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Molecular characterization and
prognostic implications of KRAS
mutations in pancreatic cancer patients:
insights frommulti-cohort analysis
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Huirong Xu6

KRAS mutations drive pancreatic adenocarcinoma (PDAC) progression. This study investigates
molecular heterogeneity among KRAS subtypes and their prognostic implications. This study
explores KRAS mutations in PDAC, analyzing molecular heterogeneity and prognosis across our
hospital cohort (SDFM, n = 113) with TCGA cohort (n = 183) and QCMG cohort (n = 383).KRAS, TP53,
CDKN2A, and SMAD4 were the main mutated genes. Co-mutations of KRAS with TP53, and TP53
with CDKN2A, correlated with higher tumor mutation burden and poorer outcomes. KRAS subtypes
G12DandQ16&others hadworse prognosis thanG12VandG12R.Combining TP53 statuswithKRAS
subtypes improved risk stratification: high-risk patients had shorter survival (P ≤ 0.001), higher PD-L1
expression, P53 pathway alterations, fewer CD4+/CD8+ T cells and macrophages (p < 0.05), but
more neutrophils (p < 0.001). These findings underscore the prognostic impact of KRAS and TP53
mutations, guiding personalized treatment.

Globally, pancreatic cancer is the 12th most common cancer, and the
seventh leading cause of cancer-related deaths1. In Asia, the incidence of
pancreatic cancer is increasing2. Pancreatic cancer is notorious for its high
degree of malignancy. Due to the lack of distinctive clinical symptoms and
early diagnostic tools, many patients are diagnosed at late stages of the
disease, leading to poor prognosis, with a 5-year survival rate of only 10%3–5.
Pancreatic adenocarcinoma (PDAC) is themost commontypeofpancreatic
cancer, accounting for approximately 85% of all types of pancreatic cancer.
The advancement of molecular diagnostics has enabled researchers to
gradually pinpoint targets for treating PDAC, including KRAS6–8.

KRASmutations are the most prevalent genetic alterations in PDAC,
occurring in approximately 90%of cases9,10.However, the specificmolecular
structure of KRAS results in its low drug ability. Cancer-associated

mutations inKRAS cluster in one of three hotspots, with amajority (84%) of
mutations causing single amino acid substitutions at G1211. Of the possible
single-base missense mutations that can occur at G12, G12D is the most
predominant (42%), followed by G12V. Currently, Adagrasib6,7 and
Sotorasib8 can be used for targeted therapy inPDACpatientswith theKRAS
G12Cmutation.However, asG12Cmutations are relatively low, thismeans
that the majority of PDAC patients with G12D and G12Vmutations face a
lack of targeted therapies. In a recent cohort study from MDA, the overall
positive rate ofKRASmutations was 82%, with themost commonmutation
being KRAS G12D (39%), followed by KRAS G12V (31%), KRAS G12R
(14%), KRAS Q61 (6%), and other rarer KRAS variants (9%)12. In terms of
prognosis, patients withKRASG12D orKRASQ61mutations have a lower
survival rate compared to KRAS wild-type patients, regardless of disease
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stage. The overall survival of patients withKRASG12Rmutations is similar
to that of wild-type patients. Other studies have also indicated that different
KRASmutations have varying impacts on prognosis13,14.

Considering the significant roles of KRAS in PDAC, we conducted
analyses to examine the influence of KRAS mutations on the molecular
characteristics of patients. Our study aimed to provide new insight into
KRAS mutations and the development of PDAC. These findings will pro-
vide a theoretical foundation for future research on targeted treatments
for PDAC

Results
Mutation overview and analysis
To characterize the mutational landscape of PDAC, we analyzed genomic
profiles from three independent cohorts. Consistent with the known
molecular architecture of PDAC9, KRAS and TP53 were the most com-
monly mutated genes across all datasets (SDFM, TCGA, QCMG), followed
by CDKN2A and SMAD4 (Fig. 1A–C). Statistically significant co-
occurrence was observed between KRAS and TP53, as well as between
TP53 and CDKN2A (p < 0.05 in all cohorts; Fig. 1A–C).

Mutations in KRAS, TP53, and CDKN2A were consistently associated
with significantly elevated TMB compared to their respective wild-type
groups across all cohorts (p < 0.05; Fig. 1D–F and Table S1), whereas
SMAD4 mutations were not significantly associated with TMB. Despite
these associations, overall TMB levels remained low, with mean values
ranging from 0.86 to 3.13 mutations per megabase (Table S1).

