.785 0.263 Reference

DL framework (CNN)c

HRNet 0.811 (0.751–0.872) 0.824 0.864 0.742 0.874 0.725 0.869 0.009 0.010

ResNet 0.747 (0.687–0.808) 0.670 0.592 0.831 0.879 0.497 0.708 0.166 0.806

Unet 0.806 (0.752–0.860) 0.740 0.696 0.831 0.895 0.569 0.783 0.007 0.122

MobileNet 0.759 (0.699–0.820) 0.722 0.696 0.775 0.865 0.552 0.783 0.091 0.614

DL framework (Transformer)d

Swin 0.858 (0.812–0.904) 0.813 0.810 0.820 0.903 0.676 0.854 <0.001 0.003

Segformer 0.832 (0.780–0.885) 0.828 0.815 0.854 0.920 0.691 0.864 <0.001 0.031

External test cohort

Clinical model 0.652 (0.558–0.747) 0.664 0.723 0.543 0.764 0.490 0.742 Reference 0.159

Single T model 0.742 (0.657–0.827) 0.707 0.702 0.717 0.835 0.541 0.763 0.159 Reference

DL framework (CNN)c

HRNet 0.823 (0.739–0.906) 0.807 0.819 0.783 0.885 0.679 0.851 0.016 0.228

ResNet 0.718 (0.612–0.823) 0.793 0.872 0.630 0.828 0.707 0.849 0.388 0.686

Unet 0.603 (0.506–0.699) 0.593 0.564 0.652 0.768 0.423 0.650 0.459 0.006

MobileNet 0.804 (0.726–0.883) 0.814 0.787 0.870 0.925 0.667 0.850 0.019 0.313

DL framework (Transformer)d

Swin 0.801 (0.707–0.895) 0.850 0.904 0.739 0.876 0.791 0.899 0.027 0.382

Segformer 0.918 (0.869–0.967) 0.886 0.851 0.957 0.976 0.759 0.909 <0.001 <0.001
aComparisons between clinical model and other models using DeLong test.
bComparisons between single T input model and other models using DeLong test.
cDifferent CNN models as network backbone.
dDifferent Transformer models as network backbone.

Fig. 1 | TheDeLong test was used to compare theAUCs among themulti-task and
multi-instance frameworks, using different CNN and Transformer models,
respectively, as network backbone for image feature extraction. A AUC com-
parisons in the internal test cohort. B AUC comparisons in the external test cohort.

DetailedDeLong p values are provided in each grid. Pink and blue colors respectively
indicate significantly higher and lower AUCs, respectively, for themodels annotated
on the right side of the panel compared to those below. Yellow indicates a borderline
p value. AUC area under curve, CNN convolutional neural network.
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Activation heat maps from ultrasound images
For better interpreting the strategy of this MTL and MIL framework in
predictingLNM,anddeterminingwhether it focuseson the internal features
of the tumor andALN regions, we generated heatmaps of both the primary
and lymphnode images from theTransformer (Segformer)model using the
CAMmethod (Fig. 4). The CAM is applied to the classification head (CLS
head), which consists of aGAP layer followed by a 1 × 1 convolutional layer.
The activated regions labeled by different colors represent areas towhich the
model pays attention when making a prediction; in other word, they are
areas that hold significance for ALN status prediction. Regions activated

with red and yellow highlight characteristics highly suspicious for the ALN
metastasis diagnosis, while the green and blue backgrounds reflect that the
DL model didn’t recognize significant areas predictive for ALN metastasis.
Thedeeper the color of a feature in an area, themore attention theDLmodel
pays to it for prediction.

