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Non-small cell lung cancer (NSCLC) is one of the deadliest and most prevalent cancers worldwide,
with 5-year survival rates of ~28%. The molecular heterogeneity within NSCLC encompasses
several types of genetic alterations, such as mutations, amplifications, and rearrangements, and
can drive aggressive tumor behavior and poor response to therapy. Among these genetic
alterations are ALK and ROS1 fusions. Though these fusion events are relatively rare, their
identification is crucial for selecting effective targeted treatments and avoiding therapies with
significant side-effects. Fluorescent in situ hybridization (FISH), immunohistochemistry (IHC), and
sequencing of DNA and RNA are standard methods to detect ALK and ROS1 fusions, but they are
costly, time-consuming, and require adequate tumor tissue. Here we employ deep learning models
using whole slide images (WSlIs) of hematoxylin and eosin (H&E)-stained formalin-fixed paraffin
embedded (FFPE) NSCLC tumor specimens to identify tumors most likely to harbor ALK and ROS1
fusions in a cohort of 33,014 patients, out of which 306 and 697 patients are positive for ROS7 or
ALK fusions, respectively. A vision transformer model (MoCo-V3) was trained as a feature extractor,
followed by training transformer-based models to predict the presence of ROS7 and ALK fusions.
Due to the limited positive sample size for ROS1, a two-step specialized training procedure was
implemented to enhance prediction performance during cross-validation. Our approach achieved
receiver-operating characteristic areas under the curves (ROC AUCs) of 0.85 for ROS 1 and 0.84 for
ALK on a holdout dataset, demonstrating the effectiveness of this method. This framework holds
significant potential for clinical application by offering a scalable, accurate, and cost-efficient
method for detecting ALK and ROS1 fusions. Furthermore, it may serve as a pre-screening tool to
identify candidates for confirmatory diagnostic testing and clinical trials, ultimately improving the
efficiency of selecting appropriately targeted therapies for NSCLC patients.

identification of genetic alterations can guide therapeutic strategies. A key
aspect of this genetic evaluation involves the detection of mutations or

In the United States, lung cancer ranks as the second most common type of
cancer and the leading cause of cancer-related deaths'”. It is projected that in

2025, there will be 226,650 new cases of lung cancer and 124,730 deaths
attributable to this disease’. Lung cancer is broadly classified into two main
histological subtypes: small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC). This study focuses on NSCLC, which constitutes
~80-85% of all lung cancers™™.

Targeted therapy has become a cornerstone of cancer treatment,
particularly for managing diseases like NSCLC, where the precise

rearrangements, such as fusions, of specific genes that drive cancer pro-
gression. Among these, gene fusions involving the anaplastic lymphoma
kinase (ALK) and ROS proto-oncogene 1 (ROSI), though rare, are highly
significant in the context of lung cancer diagnosis and treatment™. ALK and
ROSI are involved in chromosomal rearrangements that result in the pro-
duction of constitutively active, tumor-driving receptor tyrosine kinases,
and patients with ALK or ROSI fusions are recommended specific targeted
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therapies. Identifying these genetic alterations is therefore pivotal for
selecting the most effective treatment, underscoring the importance of
precise genetic screening in clinical oncology ™. The proposed model could
significantly aid in early patient stratification for clinical trials by pre-
screening likely ALK and ROSI fusion-positive cases, ensuring confirmatory
testing resources are focused effectively.

Currently, there are several companion diagnostic tests for detecting
ROSI and ALK fusions including fluorescent in situ hybridization (FISH)
and immunohistochemistry (IHC). Next Generation Sequencing (NGS) is
another potential way to identify ROS1 and ALK fusions"'°. FISH and IHC
are fast and relatively inexpensive, although they consume tissue which is
not an efficient way of screening patient specimens for rare biomarkers.
NGS allows for testing of a wider array of biomarkers but is costly and time
consuming. Deep learning models developed on digital pathology images
have surged in popularity within histopathology for image classification and
predicting genetic mutations and rearrangements'’*. Most of these models
are trained on widely utilized and economical hematoxylin and eosin (H&E)
stained slides, presenting a potentially accessible method for biomarker
detection where the costs of image acquisition are relatively inexpensive
once the capital expense of scanners have been paid. Although H&E slides
are widely available, each digital image is large, and annotating ground truth
data for each cell or region is very labor-intensive and time-consuming for
pathologists. In biomarker prediction, typically only slide-level labels are
available, indicating whether a patient tests positive for a specific biomarker.
To address this, multiple instance learning (MIL) models have been
developed to train on these slide-level labels rather than detailed tile-level
annotations” "', These models incorporate an attention mechanism that
helps identify and learn from the most significant regions of the slides, those
that contribute most to the final predictions.

Recently, vision transformer-based models have gained prominence as
effective attention-based tools in histopathology’” . These models
demonstrate considerable promise in detecting various biomarkers across
multiple types of cancer. Vision transformer-based models typically include
separate modules for feature extraction and feature aggregation. The feature
extraction module is trained in a self-supervised manner without labels.
Once trained, it can convert whole slide images (WSIs) into feature matrices.
These matrices are then used to train the feature aggregation module, uti-
lizing only slide-level labels.

Although deep learning models show significant potential for pre-
dicting various biomarkers, there are very few studies on their use for
detecting ROSI and ALK rearrangements in NSCLC using H&E slides. This
scarcity may be due to the low prevalence of these mutations—ROS]I fusions
occur in only 1-2% of NSCLC patients and ALK fusions occur in less than
5%. A study by Mayer et al.”® reported encouraging Positive Percent
Agreement (PPA) and Negative Percent Agreement (NPA) for these bio-
markers but was constrained by its small sample size (234 cases, with 15
ALK-positive and 7 ROSI-positive). Terada” also investigated ALK rear-
rangements but their study was similarly restricted by a small cohort size (66
ALK-positive and 142 negative cases) and a modest receiver operating
characteristic area under the curve (ROC AUC) of 0.73. Coudray et al.
focused on variants of 10 genes in lung adenocarcinomas, excluding ROS1,
and the performance of their models did not translate to predicting ROS
variants™. Tan et al.” conducted a more extensive study with a larger dataset
(54 positive and 834 negative ALK fusion positive cases for training, 66
positive and 1,398 negative for testing) achieving an impressive 0.92 in their
test set; however, their models were trained using demographic data,
pathology reports, and serum tumor markers, not by the much more facile
approach described herein, using only H&E stained slides.