Survival analysis based on mutation analysis
To investigate the impact ofKRAS,TP53,CDKN2A, and SMAD4mutations
on prognosis, we conducted a univariate regression analysis of OS using the

TCGA cohort data. The results are depicted in Fig. 2A. Factors such as age,
KRAS, and TP53 mutations showed significant associations with overall
survival (OS) (p < 0.05). In the multivariate regression analysis (Fig. 2B),
only KRAS mutation and age remained significant factors (p < 0.05).
Detailed information on regression analysis is provided in Table S2.
Kaplan–Meier survival analysis revealedmutations inKRAS andTP53were
significantly associated with both poorer OS and progression-free survival
(PFS) (p < 0.05) (Fig. 2C,D). CombinedKRAS andTP53mutations result in
the worst survival outcomes (p < 0.05) (Fig. 2E). However, no significant
difference in OS or PFS between PDAC patients aged <65 and those aged
≥65 (Fig. S2).

Survival analysis of PDAC patients with KRASmutation
In our genetic mutation prognosis analysis, we further differentiated KRAS
mutations. Figure 3A shows that the KRAS G12D, G12V, and G12R
mutations were predominant across all three cohorts, followed by KRAS
Q61 and other mutations. Univariate and multivariate regression analyses
on the TCGA cohort with KRAS mutations (Table 1) revealed that the
G12D, Q61, and other mutations were associated with a worse prognosis
compared to the G12V mutation subgroup. Notably, the Q61 and other
mutations were statistically significant (P < 0.05). However, analysis of
clinical characteristics and driver gene mutations across the three cohorts
(Tables S3–S5) showed no significant differences in age, gender, tumor
stage, TP53, CDKN2A, SMAD4 mutations, TMB, and MSI (Fig. S1).
Kaplan–Meier survival analysis indicated that the KRAS G12D, Q61, and
other mutations had a worse prognosis, while G12R and G12V mutations
had the highest median OS or PFS (Fig. 3B). Further analysis of TP53,
CDKN2A, andSMAD4mutationswithinKRAS subgroups showedno inter-
group differences in TP53 (Fig. 3C), CDKN2A (Fig. S3A), or SMAD4 (Fig.

Fig. 1 | Mutation overview and analysis for SDFM, TCGA, and QCMG cohort.
The mutation landscape and co-mutation patterns of the top 20 genes in pancreatic
cancer patients were analyzed across three distinct cohorts: 113 patients from the
SDFM cohort (A), 183 patients from the TCGA cohort (B), and 383 patients from

the QCMG cohort (C); Additionally, in all three cohorts, PDAC patients with
mutations in KRAS, TP53, and CDKN2A exhibited significantly higher TMB values
compared to those with wild-type alleles (P < 0.01), whereas no significant corre-
lation was observed for SMAD4 mutations (D–F).
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S4A). However, TP53 mutations were significantly more prevalent in the
KRASG12DandQ61&othermutation subgroups compared to otherKRAS
mutations (p < 0.05) across all three cohorts.

Prognostic analysis (Fig. S5) revealed that TP53 mutations do not
significantly impact prognosis in cases with KRAS G12D mutations. In
contrast, KRAS G12V mutation is associated with poorer prognosis in
TP53-mutant patients, while TP53wild-type patients show relatively better
outcomes. Conversely, an opposite trend was observed in KRAS G12R
mutation cases. Further analysis of KRAS mutation subtypes in TP53-
mutant patients demonstrated thatKRASG12Rmutation is associatedwith
significantly better prognosis compared to other subtypes (Fig. 3D,
P < 0.01). InTP53wild-type patients,KRASG12Vmutation was linked to a
relatively better prognosis (Fig. 3E).Notably, patientswith bothKRASG12R
and TP53mutations showed survival outcomes similar to those with wild-
type KRAS, while KRAS G12V mutation in TP53 wild-type patients (Fig.
S6). Conversely, no clear patternswere observed in prognosis analyses based
on CDKN2A (Fig. S3B–F) and SMAD4 (Fig. S4B–F).