As shown in Fig. 4, four representative cases from the internal test set
are exhibited. For case 1, two ultrasound images showing the tumor lesion
fromdifferent angles andone imageof the axillary areawereutilized as input
for the MTL stage. The heat map shows red and yellow activation areas in
the ALN but not in the tumor lesion. Then the resulting image tokens

Fig. 2 | Confusionmatrices of different DLmodels in all three cohorts.Confusion
matrices of ALN status prediction of the clinical model (A), single T model (B) and
DL framework employing CNNHRNet (C), and Transformer Segformer (D) as the

network backbone in the training, internal test and external test cohorts. ALN
axillary lymph node, DL deep learning, CNN convolutional neural network.
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generated by the MTL further served as input for the MIL and generated a
final label of positive ALN, which is consistent with this patient’s patholo-
gical results (Fig. 4A). The case 2 had two ultrasound images respectively
corresponding to the tumor and ALN area that could be inputted for the
MTL; CAM analysis showed that no suspicious areas predictive for ALN
metastasis were recognized by the DL model. Finally, the MIL generated a
true label of negative ALN (Fig. 4B). We also showed examples of false
positive (Fig. 4C) and false negative (Fig. 4D) cases, respectively. Besides, we
compared the CAM patterns between the single-task classification model
(the single T model) and our MTL model. As shown in Fig. S1, MTL
effectively shifted the CAM focus from the tumor boundary and back-
ground to tumor center regions in these two cases.

Discussion
In this study, we established an MTL and MIL DL framework that can
simultaneously detect the primary tumor and ALN lesions on ultra-
sound images and predict ALN status, simulating the real-world clinical
diagnostic scenarios. This design implicitly improves the model’s
interpretability by constraining image features to lesion areas through
the segmentation process and attention mechanisms. By introducing a
segmentation task in the MTL stage and integrating tumor and ALN
features from each patient, this model is guided to focus on areas within
tumors and ALNs, preventing it from learning shortcuts and enabling a
more comprehensive prediction using multi-view images. We demon-
strated that theMTL andMILDL frameworks, using different CNN and
Transformermodels as the network backbone, outperformed the clinical
model and the single T model, highlighting the superiority of our DL
model for predicting ALN metastasis. The DL framework using one of
the Transformer models, Segformer, to extract image features, repre-
sents the top-performing model. It achieved an AUC of 0.832, a sensi-
tivity of 0.815, and a specificity of 0.854 in the internal test cohort, and an
AUC of 0.918, a sensitivity of 0.851, and a specificity of 0.957 in the
external test cohort. The efficacy of this Transformer model is further
supported by ROC, PR, and DCA analyses.

By offering direct visualization of the ALNs, ultrasound examina-
tion provides an effective way for physicians to diagnose ALN metas-
tasis. However, naked-eye observation can sometimes overlook subtle
ultrasound manifestations that hold clinical significance for dis-
criminating metastasis. DL models, through training, can automatically
extract image features and focus on lesion areas indicative of specific
clinical outcomes through their attention mechanism, making them
valuable second readers to provide additional opinions for physicians.
However, the readability and interpretability of DL models pose sig-
nificant challenges for clinical translation. It is often difficult to ascertain
whether DL models have truly learned the essential disease-indicative
regions or are predicting outcomes based on irrelevant features or
shortcuts. In this study, we introduced instance segmentation—a com-
puter vision task involving the identification and delineation of indivi-
dual objects within an image20,21 —and attention mechanism into our
model, which helps the classification head focus on lesion areas. This
approach enables our model to simultaneously detect the regions of
tumors and ALNs within images, and to predict patients’ALN status. By
employing this multi-task framework, the DL model is restricted to
predicting ALN status based on the image features of the identified
tumor and ALN regions. This prevents the model from learning short-
cuts and might implicitly improve its interpretability, although it does
not fundamentally resolve the black-box nature of deep learningmodels.

Previously, several studies reported on breast cancer DL models using
ultrasound images to predict ALN statues. For instance, Zhou et al. reported
aCNNmodel trainedon primary breast cancer images from a cohort of 680
patients, achieving satisfactory AUCs of 0.805 and 0.720 in their internal
and external test cohort, respectively16. However, theirmodel is a single-task
classification-only model that cannot detect tumor localization and region;
this may add difficulties for interpretation and generalization. Based on
smaller sample sizes, two other studies also constructed CNNmodels using
suspicious lymphnodes seenonultrasoundorprimary tumors17,22; however,
their clinical translational potential is limited since their models were not
tested on another cohort, and using suspicious lymph nodes alone for