In this study, we analyzed a large NSCLC cohort of 33,014 patients,
including 306 ROSI-fusion positive and 697 ALK-fusion positive cases
(Table 1). We developed a deep learning pipeline based on vision trans-
former models trained on H&E-stained slides to predict the presence of
ROSI and ALK fusions. To address the challenge of limited ROSI-positive
cases, we adopted a two-stage training strategy: first training the model to
detect a composite biomarker (ROS1, ALK, and NTRK fusions), then fine-

Table 1 | Summary of positive and negative case counts for
ROS1, ALK, NTRK, and RAN fusion biomarkers, presented
across the total dataset (CV + Holdout), the cross-validation
(CV) set, and the holdout set

Total Ccv Holdout

positive negative pos neg pos neg
ROS1 306 32,708 260 27,792 46 4916
ALK 697 32,317 589 27,463 108 4854
NTRK 25 32,989 23 28,029 2 4960
RAN 1,028 31,986 872 27,180 156 4806

The RAN label denotes samples positive for any ROS1, ALK, or NTRK fusion. The total number of
unique samples across all sets is 33,014.

tuning it specifically for ROSI or ALK prediction. This approach sig-
nificantly enhanced performance in identifying ROSI fusions, particularly
in an independent holdout cohort not used in training.

Results

Comparison of direct vs. two-stage training strategies

We compared the ROC AUC in the validation set for two training scenarios:
(1) direct training for the target biomarker prediction, and (2) initial training
on RAN followed by fine-tuning for the target biomarker. These scenarios
are referred to as direct and train-finetune models, respectively. The RAN
model, trained to predict the composite RAN label, achieved a maximum
ROC AUC of 0.86 in the validation set. Building on this performance, we
evaluated whether fine-tuning the RAN-trained model on individual bio-
markers (the train-finetune approach) would improve predictive accuracy
compared to direct training.

As illustrated in Fig. 1A, for the ROSI fusion biomarker, the ROC AUC
for the train-finetune model is consistently superior to that of the direct
model, achieving a ROC AUC of 0.86 compared to 0.83. In the train-
finetune model, the ROC AUC increases during the early training steps and
then exhibits a slight decline as training progresses. However, due to greater
variability in the direct model’s ROC curve, the changes in the train-finetune
model are less apparent. This smaller variation in the train-finetune model is
expected, as the learning rate used for fine-tuning from RAN to ROSI
fusions is ten times smaller than that used in the direct training scenario.

For ALK fusions, shown in Fig. 1B, although the train-finetune model
also produces a higher ROC AUC, the difference between the two models is
not as substantial (0.86 vs. 0.85). Both models demonstrate stable perfor-
mance trends throughout training, with less variability compared to ROS1.

ROS1 fusion model performance

The performance plots for ROSI fusion prediction on the test datasets using
the train-finetune model are shown in Fig. 2. The ROC curve in Fig. 2A,
demonstrates an average ROC AUC value of 0.85 which, according to ref. 40,
indicates excellent diagnostic significance, further supporting the clinical
relevance of our model’s performance. However, due to the highly imbal-
anced dataset, the precision-recall curve is less compelling (Fig. 2B), with a
mean area under the precision-recall curve (PR AUC) of 0.1 + 0.03 across the
five folds. While this curve is standard in machine learning for evaluating
performance on imbalanced datasets, it is important to note that precision
corresponds to Positive Predictive Value (PPV) and recall corresponds to
Positive Percent Agreement (PPA) in diagnostic terms. The normalized
histogram of the predicted probability values for ROSI fusion positivity is
displayed in Fig. 2C, revealing a significant number of ROSI fusion positive
cases (vertical blue bars) clustered near the left side of the histogram. This
indicates a high prevalence of extreme false negative cases, which can be
mitigated by assigning higher weights to positive cases in the loss function,
although this adjustment may lead to an increase in false positives. The
confusion matrices for the five different folds are shown in Fig. 2D-H, with
the true positive rate (TPR) ranging from 0.45 to 0.54 for our model.
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Fig. 1 | Performance comparison of direct versus the train-finetune approach for
predicting specific biomarkers. The figure displays the validation Receiver Oper-
ating Characteristic (ROC) Area Under the Curve (AUC) values across cross-
validation folds for two distinct training strategies. Blue lines represent models
directly trained to predict the target biomarker (ROSI in (A) and ALK in (B)).
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Orange lines represent models initially trained on the RAN dataset and subsequently
fine-tuned to predict the respective target biomarker. Shaded regions around the
lines indicate the standard deviation across folds, providing a measure of variability
in performance.
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Fig. 2 | Performance plots for ROSI prediction on the test sets using the train-
finetune model. A Receiver Operating Characteristic (ROC) Curves: This panel
displays the ROC curves for each cross-validation fold, with individual ROC AUC
values listed in the legend. The average ROC AUC (0.85) + standard deviation (0.02)
across all folds is shown at the top of the plot. B Precision-Recall Curves: This panel
presents the precision-recall curves for each fold. Precision corresponds to Positive
Predictive Value (PPV), and recall corresponds to Positive Percent Agreement

(PPA). C Normalized Probability Histogram: This panel shows the normalized
histogram of predicted probabilities for the test set, distinguishing between positive
and negative predictions. D-H Confusion Matrices for Individual Folds: These
panels display the confusion matrices for different cross-validation folds (Fold 0
through Fold 4, respectively). In each matrix, true labels are compared to predicted
labels. The Positive Percent Agreement (PPA) is indicated at the top of each con-
fusion matrix.

To further evaluate model robustness, we assessed performance on a
holdout set, achieving an average ROC AUC of 0.85 closely matching the
test set’s average ROC AUC of 0.85 (Supplementary Fig. 1). Supplementary
Table 3 also compares performance metrics across five models, showing
consistency between the test and holdout sets in ROC AUC (0.85), accuracy
(0.92), PPA (0.48 vs. 0.50), PPV (0.06), F1-score (0.10), and NPA (0.93 vs.

0.92). This consistency in performance between test and holdout sets
highlights the model’s robustness and supports its potential generalizability.