Survival valuewith riskstatusand relevantdifferential expressive
gene analysis
In light of these observations, we categorized PDAC patients into high- or
low-risk cohorts based on their KRAS and TP53 mutation status, as deli-
neated below: Those with KRAS G12D or KRAS G12V mutations co-
occurringwithTP53mutations, aswell as thosewithKRASG12Rmutations
co-occurring with TP53wild-type orKRASQ61 and other mutations, were
designated as high-risk. Meanwhile, patients with KRAS wild-type, KRAS
G12V mutations co-occurring with TP53 wild-type, and KRAS G12R

mutations co-occurring with TP53 mutations were classified as low-risk
individuals. Based on this risk stratification, we conducted a prognostic
analysis in TCGA andMSK cohorts. As illustrated in Figs. 4A and S7, high-
risk PDAC patients demonstrated significantly shorter median OS, PFS,
DFS (disease free survival), andDSS (disease free survival) compared to low-
risk patients in TCGA cohort (p ≤ 0.0001). Multivariate regression analysis
further identified high-risk status as an independent predictor of poor
prognosis (Fig. 4B). The prognostic analysis of the MSK cohort further
validated that risk stratification based onKRASmutation status is a reliable
predictor of outcomes in PDAC patients (Fig. S8).

To understand the potential mechanisms underlying these prognostic
differences, we conducted a gene differential analysis. As depicted in the
heatmap (Fig. 4C), the gene expression profiles of high-risk patients show
obvious differences compared to low-risk patients. Specifically, high-risk
patients exhibit a marked upregulation of genes compared to low-risk
patients (232 vs 26, Fig. 4D). As shown in Fig. 4E, GO enrichment analysis
revealed that, in terms of Biological Processes, genes upregulated in high-
risk patients were significantly enriched in pathways related to epidermis
development, skin development, cornification, epidermal cell differentia-
tion, and keratinization. Regarding Cellular Components, highly enriched
categories included the intermediate filament cytoskeleton, anchored
components of the membrane, membrane components, intermediate fila-
ments, and lipid droplets. For Molecular Functions, the upregulated genes
were predominantly associated with retinol dehydrogenase activity, signal
receptor ligand activity, serine-type endopeptidase activity, serine-type
peptidase activity, and extracellular matrix structural constituents. Fur-
thermore, KEGG pathway enrichment analysis (Fig. 4F) identified

Fig. 2 | Prognostic analysis of clinical and molecular features. A Univariate Cox
regression analysis identified Stage II (HR = 2.42, p = 0.026), KRAS mutation
(HR = 0.44, p < 0.001), and TP53 mutation (HR = 0.59, p = 0.014) as significant
factors for overall survival (OS);BMultivariate analysis highlighted age (HR = 1.026,
p = 0.011) and KRAS mutation (HR = 0.571, p = 0.028) as independent prognostic

factors; C–E Kaplan–Meier survival analyses demonstrated: KRAS mutations are
associated with worse outcomes in both OS (p = 0.00032) and PFS (p = 0.01); TP53
mutations predict poorer survival compared to wild-type (OS: p = 0.013, PFS:
p = 0.0056); combined KRAS and TP53 mutations result in the worst survival out-
comes (OS: p = 0.0023, PFS: p = 0.011) in TCGA cohort.
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significant enrichment in key signaling pathways, including retinol meta-
bolism, estrogen signaling, and PPAR signaling. Collectively, these findings
suggest that the gene expression profile of high-risk patients is marked by
the activation of pathways related to epidermal development, cytoskeletal
organization, and signal transduction.

Analysis of tumor signaling pathways with risk status
To further investigate the underlying mechanisms, we conducted a differ-
ential mutation analysis of oncogenic signaling pathways. In the SDFM
cohort, high-risk patients exhibited a higher TP53 pathway mutation rate
(96.2% vs. 67.86%, p < 0.001) (Fig. 5A and Table S6). In the TCGA cohort,
high-risk patients showed highermutation rates inTP53 (96.2% vs. 67.86%,
p < 0.001), Cell Cycle (34.07% vs. 5.95%, p < 0.001), TGF-Beta (32.97% vs.
19.05%, p < 0.05), and Hippo (29.67% vs. 16.67%, p < 0.05) signaling
pathways (Fig. 5B and Table S6). In the QCMG cohort, high-risk patients

exhibited highermutation rates in TP53 (76.23% vs. 51.28%, p < 0.001) and
WNT (21.13% vs. 8.55%, p < 0.01) signaling pathways (Fig. 5C and Table
S6). The corresponding pathwaymutation profiles are shown in Fig. 5D–F.
The three cohorts exhibited significant differences in the TP53 pathway,
consistent with the analysis of clinical characteristics and driver mutation
status between high-risk and low-risk groups (Tables S7–S9).