Fig. 3 | Confusionmatrices of differentDLmodels in all three cohorts.Evaluation
of the performance of different DLmodels using ROC, PR and DCA analyses. ROC
(A), PR (B) and DCA (C) curves comparing different models to diagnose ALN

status in the internal and external test cohorts. ROC receiver operating character-
istic, PR Precision-Recall, DCA decision curve analysis.
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predicting patients’ ALNmetastasis is not clinically practical because some
patients, especially those with clinically negative breast cancer, might not
have any visible lymph node detected by ultrasound examination. In our
study, in addition to the MTL, we also introduced MIL, which integrated
image features of both the primary tumor and ALN regions to make a final
patient-level diagnosis. This DL model has a diagnostic strategy similar to
that in the real-world clinical workflow, where clinicians first recognize the
tumor and ALN lesions on an image, and then make a comprehensive
judgment on patients’ALN status based on their manifestations. This two-
stage can be applied to a broader population, regardless of whether a patient
has a visible ultrasound lymph node.

CNN and Transformer are commonly used network structures for
image feature extraction in DL, each with its own advantages and dis-
advantages. CNN is an architecture based on convolutional layers, primarily
used in the field of image processing for feature extraction. Over the last
decade, CNNs have been a major focus of research in medical image
analysis23–25. A majority of the published studies have adopted CNN
structures for predicting lymph node metastasis and other clinical out-
comes, such as biological characteristics, cancer histological subtypes,
therapeutic outcome, and cancer prognosis, in breast cancer and other types
of cancer26–28. However, the performance of CNNs may be limited by the
inherent locality constraints and a resulting lack of explicit consideration of

Fig. 4 | Case representation in the internal test cohort. The B-mode ultrasound images (primary tumor with or without ALNs and heat maps are displayed, with the
diagnostic process shown. Examples of true positive (A), true negative (B), false positive (C), and false negative (D) cases were shown, respectively.
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the long-range spatial relationships in an image29,30. Transformer is a DL
structure based on the self-attention mechanism. Recently, Transformer
architectures have been proposed to address the shortcomings of CNN and
have gained increased attention in medical imaging tasks31–33. However, the
application of Transformer models in medical binary tasks and their per-
formance in comparison with CNN in predicting ALNmetastasis in breast
cancer patients remain largely unexplored. In this study, we also tested the
predictive performance of distinct Transformer and CNN models as the
network backbone in differentiating breast cancer patients with ALN
metastasis. We showed that in the internal test cohort, the representative
model of Transformer, Segformer, had a comparable AUC with the
representative CNN model, HRNet (0.832 vs. 0.811; p = 0.565), but mar-
ginally outperformtheHRNetmodel in the external test cohort (AUC,0.918
vs. 0.823; p = 0.055). However, this subtle superiority might suffer from
various real-world limitations, such as variances in image qualities and data
distribution from the two different clinical centers.

Notably, the observed performance gap of the Segformermodel on the
external test set (AUC: 0.918) compared to the internal test set (AUC: 0.832)
raises concerns about data distribution and potential overfitting. This dis-
crepancy could stem from a range of real-world clinical factors of this
retrospective study, such as variations in ultrasound equipment and
acquisitionprotocols acrossdifferent clinical centers, aswell as differences in
patient population—in this study, we found that the external test cohort
included a higher proportion of hormone receptor-positive patients and
more cases with lymphovascular invasion compared to the internal cohort
(Table 1), both of which are known to associated with ALN status34,35.
Moreover, this fact also indicates that our model might suffer from over-
fitting. This highlights the importance of further validation in future studies.

To understand the connections between DL model-extracted features
and predictive outcomes, we adopted the CAM method to show the pre-
dictive parts withmetastatic features on the image. The activation heat map
shows our model focuses on features within the tumor and lymph node
regions for ALN status prediction rather than irrelevant parts of the image.
To some extent, the cases presented in Fig. 4 partially explain how theMTL
andMILmethods are integrated to produce a final prediction. For example,
our model correctly recognized case 1 as positive by integrating the image-
level results, where the two primary breast cancer images were predicted to
be negative, while the ALN was categorized as positive by the MTL. This
indicates that our model might avoid false-negative results by combining
predictive results of both the tumor and lymph node images. Indeed, sta-
tistical analysis revealed that the model using Segformer as the network
backbone has a low false-negative rate, with 0.185 in the internal test cohort
and 0.149 in the external cohort. We also show examples of false-negative
and false-positive findings. The heat maps indicate that our model didn’t
learn the features associatedwithALN status in the twomisdiagnosed cases.
For example, while case 1 and case 4 both had ALN images for prediction,
our model correctly recognized the positive ALN in case 1, but mis-
diagnosed the other case. This suggests that some image features with
predictive ability haven’t been learned by ourmodel, which also highlighted
the importance of further prospective studies with larger sample sizes for
advancing the DL model into clinical translation.