ROS1 model performance stratified by specimen type
To stratify ROSI model performance by specimen type, we applied a clas-
sification model described in the “Methods” section to assign each WSI as
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Table 2 | Stratified performance metrics of the ROS1 fusion prediction model on the test and holdout sets

Test Holdout

AUC Acc PPA PPV F1 NPA AUC Acc PPA PPV F1 NPA
ALL 0.85 0.92 0.50 0.06 0.10 0.92 0.85 0.92 0.48 0.06 0.10 0.93
Bx 0.86 0.92 0.45 0.05 0.09 0.92 0.86 0.92 0.46 0.05 0.09 0.93
Rx 0.85 0.91 0.58 0.07 0.12 0.92 0.84 0.92 0.50 0.08 0.13 0.92

Results are reported for all cases (ALL), biopsy samples (Bx), and resection samples (Rx). Metrics include area under the ROC curve (AUC), accuracy (Acc), positive percent agreement (PPA), positive
predictive value (PPV), F1-score (F1), and negative percent agreement (NPA). Values represent the average performance across five cross-validation folds. A positive class weight factor of 5 was used in the

loss function.
Bx biopsy, Rx resection.

Table 3 | Impact of the positive weight (W) in the loss function on ROC AUC, accuracy (Acc), PPA, PPV, F1 score (F1), and NPA

across test and holdout sets

Test Holdout
w AUC Acc PPA PPV F1 NPA AUC Acc PPA PPV F1 NPA
5 0.85 0.92 0.50 0.06 0.10 0.92 0.85 0.92 0.48 0.06 0.10 0.93
10 0.85 0.88 0.58 0.05 0.09 0.89 0.85 0.89 0.58 0.05 0.09 0.89
20 0.86 0.84 0.72 0.04 0.08 0.84 0.85 0.84 0.68 0.04 0.07 0.84
30 0.85 0.79 0.79 0.04 0.07 0.79 0.85 0.79 0.72 0.03 0.06 0.79
These values represent the average across 5 folds for the ROS1 fusion models.
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Fig. 3 | Impact of loss function weighting on ROS1 trade-off plots. A-D Trade-off
plots for the ROSI test sets using different positive weights in the loss function: 5 (A), 10
(B), 20 (C), and 30 (D). The x-axis represents the false negative rate (false negatives

divided by the total number of cases), while the y-axis represents the true negative rate
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(true negatives divided by the total cases) for the red plot, and PPA for the blue plot.
Increasing the positive weight shifts the blue plot toward the top-left (indicating
improved PPA and reduced false negatives) and the red plot toward the bottom-left
(indicating reduced false negatives at the expense of lower true negatives).

either a biopsy or resection. On its independent evaluation set, this
model achieved an AUC of 1.00, correctly classifying 108 out of 111
resections and all 82 biopsies. Given this high level of performance
on external data, we considered the model reliable for use in
assigning specimen type labels across our dataset. Based on its pre-
dictions, the cross-validation (CV) set included 18,370 biopsy cases
and 9682 resections, while the holdout set comprised 3307 biopsies
and 1655 resections.

For the test set, resection samples showed slightly lower ROC AUC
(0.85) compared to biopsy samples (0.86) but exhibited higher sensitivity-
related metrics. Specifically, PPA was 0.58 for resections versus 0.45 for
biopsies, PPV was 0.07 vs. 0.05, and F1-score was 0.12 vs. 0.09. Accuracy and
NPA were similar between the two specimen types: 0.91 vs. 0.92 for accu-
racy, and 0.92 for NPA in both groups.

For the holdout set, biopsy samples again achieved a slightly higher
ROC AUC (0.86) compared to resections (0.84), while resections out-
performed biopsies in most other metrics. PPA was 0.50 for resections
versus 0.46 for biopsies, PPV was 0.08 vs. 0.05, and F1-score was 0.13 vs.
0.09. Accuracy was 0.92 for both groups, while NPA was 0.92 for resections
and 0.93 for biopsies. A summary of these stratified metrics is provided in
Table 2.

Effect of positive weighting on ROS1 fusion model

As indicated by our results presented in Table 3, adjusting the positive
weight factor of the loss function had a notable impact on the model’s
performance. For instance, when the positive weight (W) was set to 5, the
model achieved a ROC AUC of 0.85 on both the test and holdout sets, with a
PPA of 0.50 and 048, respectively, indicating a balanced ability to identify
positive cases. However, as we increased the weight to 10, PPA improved to
0.58 for both sets, albeit with a slight drop in accuracy to 0.88 and 0.89,
respectively, and a marginal decrease in PPV to 0.05.

Further increasing the weight factor to 20 boosted the PPA to 0.72 on
the test set and 0.68 on the holdout set, but this improvement came at the
cost of accuracy and PPV, which dropped to 0.84 and 0.04, respectively.
When the weight was set to 30, PPA reached 0.79 on the test set and 0.72 on
the holdout set; however, this setting resulted in a significant decline in
accuracy to 0.79 and a further decrease in PPV to 0.03 on the holdout set.
Overall, while higher weight factors improved PPA, reducing the number of
positive cases missed, they also led to an increase in false positives, impacting
the model’s accuracy due to the prevalence of negatives.

We refer to the graphs in Fig. 3 as trade-off plots. Each panel in this
figure shows the trade-off when different positive weights are applied
in the loss function: 5, 10, 20, and 30. The x-axis represents the
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Fig. 4 | Performance plots for ALK prediction on the test sets using the train-
finetune model. A Receiver Operating Characteristic (ROC) Curves: This panel
displays the ROC curves for each cross-validation fold, with individual ROC AUC
values listed in the legend. The average ROC AUC (0.85) + standard deviation
(0.02) across all folds is shown at the top of the plot. B Precision-Recall Curves:
This panel presents the precision-recall curves for each fold. Precision corre-
sponds to Positive Predictive Value (PPV), and recall corresponds to Positive

Predicted
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1

Predicted Predicted

Percent Agreement (PPA). C Normalized Probability Histogram: This panel
shows the normalized histogram of predicted probabilities for the test set, dis-
tinguishing between positive and negative predictions. D-H Confusion Matrices
for Individual Folds: These panels display the confusion matrices for different
cross-validation folds (Fold 0 through Fold 4, respectively). In each matrix, true
labels are compared to predicted labels. The Positive Percent Agreement (PPA) is
indicated at the top of each confusion matrix.

proportion of false negatives relative to the total cases, while the y-axis
displays the true negative rate (true negatives divided by total cases) for
the red curve and PPA for the blue curve. As the positive weight in the
loss function increases, the blue curve shifts toward the top-left,
reflecting improved PPA and reduced false negatives. However, this
gain in PPA comes at the expense of a reduction in the true negative
rate, as shown by the red curve shifting toward the bottom-left. This
trade-off highlights how adjusting the positive weight can balance PPA
and NPA based on the desired use case.