Analysis of PD-L1 expression and immune infiltration with
risk status
We further analyzed the association between mutations in KRAS, TP53,
CDKN2A, and SMAD4 with PD-L1 expression levels. When setting the
threshold of PD-L1 expression using TPS at 1%, a significantly higher
proportion of PD-L1 positivity was observed in patients with PDAC har-
boring KRAS or TP53 mutations compared to wild-type cases, with the
increase being particularly pronounced inTP53-mutated patients (P < 0.05)

Fig. 3 | KRAS subtypes and TP53 mutation status: distribution and clinical
significance. A Bar charts illustrating the distribution of KRAS mutation subtypes
(G12D, G12V, G12R, Q61X, and other KRAS mutations) in the SDFM (n = 113),
TCGA (n = 183), and QCMG cohorts (n = 383); B Kaplan–Meier survival curves
showing OS and PFS stratified by KRASmutation subtypes in TCGA cohort; C Bar

charts representing the proportion of TP53 mutation status within each KRAS
mutation subtype across the three cohorts; D, E Kaplan–Meier survival curves
illustrating OS and PFS for KRASmutation subtypes (G12D, G12V, G12R) in TP53
mutation and TP53 wildtype groups.
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(Fig. 6A, B). Similarly, a higher proportion of PD-L1 positive cases was
noted in the high-risk group compared to the low-risk group, although the
difference did not reach statistical significance (Fig. 6C). When the TPS
threshold was gradually increased to 5% and 10%, a similar distribution
trend in PD-L1 expression was consistently observed (Fig. S9). Notably, the
trend appearedmore prominent at the 5% threshold, suggesting a degree of
stability in the observed association (Table S10). However, when the
threshold was further increased to 50%, these differences in distribution
became less evident (Table S10). In contrast, mutations in CDKN2A and
SMAD4 showed no significant impact on PD-L1 expression across all
threshold settings (1%, 5%, or 10%) (Fig. S9). Moreover, we found no
significant correlation between PD-L1 expression and TMB levels (Fig. 6D
and Table S10).

Through the analysis of TCGA transcriptome data, it was found that
the mRNA expression level of CD274 was higher in high-risk patients
compared to the low-risk group, while the mRNA expression levels of
CTLA4 and PDCD1 were lower, although the differences were not statisti-
cally significant (Fig. 6E). However, we found the expression levels of
CD3(composed of CD3D, CD3E, and CD3G subunits) and CD8 (com-
posed of CD8A andCD8B subunits) weremarkedly elevated in the low-risk
group relative to the high-risk group (Fig. S10). The ESTIMATE immune
scoring analysis showed that the immune scores (including StromalScore,
ImmuneScore, and ESTIMATEScore) of high-risk patients were sig-
nificantly lower than those of the low-risk group (P < 0.05) (Fig. 6F and
Table S11). Further analysis of immune infiltration levels between the two
groups using TIMER (Fig. 6G) and QUANTISEQ (Fig. 6H) revealed that
the infiltration levels of CD4T cells andCD8T cells were significantly lower
in the high-risk group compared to the low-risk group (P < 0.05) (Table

S11). However, QUANTISEQ analysis also found that the infiltration levels
of Tregs and M2 macrophages were significantly lower in the high-risk
group (P < 0.05), while the infiltration levels of M1 macrophages and
neutrophils were significantly higher than those in the low-risk group
(P < 0.05) (Table S11).