TheALN status is critical for breast cancer clinicalmanagement. ALN-
positive patients often need more intensive therapeutic interventions,
including neoadjuvant treatment, ALN dissection and postoperative
radiotherapy. We here provide a DL model that helps predict ALN status
before surgery, which can help clinician make therapeutic decisions. The
top-performingDLmodel had a false positive rate of 0.146 and 0.043 for the
internal and external cohort. This indicates that our model has a relatively
low false-positivity that might cause overtreatment. Besides, our model
might also be a potential tool for selecting patients for SLN (sentinel lymph
node) biopsy. For patients with clinical negative ALN, SLN biopsy is
recommended during surgery, which caused prolonged operative time and
potential harm to patients. How to accurately identify patients who actually
require SLN biopsy is an important clinical issue. Our model might be
applicable in this setting: patients with clinically negativity but DL model-

predictive positivitymight be suitable for SLN biopsy.Moreover, ourmodel
also exhibits high specificity, with 0.854 and 0.957 in the internal and
external test cohort, which means that it also performs well in preventing
these negative patients from surgical dissection. Our model has false
negative rates (0.185 in the internal cohort and 0.154 in the external cohort)
that are in the range of 7.8–27.3%36–38, which is the reported false negative
rates of the SLN dissection. Nonetheless, given the potential safety risks
posed by false-negative results, clinical decision-making may require
comprehensive consideration of additional patient characteristics—such as
molecular subtype and T-stage—to ensure optimal outcomes.

Our study has several limitations. First, the retrospective nature of our
study limited the robustness of our model for clinical application. The
results reported in this study were dependent on the composition of the
enrolled patient cohort, which may introduce sampling bias due to the
relatively small and non-random sample. For translating our model into
clinic, further prospective studies involving multiple centers and standar-
dized imaging protocols are required, along with appropriate model cali-
bration and improved DL model parameters tailored for realistic clinical
practice. Secondly, although we meticulously compared the surgical
pathological results with the ultrasound captured lymph nodes in patients
enrolled in the training cohort and excluded lymph node images with
uncertain pathological results, there is a low possibility of a negative lymph
node being mistakenly labeled as positive and incorporated into the DL
trainingprocess. This alsohighlights thenecessity of conductingprospective
studies in the future. Moreover, to improve the diagnostic efficiency and
clinical application ofDLmodels,more advancedDLmethod, such asCNN
combining with Transformer, should be explored for predicting breast
cancerALNmetastasis todetermine themost suitableDLmodels for clinical
application. Moreover, we used attention-based method in the MIL step
considering the clinical application scenario; However, MIL has multiple
variations, including instance-based, embedding-based, and attention-
basedmethod.Whether othermodels aremore suitable andwould improve
our model’s performance needs further studies to elucidate.

In conclusion, we have demonstrated that using the MTL and MIL
framework that simulates the real-world clinical diagnosis scenario can
predict breast cancer ALN metastasis based on ultrasound images. This
model exhibits favorable discrimination abilities and has a great potential
facilitating the decision-making process ofALNmanagement.Additionally,
we compared CNN and Transformer models for image feature extraction.
We found that the difference in their abilities to predict ALN metastasis is
not particularly significant. However, despite this, Segformer demonstrates
goodperformance in our study, highlighting its potential for translating into
clinical application.