ALK fusion model performance

Similarly to the ROS! fusion model, we also trained an ALK fusion model by
initially training on the RAN dataset and subsequently fine-tuning it to
predict ALK fusions. The results from the test set across different folds are
displayed in Fig. 4. The ROC curves and corresponding ROC AUC values
for each fold are shown in Fig. 4A, with the average ROC AUC displayed at
the top of the plot. Figure 4B presents the precision-recall curves for the
different folds (mean PR AUC: 0.20 +0.03, compared to 0.1 +0.03 for
ROSI), while Fig. 4C displays a normalized histogram of predicted prob-
ability values. The confusion matrices for each fold are shown in Fig. 4D-H.
Overall, these results indicate that although the ALK fusion model’s average
ROC AUC is very similar to that of the ROS! fusion model, the ALK fusion
model achieves a higher average PPA (0.57 vs. 0.50). This improvement is
likely attributable to the larger number of positive ALK fusion cases com-
pared to ROSI fusion positive cases.

To further validate the ALK fusion model, we evaluated its perfor-
mance on a separate holdout set. The results were largely comparable to the
test set, as shown in Supplementary Fig. 3 and Supplementary Table 4, with a
reduction in PPA on the holdout set (0.54) compared to the test set (0.59).
Performance metrics, including ROC AUC (0.84 holdout vs. 0.85 test),
accuracy (0.90 for both datasets), PPV (0.11 holdout vs. 0.12 test), F1-score

(0.19 holdout vs. 0.20 test), and NPA (0.91 for both datasets) consistent
across both sets. This consistency suggests that the model’s performance
generalizes well, and the small decrease in PPA does not significantly impact
overall reliability.

ALK model performance stratified by specimen type. Similar to the
ROSI analysis, we evaluated the ALK fusion model’s performance
separately for biopsy and resection cases to explore whether specimen
type affected prediction outcomes.

On the test set, both specimen types achieved similar AUC values—
0.85 for biopsies and 0.86 for resections—but resection samples demon-
strated higher sensitivity. Specifically, PPA was 0.56 for biopsies and 0.64 for
resections, with corresponding PPVs of 0.11 and 0.14, and F1-scores of 0.19
and 0.23. Accuracy and NPA remained stable across groups (0.90-0.91 for
accuracy and 0.91 for NPA).

In the holdout set, biopsy and resection AUCs were 0.84 and 0.85,
respectively. As with the test set, resections achieved stronger performance
on sensitivity-based metrics: PPA reached 0.60 compared to 0.50 for
biopsies, PPV was 0.14 vs. 0.10, and F1-score was 0.23 vs. 0.16. Accuracy was
0.90 for both subgroups, and NPA was 0.91 for biopsies and 0.90 for
resections. Stratified results for the ALK model are summarized in Table 4.

Effect of positive weighting on ALK fusion model

Similar to the ROSI fusion model, we examined the impact of increasing the
positive weight of the loss function on various metrics for the ALK fusion
model. Table 5 shows that, akin to the ROSI fusion model, a higher positive
weight results in increased PPA but decreased accuracy and NPA on both
the test and holdout sets. Specifically, as the positive weight increases from 5
to 30, PPA improves from 0.59 to 0.82 on the test set and from 0.54 to 0.81
on the holdout set. However, this improvement in PPA comes at the cost of
accuracy, which decreases from 0.90 to 0.70 on both sets. PPV also drops
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Table 4 | Stratified performance metrics of the ALK fusion prediction model on the test and holdout sets

Test Holdout

AUC Acc PPA PPV F1 NPA AUC Acc PPA PPV F1 NPA
ALL 0.85 0.90 0.59 0.12 0.20 0.91 0.84 0.90 0.54 0.11 0.19 0.91
Bx 0.85 0.90 0.56 0.11 0.19 0.91 0.84 0.90 0.50 0.10 0.16 0.91
Rx 0.86 0.91 0.64 0.14 0.23 0.91 0.85 0.90 0.60 0.14 0.23 0.90

Results are reported for all cases (ALL), biopsy samples (Bx), and resection samples (Rx). Metrics inc

lude area under the ROC curve (AUC), accuracy (Acc), positive percent agreement (PPA), positive

predictive value (PPV), F1-score (F1), and negative percent agreement (NPA). Values represent the average performance across five cross-validation folds. A positive class weight factor of 5 was used in the

loss function.
Bx biopsy, Rx resection.

Table 5 | Impact of the positive weight (W) in the loss function on ROC AUC, accuracy (Acc), PPA, PPV, F1 score (F1), and NPA

across test and holdout sets

Test Holdout
w AUC Acc PPA PPV F1 NPA AUC Acc PPA PPV F1 NPA
5 0.85 0.90 0.59 0.12 0.20 0.91 0.84 0.90 0.54 0.11 0.19 0.91
10 0.85 0.82 0.72 0.08 0.15 0.83 0.85 0.82 0.69 0.08 0.15 0.83
20 0.85 0.74 0.8 0.06 0.12 0.73 0.85 0.74 0.78 0.06 0.12 0.74
30 0.85 0.70 0.82 0.06 0.10 0.69 0.84 0.70 0.81 0.06 0.11 0.69
These values represent the average across 5 folds for the ALK mode
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Fig. 5 | Impact of loss function weighting on ALK trade-off plots. Trade-off plots
for the ALK test sets with varying positive weights in the loss function: 5 (A), 10 (B),
20 (C), and 30 (D). The x-axis shows the false negative rate (false negatives as a
proportion of total cases), while the y-axis shows the true negative rate (true

False Negative / Total False Negative / Total

negatives as a proportion of total cases) for the red curve and PPA for the blue curve.
As the positive weight increases, the blue curve shifts toward the top-left, reflecting
enhanced PPA and fewer false negatives, while the red curve moves toward the
bottom-left, reflecting a reduction in true negatives.

from 0.12 to0 0.06, and NPA falls from 0.91 to 0.69 on the test set, with similar
trends observed on the holdout set. Despite these changes in PPA, PPV,
accuracy, and NPA across different weight settings, the ROC AUC remains
stable around 0.85. This highlights a limitation of ROC AUC as a metric in
scenarios with imbalanced data, as it does not fully reflect the trade-offs or
shifts in other performance metrics caused by changes in the positive weight.