Discussion
KRASmutations are a key event in pancreatic adenocarcinoma (PDAC). In
this study, we conducted a comprehensive analysis of KRASmutations and
their subtypes in the SDFM cohort, and performed parallel validation in the
TCGAandQCMGcohorts.Consistentwithprevious studies12,we identified
KRAS,TP53, SMAD4, andCDKN2Amutations as themost common driver
mutations in PDAC across all three cohorts. Additionally,KRASmutations
frequently co-occurwithTP53mutations,which in turn often co-occurwith
CDKN2Amutations. Prognostic analyses have shown thatKRASmutations
and TP53 mutations are associated with poorer prognosis, which is con-
sistent with earlier research on PDAC15,16. A preclinical study suggested that
KRAS and TP53 mutations synergistically promote PDAC growth and
metastasis through interactions with CREB117, potentially explaining the
poor prognosis associated with these mutations. Additionally, KRAS, TP53,
and CDKN2Amutations correlate with higher TMB, which is considered a
key factor in generating immune neoantigens18. However, despite this cor-
relation, TMB did not show a significant link to PDAC prognosis in this
study.Most patients had TMB values below the clinical threshold for TMB-
H (10 mutations/Mb), indicating that the role of TMB and these mutations
in prognosis and treatment warrants further exploration.

Our study found that the proportion of KRAS wild-type mutations is
approximately 10%, and the prognosis is better than that of KRASmutant

Table 1 | Univariate andmultivariate regression analysis of the association between overall survival and clinical characteristics
and key driver mutations in KRAS mutated PDAC patients from the TCGA cohort

Characteristics Total (N) HR(95% CI) Univariate analysis P-value Univariate analysis HR(95%CI) Multivariate analysis P-valueMultivariate analysis

Age 116 1.019 (0.997–1.042) 0.087 1.015 (0.992–1.039) 0.195

Sex 116

Male 69 Reference

Female 47 1.093 (0.685–1.745) 0.708

AJCC Stage 116

Stage I 8 Reference

Stage II 101 1.114 (0.404–3.073) 0.834

Stage III 3 1.352 (0.245–7.456) 0.729

Stage IV 4 1.127 (0.251–5.067) 0.876

KRAS 116

G12V 33 Reference Reference

G12D 48 1.748 (0.984–3.107) 0.057 1.715 (0.965–3.048) 0.066

G12R 25 1.062 (0.508–2.224) 0.872 1.070 (0.511–2.242) 0.858

Q61 8 2.954 (1.151–7.585) 0.024 2.712 (1.048–7.020) 0.040

other 2 5.574 (1.260–24.665) 0.024 4.906 (1.098–21.924) 0.037

TP53 116

Mut 90 Reference

Wild 26 0.688 (0.375–1.263) 0.227

CDKN2A 116

Mut 33 Reference

Wild 83 0.887 (0.527–1.493) 0.652

SMAD4 116

Mut 32 Reference

Wild 84 1.281 (0.750–2.189) 0.365

TMB 116 1.111 (0.734–1.682) 0.618

MSI 116 1.021 (0.853–1.222) 0.820
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types, which is consistent with previous research19. The analysis of KRAS
mutation subtypes in PDAC patients aligns with previous studies11,12,
showing KRASG12D, G12V, and G12R as the most common, followed by
Q61 and other rare mutations. Among them, G12D, Q61, and other
mutations are linked to shorter PFS and OS, while G12V and G12R
mutations are associated with better prognosis. This finding is consistent
with the research conducted by MD Anderson Cancer Center12,20. The
prognosis differences among G12D, Q61, G12V, and G12Rmutations may
stem from their distinct effects onKRASprotein function and the activation
of downstream signaling pathways. The G12D/Q61 mutations may
enhance RAF/MEK/ERK signaling21 or create an immunosuppressive
tumormicroenvironment22,23, promoting tumor proliferation, survival, and
invasion. Spatial profiling reveals revealed elevated oncogenic signaling and
epithelial-mesenchymal transition (EMT) in G12D tumors, whereas G12R
tumors exhibited increased nuclear factor κB (NF-κB) signaling20.

Given thehighprevalence ofTP53mutations across allKRAS subtypes,
with mutation rates exceeding 60%, particularly in the G12D, Q61, and
other mutant subtypes, we further explored the relationship between spe-
cificKRASmutations andTP53 alterations.Our analysis reveals, for the first
time, that TP53mutation status may impact the prognosis of patients with
certainKRASmutation subtypes. As previously reported24, theKRASG12D
mutation is associated with poorer survival outcomes, both independently
and in combination with TP53 mutations. In contrast, for KRAS G12V
subtype, those with the TP53 wild-type tend to have a longer survival than
those with TP53 mutations. TP53 mutations are linked to worse OS in
various cancers, including pancreatic adenocarcinoma (PDAC)20, likely due
to TP53’s critical role in tumor suppression and DNA repair. Mutations in
TP53 lead to uncontrolled cell cycle progression and accumulation of DNA
damage, exacerbating tumor malignancy. Research by Zou et al. suggests
that KRAS G12D and TP53 co-mutation patients exhibit a low Th1/Th2