Methods
Patients and study design
Patients from two medical centers, the Second Xiangya Hospital (from
January 1, 2019 andDecember 31, 2022) andHenanCancerHospital (from
July 1, 2022 to December 31, 2022) were screened, and those who meet the
eligibility criteria were enrolled for further investigation. This retrospective
multi-cohort study received approval from the institutional review board of
the SecondXiangyaHospital ofCentral SouthUniversity (No. 2022064) and
the institutional review board of the Affiliated Cancer Hospital of
ZhengzhouUniversity &HenanCancerHospital (No. 2017407). The study
was performed in accordance with the Declaration of Helsinki. The
requirement for informed consent was waived as we solely utilized anon-
ymized retrospective data. The enrollment criteria were as follows: (1)
patients pathologically diagnosed with unilateral breast cancer; (2) patients
who underwent ultrasound examination of both the breast and axillary sites
prior to biopsies/surgeries; (3) Patients diagnosed with early-stage breast
cancer and eligible for surgery resection.Patients’ALNstatuswas confirmed
by pathological examination on ALN tissues from biopsy or surgical
resection, which is the clinical gold standard. The diagnosis is made by the
Pathology departments of the respective hospitals. Patients with bilateral
BC, distant metastases, or concurrent other types of cancer were excluded.
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Patientswere stratified into three cohorts: a training cohort, an internal
test cohort, and an external test cohort. The training cohort (n = 1144) and
the internal test cohort (n = 273) comprised patients from the Second
Xiangya Hospital, while patients (n = 140) from Henan Cancer Hospital
constituted the external test cohort. In real-world scenarios, newpatients are
admitted sequentially over time. Therefore, to ensure relative independence
of different cohorts, we divided patients into training and internal test
cohorts based on their admission timewith a ratio of 8:2.We sorted patients
based on the initial admission time and checked their admissionnumbers to
ensure that there were no duplicate patients. A flowchart illustrating the
enrollment process is presented in Fig. 5.

Ultrasound images of both the breast and axillary sites were screened
for each patient. For patients with unilateral multifocal BC, images of each
tumor lesion were collected. For patients with unifocal BC, images from
different perspectives were selected. For patients who had no visible ALNs
onultrasound images, only the primary breast cancer imageswere collected.
In total, the primary tumor and ALN image numbers were 1875 and 970,
405 and 183, 221 and 126, in the training, internal test and external test
cohorts, respectively. Breast cancer and ALN lesions were manually deli-
neated using a Python-based graphical image annotation tool called
LabelMe; these delineations were used as labels for training and evaluating
the performance of the instance segmentation task. In the Second Xiangya
Hospital, ultrasound equipment manufactured by Philips (Amsterdam, the
Netherlands; EPIQ7), Siemens (Munich, Germany; S3000), Mindray
(Shenzhen,China;R9), andGEHealthcare (Pittsburgh,PA;LOGIQE9)was
used to generate the Ultrasound images. In the Henan Cancer Hospital,
ultrasound equipment manufactured by Philips (Amsterdam, the Nether-
lands; IUElite, EPIQ5andEPIQ7), andMindray (Shenzhen,China;R9)was
used to generate the ultrasound images. In both centers, the breast cancer
two-dimensional mode was used for detection.

Construction of the two-stage DL framework
In this work, we propose a two-stage DL framework for predicting ALN
status in breast cancer patients (Fig. 6):

(1) Image-level MTL stage: multiple images first went through feature
extraction andmask decoder, then three classifierswere applied to complete
the following tasks: segmenting each lesion, categorizing each lesion as
primary breast cancer or lymph node, and predicting ALN status based on
each image. To constrain the model’s learning to clinically significant
regions, we integrated lesion segmentation into the prediction process. By

applyingmasking and feature extraction based on the segmentation output,
the model’s input was effectively constrained to the detected lesion regions.
This design helps reduce the likelihood of learning shortcuts that might
occur in classification-only models.

(2) Patient-levelMIL stage: we adopted aTransformer-based approach
to replace the simple rule-basedmethod for predicting patients’ALN status.
Each patient is represented as a bag consisting of multiple images. These
images originate from the same patient and share inherent interrelations.
Therefore, it often requires integrating information across multiple
instances to make a comprehensive diagnosis. Based on these considera-
tions, we chose attention-based methods for MIL in our study. This
approach leverages multi-view features from the images of one patient to
complement lesion information, obtaining a more comprehensive classifi-
cation result.