Similarly to Fig. 3 for the ROSI fusion model, Fig. 5A-D illustrates the
trade-off for the ALK fusion model with varying positive weights (5, 10, 20,
and 30) in the loss function. Figure 5B demonstrates that a PPA near 1 can
be attained with a positive weight of 10 for the ALK fusion model, whereas
for the ROSI fusion model, a similar PPA level requires a positive weight
exceeding 30. However, this rapid increase in PPA for the ALK fusion model
comes with a trade-off, as seen in the lower true negative rate across the red
curve. This indicates that while the ALK fusion model achieves high PPA
more efficiently, it does so at a greater cost to NPA, resulting in a lower
proportion of true negatives overall. This difference emphasizes the model’s
suitability for scenarios where PPA is prioritized over NPA.

Model interpretability and visualization
The models we trained overcome the typical “black box” limitation of deep
learning by generating attention and classification maps that highlight tissue

regions contributing most to the final prediction. Figure 6 presents
thumbnail, attention, and classification maps for a ROSI-positive case (A, C,
E, G) and a ROSI-negative case (B, D, F, H). While some regions show high
classification values, their impact on the final prediction is minimal if the
corresponding attention values are low. High-attention areas primarily
correspond to regions dense with invasive tumor cells, reflecting their
biological relevance in predicting ROSI fusion status. These cells often
exhibit distinct morphological and molecular features critical to biomarker
prediction. Similarly, in the initial RAN classifier, attention maps frequently
focused on tumor regions with high nuclear density and architectural
complexity, suggesting these features may serve as general indicators of
fusion positivity across ROSI, ALK, and NTRK subtypes (heatmaps
not shown).

Discussion

Deep learning models have significantly impacted the field of computer
vision and histopathology image classification, excelling in tasks like cell
segmentation’' ™, image classification*™", image retrieval”™”, stain
normalization® >, and biomarker prediction®™ . These models face chal-

lenges, particularly with the immense size of WSIs which exceed the
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Fig. 6 | Visualization of model outputs for repre- A B
sentative ROS1-positive and ROS1-negative cases. Thumbnail Thumbnail
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A, C, E, G ROSI-positive case; B, D, F, H ROSI-
negative case. A, B Thumbnail images of the whole
slide. C, D Predicted attention maps. E, F Predicted
classification results. G, H Attention-by-
classification maps. These visualizations illustrate
how the model localizes key histologic features,
focusing on informative regions to differentiate
ROSI-positive from ROSI-negative samples.
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processing capabilities of standard GPU memory. This issue necessitates
segmenting WSIs into smaller, manageable tiles for batch processing.
Another hurdle in biomarker prediction is the absence of detailed
labels for these tiles, often only having slide-level labels available. This
challenge categorizes the learning process as weakly supervised, with Mul-
tiple Instance Learning (MIL) being a notable technique. MIL incorporates

an attention mechanism that prioritizes the most informative regions within
a slide, proving crucial for biomarker prediction using WSIs.

Vision transformers, inspired by transformers in natural language
processing, have recently shown promise in this domain. They employ a
robust attention mechanism to focus on key features in histopathology
images, despite only having access to slide-level labels. This capability
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represents a significant advancement, closely aligning computational
methods with clinical needs and facilitating the extraction of valuable
insights from complex data.

Our study contributes to this growing field by using vision transformer
models to predict ROSI and ALK gene fusions specifically in NSCLC. This
cancer type was selected due to its prevalence, the clinical importance of
identifying ALK and ROSI fusions for targeted therapy, and the need for
rapid, cost-effective alternatives to traditional diagnostic methods such as
FISH and IHC""°. Despite their accepted utility, the cost and time involved
in these traditional diagnostic techniques highlight the need for alternative
approaches.

Building on existing research in biomarker detection via deep
learning'*"***, our model leverages a large dataset of 33,014 cases,
including a wide range of specimen types such as resections and biopsies.
These have been collected from 2020 to 2023 and scanned using both
Philips and Leica systems, providing a rich and varied dataset that ensures
our models are adaptable across different clinical settings.

A key innovation in our approach is the two-step training process where
we initially train on a composite biomarker (RAN) and subsequently fine-
tune the model for specific biomarkers like ALK or ROSI fusions. ROS1, ALK,
and NTRK genes were selected for the combined label due to their similar
biological pathways, as all three fusion proteins lead to constitutive activation
of signaling pathways critical for tumorigenesis. ROSI fusion proteins lead to
constitutive activation of their kinase domain, stimulating key signaling
pathways: the RAS-MEK-ERK pathway (cell proliferation), the JAK-STAT3
pathway (cell growth and survival), and the PI3K-AKT-mTOR pathway
(cell growth and survival)*****. Similarly, ALK fusion proteins, such as EMLA-
ALK, persistently activate the ALK kinase domain, triggering the same
pathways—RAS-MEK-ERK (proliferation), JAK-STAT3 (growth and sur-
vival), and PI3K-AKT-mTOR (growth and survival)***, Finally, NTRK
gene fusions produce active TRK fusion proteins, activating the
RAS-MEK-ERK (proliferation), PI3K-AKT-mTOR (growth and survival),
and PLCy (differentiation and survival) pathways*®.

This method is particularly beneficial for ROS! fusions, where the
number of positive cases is very limited, enhancing the model’s ability to
detect these rare events more accurately. Figure 1 illustrates this, providing a
comparative analysis that demonstrates the efficacy of our train-finetune
approach. It highlights how this method improves model performance,
especially in cases with fewer positive instances, such as ROSI. For ALK,
however, the performance gain is more modest, which may be attributed to
the larger number of ALK fusion-positive cases in our dataset (589 vs. 260
for ROSI; see Table 1), potentially buffering the impact of different training
strategies.