Fig. 4 | Survival and relevant analysis with risk status. Kaplan–Meier plot of OS
and PFS with risk status and validation with MSK cohort (n = 2270) (A); multi-
variate regression analysis of the association between overall survival and risk status
in patients (B); the heatmap of gene differential expression profile between risk

status (C); the volcano map of gene up or downregulation in the high and low-risk
group (D); Bar graph of the GO enrichment analysis results in high-risk group (E);
Enrichment analysis plot of differential expression gene (F).
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ratio and an immunosuppressive microenvironment (high Treg, high ratio
of Treg to tumor-specific CD4+T cell), whileKRASG12V andTP53wild-
type patients show amore inflammatorymicroenvironment and significant
survival improvement following adjuvant chemotherapy25. Based on KRAS
mutation subtypes and TP53mutation status, PDAC patients are categor-
ized into high-risk and low-risk groups. The low-risk group, including some
patients with specific KRAS G12V and G12R mutations, exhibits sig-
nificantly better prognosis, as confirmed in the large-scale MSK PDAC
cohort10. Pathway enrichment analysis reveals that mutations in high-risk
patients are primarily concentrated in TP53 and cell cycle-related pathways,
with a particularly high co-occurrence rate of KRAS and TP53 mutations.
Previous studies have demonstrated a synergistic effect between KRAS and
TP53mutations in the development andmetastasis of pancreatic cancer17,26.
TP53 mutations cause abnormal exon retention, upregulating hnRNPK,
which promotes GAP17membrane localization and sustains Ras signaling,
driving tumorigenesis27. These findings underscore the importance of
considering TP53mutation status when treating KRAS-mutant pancreatic
cancer, underscoring the need for risk stratification.

IHC analysis of PD-L1 protein expression is a critical biomarker for
predicting immunotherapy response. Studies consistently show that high
PD-L1 expression in PDAC is associated with a poorer prognosis28–30.
Notably, patients exhibiting PD-L1 expression levels of ≥10%, as assessed
using the anti-PD-L1 monoclonal antibody SP142, demonstrated sig-
nificantly reduced disease-specific survival, as reported by Tessier-Cloutier
et al.30 Our findings further demonstrate that PD-L1 positivity is more
frequently observed in PDAC patients carrying KRAS or TP53mutations,
particularly those with TP53 mutations, and classified in the high-risk
group. Notably, the most pronounced difference in PD-L1 expression dis-
tribution was observed when a TPS threshold of 5% was applied. These
results suggest that PD-L1 positivity or upregulation may contribute to the
poor prognosis observed in these patients; however, further data are

required to substantiate this association. In immune infiltration analysis,
low-risk patients show higher levels of CD4/CD8 T cells and Treg cells,
which correlate with better prognosis across various cancers31,32.
CD4+ T cells activate CD8+ cytotoxic T cells, playing a vital role in anti-
tumor immunity33,34. However, in high-risk PDAC patients, reduced
CD4+ T cell infiltration weakens CD8+ T cell function, diminishing anti-
tumor responses and worsening prognosis. We also observed higher neu-
trophil infiltration in high-risk PDAC patients, which has been linked to
increased malignancy and poorer prognosis35. KRAS and TP53mutations,
common in high-risk PDAC, are associated with a higher density of
immunosuppressive myeloid cells like MDSCs and Tregs, which inhibit
CD4+ Th1 and CD8+T cell activity, creating an immune-tolerant
microenvironment36. TP53 mutations increase CD8+ T cell density, but
this effect is influenced by othermutations37.KRASmutations, in particular,
enhanceTreg conversion and suppressCD8+ Tcell anti-tumor activity38,39.
Furthermore, KRAS mutations elevate PD-L1 expression, contributing to
immune suppression and tumor progression40,41. Interestingly, tumors with
both KRAS and TP53 mutations exhibit higher PD-L1 levels, which have
been associated with better immunotherapy outcomes42,43, highlighting the
complex interplay between genetic mutations and immune responses in
PDAC prognosis.