The detailed framework was shown in Fig. S2. In the image-level MTL
stage, given a batch of input images including primary breast cancer and
lymph node images, image feature z were extracted using the network
backbone. Then, image feature passed through a mask decoder to further
improve lesion extraction. Here, ourmask decoder was implemented based
on the SAMmask decoder. It took both the image features z and a learnable
mask token as inputs and employed two-way attention to efficiently facil-
itate the interaction between the image feature and the mask token. The
interacted image feature and the mask token went through transposed
convolution and cross-attention respectively, to obtain the segmentation
feature s and the enhanced mask token. Subsequently, these two features
were fed into the segmentation head. The segmentation feature s underwent
a dot product operationwith themask token that had beenmapped through
a MLP layer. Finally, a Sigmoid activation was adopted to obtain the seg-
mentation result ŷSeg . With the segmentation result ŷSeg and its corre-
sponding Ground Truth (GT) ySeg ; Binary Cross-Entropy (BCE) loss was
utilized to compute segmentation loss.Moreover, in order to help themodel
better concentrate on the lesion area, we used the segmentation result ŷSeg as
the attentionmap. This attentionmap describes the activation of lesion and
non-lesion areas for ALN prediction and was subsequently multiplied with
the segmentation feature s to yieldmask feature zm, a more complex feature
focused on the lesion areas.

Then, a mask-classification head composed of a Global Average
Pooling (GAP) layer and a 1 × 1 convolution layer was adopted to predict
lesion classification result ŷMCls (tumor or lymph node lesions). BCE loss
was used to calculate themask classification loss between ŷMCls and themask

Fig. 5 | A flowchart illustrating the enrollment process of this study. BC breast cancer, ALN axillary lymph node.
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classification GT yMCls: Meanwhile, the segmentation result was further
multipliedwith the original image feature z to yield the lesion feature zc. This
feature could also help model better focus on lesion areas and thereby
improve the accuracy of disease diagnosis. Then, a classification head
composed of a GAP layer and a 1 × 1 convolution layer was used to predict
ALN metastases ŷCls at an image-level (positive or negative). Similarly, the
image-level classification loss was also calculated using the BCE loss. Here,
the image-level labels yCls were pseudo-labels generated based on the
patient-level labels. These above losses jointly optimized the mask decoder
and the backbone of the model. With enforced constraints via attention
maps, themodel can effectively focus on the lesion areas of each image, thus
alleviating the issues learning shortcuts to some extent.

In the patient-level MIL stage, we first extracted the patient-level
feature using the pretrained model. Given a bag of instances composed
of M breast cancer images and N lymph node images for each patient,
we adopted a GAP layer on the lesion feature zc; which was multiplied
by the original image feature z and the attention map, to extract image
tokens.We organized these extracted image tokens into bags and input
them into the Transformer-based multi-instance learning model. In
the Transformer encoder, the CLS token was generated by random
initialization, which was used to integrate global image information.
The image tokens and the CLS token then underwent self-attention
operations within the transformer encoder, where the CLS token
attended to all other image tokens and integrate their information into
itself. Finally, the CLS token passed through a straightforward MLP
layer to predict patient-level ALN status. BCE loss was computed to
optimize the multi-instance classification model. This attention-based
multi-instance framework can consider the correlations between
multi-view images, thus enabling a more comprehensive prediction.

Besides, for comparison, we followed the study by Zhou et al. and
trained a Restnet101 model (the single T model) on our dataset16. This is a
single-task classification model that used primary tumor images for ALN
prediction.

Implementation details
In the multi-task framework, we employ various CNN (HRNet39, ResNet40,
Unet41 andMobileNet42) andTransformer (Swin43 and Segformer44)models
as the backbone, with the mask decoder sourced from the SAM45 as the
decoder. These CNN and Transformermodels were tested individually and
the network backbone only consisted of one of the models. Our mask
decoder is similar to the implementation of SAM mask decoder. We dis-
carded the IoU tokens and the corresponding MLP layer as we did not
predict IoU scores. Then, we divided the mask decoder of SAM into two
parts. The part without the mask token MLP and dot product at the front
was used as our mask decoder to extract segmentation feature s, while the
mask token MLP and dot product in the second half served as the seg-
mentation head to predict the segmentation results. The segmentation
feature s refers to the feature in the mask decoder that has gone through 2x
transposed convolution layer.