In addition to overall performance, stratified analysis by specimen type
(Tables 2 and 4) revealed consistent trends across both ROSI and ALK
models. Although AUC and accuracy values were comparable between
biopsies and resections, resection samples consistently achieved higher
sensitivity-related metrics, including PPA, PPV, and F1-scores. This may be
attributed to the greater tissue context and cellular diversity available in
resection specimens, which can aid the model in identifying fusion-
associated morphological features. These observations highlight the rele-
vance of specimen type in interpreting model predictions and suggest that
resection-based predictions may be more informative in certain clinical
contexts.

Our use of trade-off plots in Figs. 3 and 5 provides a framework for
healthcare administrators and researchers to explore the potential financial
and clinical impact of using a pre-screening model. An accurate and cost-
effective pre-screening model that confidently identifies a substantial por-
tion of cases as negative would significantly reduce the number of cases
requiring comprehensive NGS analysis”*. While patients with NSCLC will
undergo NGS profiling for comprehensive biomarker identification, the
proposed model offers a targeted pre-screening mechanism to prioritize
testing for ALK and ROS] fusions. This targeted approach reduces costs and
accelerates clinical trial enrollment for therapies addressing these specific
alterations. As an example, in a dataset of 1000 cases, if a model reliably

identifies 500 as negative, only half would require NGS testing, resulting in
considerable cost savings. However, it remains essential that any pre-
screening model minimizes false negatives, as misclassifying positive cases
could lead to missed opportunities for appropriate therapy.

The trade-off plots illustrate the balance between time and cost savings,
and the risk of missing patients with actionable tumor-driving gene fusions.
Therefore, maintaining high PPA is critical to minimize the risk of false
negatives, as missing positive cases could lead to missed diagnostic oppor-
tunities and inappropriate therapy. Our two-step training approach not
only improves the model’s accuracy but also enhances its clinical viability by
reducing unnecessary testing and focusing resources on cases most likely to
benefit from further analysis.

While these trade-off scenarios highlight the potential for cost-effective
pre-screening, it is important to clarify that the primary intended role of our
model is not to replace standard diagnostic tools such as IHC or RNA
sequencing. Rather, we envision it as a decision-support tool that can assist
clinicians and diagnostic labs in prioritizing and triaging cases for molecular
testing. Especially in settings with limited resources or high sample volumes,
the model can help direct attention to cases more likely to harbor actionable
fusions, thereby optimizing the diagnostic workflow. Full integration into
clinical decision-making would, of course, require rigorous external vali-
dation and alignment with existing diagnostic guidelines.

This study also addresses the bias typically seen in machine learning
due to the uneven distribution of positive and negative cases. By adjusting
the training dataset’s class distribution and modulating the loss function’s
positive weight, we improved PPA without notably affecting the ROC AUC.
As shown in Tables 3 and 5, these adjustments to the loss function’s weight
factor had substantial effects on PPA, PPV, and accuracy, while the ROC
AUC remains relatively stable across different weight factors, consistently
around 0.85-0.86. This stability indicates that the models maintained a
robust overall ability to distinguish between positive and negative cases.

While ROC AUC is an important metric for evaluating classification
performance, it may not fully reflect the challenges posed by class imbalance.
For instance, increasing the positive class weight improves PPA but may
reduce overall accuracy. This occurs because the model is penalized more
heavily for misclassifying positive samples, while misclassifications in the
much larger negative class are penalized less. As a result, even slight
increases in false positives—among the dominant negative class—can sig-
nificantly reduce accuracy, which is defined as the proportion of all correctly
classified cases. This trade-off highlights how the stability of ROC AUC can
obscure meaningful shifts in performance, particularly in imbalanced
datasets. Metrics such as PPA and PPV provide more granular insights into
the model’s behavior on the minority class, which is essential for assessing
clinical applicability. Precision-Recall (PR) curves, which focus on the
performance of the positive class, may offer complementary insights to the
ROC AUC and should be considered in future evaluations to provide a more
comprehensive understanding of the model’s performance under imbal-
anced conditions.

The attention maps shown in Fig. 6 show that for both cases our model
predominantly focuses on the tumor regions, as indicated by the shift from
blue to yellow, with yellow denoting higher attention levels. In the classifi-
cation map for the ROSI fusion negative case, several non-tumor areas are
incorrectly marked with a higher likelihood of ROSI fusion positivity
(shown in darker red). However, these areas receive little attention from our
model, minimizing their impact on the final decision. This demonstrates the
model’s effectiveness in distinguishing relevant from irrelevant areas in the
analysis.

In addition to using MoCo-v3, we also integrated CTransPath features
into our model training. Due to the unavailability of the source code for
CTransPath, we were unable to fine-tune the model on our specific dataset
and instead relied on the pretrained weights provided by the original
developers. This approach resulted in ROC AUC values that were about 0.05
lower than those achieved with MoCo-v3, highlighting the critical role of
both the feature extractor and the training dataset in achieving optimal
model performance. To address the limitations imposed by reliance on
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pretrained weights, we are currently developing our own feature extraction
pipeline, aiming to further improve model accuracy and suitability for our
dataset.

While our findings demonstrate the promise of deep learning for
fusion prediction, several limitations of this study should be acknowledged.
One limitation relates to the use of feature extractors. Since completing the
primary analyses for this study, several newer large-scale feature extractors
have been introduced, such as PathCLIP®, Virchow”’, Virchow 2”°, UNT”,
and CONCH', which have demonstrated impressive performance across a
variety of pathology tasks. While benchmarking these contemporary
models is an important future direction, applying multiple extractors across
a dataset of this scale (33,014 WSIs) presents substantial computational
challenges. We acknowledge this as a limitation and encourage future stu-
dies to systematically evaluate the comparative performance of emerging
feature extraction backbones in large-scale molecular prediction tasks.

A further consideration is the resolution of image tiles used for feature
extraction. To improve computational efficiency, our feature extractor
model was trained on 10x magnification tiles. While this choice offers
scalability, it may result in the loss of finer cellular details that higher
resolutions might capture. Incorporating higher-resolution tiles could
potentially enhance performance, albeit with greater computational
demands.

We also recognize the limitation posed by the low number of positive
cases for ROS!I and ALK fusion prediction, despite our dataset being sig-
nificantly larger than those used in similar studies. This constraint reflects
the inherently low prevalence of these alterations in NSCLC and is not
unique to our dataset, but it nonetheless affects model training.