This study has several limitations. First, although PDAC patients were
included, the sample size was small, and detailed pathological staging data
were unavailable. To mitigate this, two external PDAC cohorts were ana-
lyzed. However, some cohorts lacked complete clinical and prognostic data,
with notable imbalances in pathological stage distribution. Future studies
should focus on larger, well-characterized cohorts with balanced clinical
profiles for validation. Additionally, the unmeasured treatment modality
and performance status may affect the clinical generalizability of the risk
stratification. Future prospective studies should incorporate these factors to
refine the prognostic model. Second, this study’s SDFM cohort utilized a

Fig. 5 | Pathwaymutation analysis stratified by risk status. A–C Bar plots showing
the proportion of tumor signaling pathway mutations in high-risk and low-risk
groups across three cohorts: SDFM, TCGA, and QCMG. Statistical significance
between the groups was assessed using the Wilcoxon test, where “”, “”, and “”

represent P < 0.05, P < 0.011, and P < 0.001, respectively. Exploratory analyses with
FDR-adjusted p-values in Supplementary Table S6, see “Methods” for analysis
definitions;D–FHeatmaps showing the mutation profiles of pathway-related genes
for high-risk and low-risk groups in the three cohorts.
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639-gene panel to detect mutations and calculate TMB, rather than WES,
which might have some impact on the mutation profile and TMB calcu-
lation, although the results are quite similar to those of TCGA and QCMG.
Also, our study primarily focuses on molecular subtyping based on muta-
tional profiles, without in-depth analysis of transcriptomic or proteomic
data. Due to practical constraints, key transcriptional features of pancreatic
cancer subtypes, such as the classical and basal-like types, were not included.
Third, although we conducted prognostic validation using large-scale
cohorts,wedidnot account for the impact of postoperative adjuvant therapy
or systemic treatment, whichmay significantly influence survival outcomes.
The absence of treatment factors could limit the generalizability of our
findings. Therefore, future studies should incorporate these treatment
variables into the analysis to provide a more comprehensive evaluation of
their potential effects on prognosis. Lastly, the results of the mechanistic
analysis are based solely on the characteristics of the study cohort and
require further validation. Therefore, future studies should validate these
observations in larger cohorts and explore the functional significance of the
identified molecular changes, with the aim of providing a more robust
scientific foundation for the management and prognosis improvement of
pancreatic cancer patients.

In conclusion, the aforementioned findings provide a comprehensive
analysis of the complex molecular landscape of pancreatic cancer, with a

particular focus on the critical roles of different KRAS mutation subtypes
and TP53 mutations in patient prognosis. The risk stratification and
immune infiltration analysis based on these findings could offer significant
insights for personalized treatment strategies in PDAC, helping to identify
patient subgroups that may benefit from targeted or immunotherapy
treatments.

Methods
Patient and sample characteristics
This study included 113 patients diagnosedwith PDAC, confirmed through
pathological evaluation, and enrolled between June 2021 and December
2023 at Shandong Cancer Hospital, constituting the SDFM cohort. To
minimizepotential confounders and ensuredata accuracy, patientswhohad
previously received anti-RAS inhibitors or immune checkpoint inhibitors
(ICIs) were excluded, as these treatments could alter the tumor micro-
environment and mutation profiles. Additionally, inclusion was limited to
patients with both tumor tissue and paired blood samples available for
genetic analysis. Tumor tissue specimens, obtained via surgical resection or
biopsy, were required to contain at least 20% tumor cells to ensure the
reliability of genetic testing. Rigorous exclusion criteria were applied to
maintain the integrity of the study. Patients without a confirmed PDAC
diagnosis, those lacking either tumor tissue or paired blood samples, or

Fig. 6 | Immune analysis with risk status. A–CBar charts displaying the proportion
of PD-L1 expression (TPS ≥ 1%) stratified byKRASmutation status, TP53mutation
status, and risk status in SDFM cohort (n = 113). Statistical significance was eval-
uated using the Chi-square test, and p-values are indicated; D Correlation analysis
between TMB and PD-L1 expression. Spearman’s correlation coefficient (R) and
corresponding p-value are shown; E–HThe expression levels of immune checkpoint

genes (CD274, CTLA4, and PDCD1), ESTIMATE scores, TIMER immune infiltra-
tion scores, and QUANTISEQ scores between low-risk (blue) and high-risk (red)
groups in TCGA cohort, “*”, “**”, and “***” indicate P < 0.05, P < 0.011, and
P < 0.001, Wilcoxon rank-sum test. Exploratory analyses with FDR-adjusted
p-values in Supplementary Table S11, see “Methods” for analysis definitions.
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those with tumor samples containing less than 20% tumor cells, were
excluded to guarantee that the genetic analyses were based on high-quality,
representative tumor specimens. Clinical data, including patient age and
gender, were retrieved from medical records. All participants provided
written informed consent, and the study was approved by the institutional
review board of Shandong Cancer Hospital (SDTHEC2023011024) in
accordance with the Declaration of Helsinki.