Preprocessing steps involved firstly resizing images to a uniform
resolution of 512 × 512 pixels with a ratio range of 0.8–1.25, followed by
random cropping (a fixed-size 512 × 512 region) and flipping with a 50%
probability. We adopted an online data augmentation randomly. The bag
size was set to 16, with a total iteration of 10k. We utilized the AdamW
optimizer with a learning rate of 6e-5 for model optimization. In the MIL
stage, the token dimension was set to 256, and the Transformer is a basic
ViT-base model46 with a simpleMLP layer serving as the classifier. The bag
size was set to 4, and the model was trained for a total of 100 epochs. In our
model, all available image features from each patient are fed into the
Transformer to enable inter-instance interaction without input length
normalization, including cases where ALN images are missing. We gener-
ated heat maps of both the primary and lymph node images from the
Transformer (Segformer)model using the class activationmapping (CAM)
method. The CAM is applied to the classification head (CLS head), which
consists of a GAP layer followed by a 1 × 1 convolutional layer. For the
segmentation task, we evaluated performance using the commonly used
mIoUmetric (Table S2). The versions of Python and all major libraries are

Fig. 6 | Overall two-stage deep learning system for breast cancer ALN status
prediction. The first stage is an image-level multi-task learning stage. For each
patient, primary tumor with or without ALN images was used as input for image
feature extraction and segmentation. Three classifiers were applied to complete the
following tasks: segmenting each lesion, categorizing each lesion as primary breast

cancer or lymph node, and predicting lesion status on each image. The second stage
is a patient-level multi-instance learning stage: a Transformer-based approach
leverages multi-view features from the multiple images of one patient to obtain a
comprehensive classification result. ALN axillary lymph node.

https://doi.org/10.1038/s41698-025-00971-0 Article

npj Precision Oncology |           (2025) 9:195 10

www.nature.com/npjprecisiononcology


as follows: Python: 3.8.5; TorchVision: 0.15.2+cu117; OpenCV: 4.9.0;
MMCV: 1.7.1; MMSegmentation: 0.16.0+; MMClassification: 0.18.0+.

Clinical model construction
Aclinicalmodel for predicting breast cancerALNmetastasis was developed
using Logistic regression analysis. To identify suitable factors for model
construction, both univariate and multivariate logistic regression analyses
were conducted on the training cohort, with the results presented in Table
S3. Characteristics such as BI-RADS category and clinical T stage, which are
obtainable before surgery and have been identified as significant risk factors
for ALNmetastasis, were included in the final clinical model (Fig. S3). This
established model underwent testing in both the internal and external
cohorts. The R package rms was utilized for model construction using the
training cohort and subsequent testing on the internal and external cohorts.

Analyses of ROC, PR and DCA
DeLong test was used to compare AUCs of different model. We used ROC
and PR analyses for evaluating the performance of various prediction
models.While theROCcurve considers bothpositive andnegative cases, the
PR curve primarily focuses on positive cases. DCA serves as a tool for
measuring the effectiveness of medical decisions by comparing threshold
values with net benefits, thus allowing for an assessment of the merits of
different decision strategies. In this study, we employed DCA to compare
the clinical benefits of different models. The R package pROC was used for
ROC and PR analysis; the R package rmda was used to calculate net benefit
and calibration plot; The R package ggplot2 was used for visualization.

Statistical analysis
The chi-square test was used to assess the association of clinical char-
acteristics with ALN status in breast cancer patients. The DeLong test was
employed to compare the area under the curve (AUC) of different predic-
tion models. The significance level was set at 0.05 for all of the analyses.
Statistical calculations in this study were performed using R software
(R 4.0.3).

Data availability
The original ultrasound images and clinical data used in this study are not
publicly available due to the restrictions of hospital regulations and patient
privacy. Other data supporting the main findings of this study are available
on request for non-commercial purposes from the corresponding authors
Y.C. and Y.X.L. typically within 2 weeks.

Code availability
The code will be available at https://github.com/Ferraaaaa/BC_ALN_
MTL_MIL.
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