Another limitation is the absence of external independent validation.
Although our dataset includes tissue samples submitted from hundreds of
hospitals across the United States, all samples were processed and scanned
within the same laboratory environment at Caris Life Sciences. As a result,
while the data reflect broad clinical diversity in terms of origin, the imaging
conditions are standardized. Consequently, the internal holdout set should
not be interpreted as a fully independent external cohort, and future work
should evaluate generalizability on data acquired under different scanning
and processing conditions.

The study also lacks information on whether patients received prior
treatments such as neoadjuvant therapy. While such treatments could
potentially influence tissue morphology, our study focused on predicting
fusion status as determined by RNA sequencing, which remains a stable
ground truth regardless of treatment history. Moreover, because the dataset
reflects routine clinical practice across a broad range of institutions, it likely
includes both treated and untreated cases. As a result, the model was trained
on morphologically heterogeneous samples, potentially capturing variation
introduced by different clinical contexts. Nonetheless, the absence of explicit
treatment metadata limits our ability to stratify performance by treatment
history, and future work could explore this aspect in more detail.

Lastly, while the train-finetune approach demonstrates clear advan-
tages in improving PPA for rare biomarkers like ROSI fusions, it introduces
a trade-off in NPA. Pretraining on the composite RAN label, which groups
ALK positive, NTRK positive, and ROSI positive cases together, biases the
model towards identifying these fusions collectively. As a result, the train-
finetune model shows an increased tendency to classify ALK positive or
NTRK fusion positive cases as ROSI fusion positive, leading to a higher false
positive rate compared to direct training. This trade-off is evident in our
analysis, where the train-finetune model produced 252 false positives for
ALK/NTRK fusion positive cases, compared to 103 in the direct model.
Despite this, the primary objective of minimizing missed ROSI fusion
positive cases is achieved, making the trade-off acceptable in clinical sce-
narios where PPA is paramount. This underscores the importance of tai-
loring model performance to the specific requirements of the use case,
balancing the risks of false positives against the need to detect rare,
actionable biomarkers.

In summary, by integrating deep learning into the diagnostic process,
we aim to enhance the accuracy, efficiency, and cost-effectiveness of

detecting ALK and ROSI fusions in NSCLC. This advancement holds the
potential to streamline and improve oncology diagnostic tests, ultimately
providing better outcomes for cancer patients.

Methods

Data acquisition and preprocessing

The dataset used in this study was derived from the Caris Life Sciences
database, which comprises clinical specimens submitted from a wide range
of healthcare institutions across the United States. These include hundreds
of regional hospitals and medical centers, providing substantial diversity in
both patient demographics and pre-analytic workflows. Among the 33,014
NSCLC patients available in this database, 306 were diagnosed as ROSI-
fusion positive and 697 as ALK-fusion positive (Table 1). This heterogeneity
and scale make the dataset well-suited for developing generalizable machine
learning models.

WSIs were acquired at Caris Life Sciences laboratories using Leica and
Philips scanners, introducing variability in imaging characteristics such as
resolution, color profile, and compression. This variation mirrors real-world
deployment conditions and further supports the robustness of the trained
models.

ROSI, ALK, and NTRK fusion statuses were determined using a
clinically validated next-generation sequencing (NGS)-based fusion assay
performed by Caris Life Sciences. This assay detects gene fusions through
targeted RNA sequencing and is certified under the Clinical Laboratory
Improvement Amendments (CLIA) and accredited by the College of
American Pathologists (CAP). This ensures that the fusion status labels used
as ground truth for model training and evaluation are based on a gold-
standard diagnostic method.

To prepare slides for model input, we applied a custom tissue pre-
processing pipeline designed to identify diagnostically relevant tissue
regions while excluding background and image artifacts. The process began
with the extraction of low-resolution thumbnail images from each whole
slide, which were used to identify and exclude blurry areas based on
Laplacian edge detection smoothed by a Gaussian filter. Flat regions lacking
sufficient texture were also removed using local averaging filters that detect
uniform intensity. Small, isolated fragments and holes within tissue regions
were handled through morphological operations that remove small objects
and fill in small gaps to improve tissue mask continuity. To further refine the
mask, enclosed low-density areas resembling fat were excluded, and dark
artifacts such as printed slide labels were removed using intensity- and
shape-based heuristics. These filtering steps were applied in sequence,
each refining a shared binary mask to ensure only high-confidence,
artifact-free tissue regions were retained. From the resulting tissue
mask, we extracted non-overlapping tiles measuring 224 x 224 pixels
at 10x magnification. These tiles were subsequently used in both the
self-supervised learning phase and the downstream feature
aggregation model.

Experimental design

We designed a two-phase deep learning pipeline comprising: (1) self-
supervised pretraining on histopathology tiles using MoCo-v3™, and (2)
training of a vision transformer-based model to aggregate features for
biomarker classification®. This two-stage approach allowed us to first learn
generalizable visual representations from unannotated data, which were
then used for biomarker-specific classification.

To begin, we set aside 15% of the entire dataset as an independent
holdout set for final evaluation (Table 1). Because the tissue samples are
collected from hundreds of submitting institutions across the United States,
this random sampling strategy ensures that the holdout set also includes
data from a diverse range of healthcare centers, supporting a robust eva-
luation of model generalizability. The remaining 85% constituted the CV
set, which was used for both self-supervised pretraining and subsequent
model training and evaluation. The MoCo-v3 model was trained exclusively
on this CV set before any supervised learning or feature aggregation
took place.
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Fig. 7 | Overview of the self-supervised learning and two-step training framework
for biomarker prediction. A Splitting the ROSI dataset into a cross-validation (CV)
dataset and a holdout dataset, followed by training the MoCo-v3 model using the CV
dataset. The trained MoCo-v3 model maps each tile to a feature vector of dimensions
1 x 384. These vectors are subsequently utilized to train a vision transformer-based
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Biopsy vs. resection label assignment
To assign specimen type labels (biopsy vs. resection) to WSIs, we used a
dedicated classification model trained independently of the current study.
This model was developed using a separate dataset comprising 1695 WSIs
from diverse tissue lineages, including 836 biopsies and 859 resections.

Because the classification task relies on coarse morphological and
contextual features rather than fine-grained cellular or molecular details, we
used slide-level thumbnail images as input and adopted the VGG19 con-
volutional neural network architecture’’, which is well suited for such
image-level classification tasks. Thumbnail images were resized to 224 x 224
pixels, and the input pipeline included standard augmentation techniques
such as flipping, rotation, and color jitter.

The model was trained using cross-entropy loss, the Adam optimizer
(learning rate = 0.001), a batch size of 32, and 25 training epochs. This model
was used to assign specimen type labels to all WSIs in our analysis pipeline.

Feature extractor model

Self-supervised models, a subset of unsupervised learning approaches,
leverage the data itself for learning. This approach is particularly advanta-
geous in histopathology due to the abundance of unlabeled data and the high
cost of expert annotations. In our study, we adopted this strategy to enable
scalable representation learning without expert labels.

We utilized the MoCo-v3 model™ as our feature extractor. The
choice of MoCo-v3 was influenced by its optimized implementation,
the availability of open-source code, and its demonstrated success
across a range of applications. MoCo-v3 uses a vision transformer
backbone to encode image tiles into latent feature vectors. Its archi-
tecture includes two encoders: a query encoder, which is updated via
gradient descent, and a key encoder, which is updated more slowly
using momentum updates. This dual-encoder structure helps maintain
consistent representations of negative samples across training steps. Its
contrastive learning strategy involves matching randomly augmented
crops of the same tile, which improves model stability and enhances
robustness to common histopathology batch effects. The model pro-
cesses each 224 x 224 pixel tile and outputs a 384-dimensional feature
vector through the query encoder. This dimensionality follows the
default configuration of MoCo-v3’s ViT-Small backbone, which was
chosen to strike a balance between model expressiveness and

computational efficiency, particularly important for large-scale feature
extraction across tens of thousands of whole slide images.

For training, we selected 20 random tiles from each slide in the CV set.
The model was initialized using pretrained MoCo-v3 weights from Wang
et al.”’, available on their GitHub repository’’. Hyperparameters were set
according to Supplementary Table 1.

After training the MoCo-v3 model, features were extracted from
each tile of every WSI. Each tile, sized 224 x 224 pixels, was processed
by the model to produce a 384-dimensional feature vector. For each
WS, all tile-level feature vectors were stacked to form a matrix of size
n_tiles x 384, where n_tiles denotes the number of tiles extracted from
the WSIL. This matrix organized the learned features for further
downstream analysis. The full workflow for data splitting and MoCo-
v3 training is illustrated in Fig. 7A. As also shown in this figure, the
extracted features are used in the subsequent training of a vision
transformer-based feature aggregation model, described in the next
section.

Feature aggregation model

To generate slide-level predictions from tile-level features, we employed a
vision transformer-based aggregation model. This model learns to integrate
information across multiple image regions, attending to the most relevant
tiles to predict molecular status. Because transformer-based architectures
are well-suited for capturing contextual dependencies, they are ideal for
modeling spatial relationships across histopathology tiles.

The aggregation model architecture begins with a projection layer that
transforms the n_tiles x 384 feature vectors into n_tiles x 512 vectors. These
projected vectors, along with a classification token (CLS), are passed
through two transformer layers, each with 8 attention heads. The output is
then processed by a multi-layer perceptron (MLP) layer, which generates a
prediction for the specific biomarker™.

Initially, we directly trained a model on the ROSI dataset; however, we
encountered a significant limitation due to the small number of ROSI-
positive cases, which is suboptimal for training deep learning models. As
noted in the “Experimental Design” section, 15% of the data was set aside as
a holdout set, leaving 260 ROSI-positive cases in the CV set out of the total
306 available (Table 1). To overcome this challenge, we relabeled our CV
dataset using a new combined label termed RAN (ROSI-ALK-NTRK).
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These three genes were selected due to their shared biological role in acti-
vating overlapping oncogenic signaling pathways (detailed rationale pro-
vided in the Discussion). A sample was classified as RAN-positive if it
contained any gene fusion of ROSI, ALK, or NTRK, and RAN-negative if
none of these gene fusions were present. This relabeling strategy increased
the number of positive cases from 260 (ROSI) to 872 (RAN). We first trained
a model to predict RAN status and subsequently fine-tuned it to predict
ROSI fusions.

Cross-validation design and training

As illustrated in Fig. 7B, we constructed five independent stratified splits
from the CV set based on the RAN label. Each split consisted of 60% for
training, 20% for validation, and 20% for testing. The model was first trained
to predict RAN status on these splits and then fine-tuned to predict ROSI
status using the same splits, ensuring no contamination between the first
and second training phases.

This three-way train/validation/test split approach enables unbiased
hyperparameter tuning, unlike simpler train/validation setups where the
final performance may be indirectly influenced by the validation set. In the
training set, the negative class was randomly downsampled to be five times
the size of the positive class, and the loss function assigned a weight of 5 to
the positive class. Multiple sampling and weighting configurations were
tested, and the one achieving the best trade-off between PPA and NPA on
the validation set was selected.

In addition to evaluating performance on the test set of each split, we
also assessed each trained model on the 15% holdout set that was reserved
prior to pretraining the feature extractor. This confirmed that the final
results were not influenced by any data seen during self-supervised training.

Heatmap generation and model interpretation

To interpret model predictions and visualize spatial patterns, we generated
heatmaps using the framework developed by Wagner et al.”. Attention maps
indicate which regions of a WSI had the greatest influence on the final pre-
diction. These maps are derived from the self-attention mechanism of the
transformer-based aggregation model, where each tile’s feature vector is
treated analogously to a token embedding in natural language models. For each
tile, the model computes query, key, and value vectors. Attention weights are
obtained via scaled dot-product between queries and keys, followed by softmax
normalization. These weights determine the contribution of each tile (value) to
the final slide-level representation. To quantify this influence, we applied
attention rollout across all transformer layers, which recursively aggregates
attention scores and accounts for residual connections”.

In parallel, we produced classification maps showing the predicted
class for each tile based on its feature representation. Although the model
was trained to predict slide-level fusion status, we approximated tile-level
classification scores by passing each tile’s feature vector independently
through the trained classifier. While this approximation is not explicitly
trained for tile-wise prediction, it offers insight into which regions exhibit
biomarker-associated morphology.

Finally, we generated attention-weighted classification maps by element-
wise multiplying tile-level classification scores with their corresponding
attention scores. This highlights tiles that were both predictive and influential,
providing interpretable spatial context to support model transparency.

Data availability

The data and datasets utilized in this study are available from the corre-
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