DNA extraction and library construction
Tumor DNA and peripheral blood genomic DNA were extracted using
commercial kits from YunYing (Shanghai, China), specifically the Human
Tissue DNA Extraction Kit and the Human Blood Genomic DNA
Extraction Kit, respectively, following the manufacturer’s protocols. DNA
was eluted in the provided elution buffer, and its concentration and purity
were assessed using a NanoDrop spectrophotometer. All DNA samples
were stored at−20 °C until further processing.

Library preparation was carried out using the VAHTSUniversal DNA
Library PrepKit for Illumina (Vazyme,Nanjing, China), in accordancewith
themanufacturer’s instructions. Targeted enrichment was performed using
proprietary probes optimized by Shanghai YunYing,which cover the exonic
regions and selected intronic sequences of 639 cancer-associated genes (see
Table S12 for full gene list)44. Sequencing was conducted on an Illumina
NextSeq500 platform using standard protocols.

Next-generation sequencing (NGS)-based assay and bioinfor-
matics analysis
FastQCsoftware (version0.11.2) and customizedPython scriptwere used to
screenFASTQfiles,with the adaptor sequences and sequenceswithQbelow
30 removed. Clean reads were mapped to the reference human genome
GRCh37/hg19 using BWA (BurrowsWheeler Aligner version 0.7.7). BAM
files were then realigned and recalled usingGATK3.545, whichwas also used
to detect mutations. Duplicate sequences were removed using Picard
MarkDuplicates (version 1.35) to reduce any potential polymerase chain
reaction bias. VarScan (version 2.3.2)46 was used to select single-nucleotide
variations (SNVs) satisfying the following criteria: depth ≥ 100, reads ≥ 10,
and allele frequency ≥ 5% (if hotspot, ≥ 1%). Pindel (version 0.2.5b8)47 was
used for insertion or deletion (indel) detection using default parameters,
with at least 5 unique reads.

Compared with matched normal samples, somatic SNVs and
InDels of tumors were named and functionally annotated using
MuTect v. 1.1.4 and Varscan2 v. 2.3.9 software. Mutations with a
variant allele frequency of ≥5% were defined as high-confidence
mutations (≥1% for hotspots). Tumor mutation burden (TMB) was
calculated using the number of all somatic, coding, base substitution,
and indel mutations per megabase, including synonymous mutations.
The total number of mutations counted was divided by the size of the
coding region of the targeted territory (1.36 Mb of the coding genome)
to calculate the TMB per megabase. Microsatellite instability (MSI)
scores of all samples were calculated using MSIsensor48 with default
parameters, a software tool for quantifying MSI in genome sequencing
data using tumor-only or paired tumor-normal samples. We used 29
microsatellite sites as input files for MSI detection of tumor-only
patterns. The MSI score was defined as the percentage of unstable
microsatellites among all microsatellites used. Each microsatellite site
had at least 20 spanning reads and single-nucleotide mutations.

PD-L1 expression test
The PD-L1 expression level for each patient was determined using theDako
22C3 pharmDx system (Agilent Technologies Inc., Santa Clara, CA, USA)
assay, and the results are presented as a tumor proportion score (TPS)49.

Data collection and statistical analysis
This study utilized two external validation groups for comparative analysis
with the SDFM cohort: 184 PDACpatients from the TCGA cohort and 383
PDAC patients from the QCMG cohort, all of which have comprehensive

genetic mutation data. These cohorts served as parallel groups for com-
parative analysis within the SDFM cohort (detailed clinical information see
in Table S13). The data were sourced from the publicly available cBioPortal
database (https://www.cbioportal.org/datasets). Among them, 116 KRAS-
mutant patients from the TCGA cohort were analyzed for survival out-
comes across different groups. Additionally, a large validation cohort (MSK
cohort, comprising 2270 patients with survival data) was used to validate
subsequent risk stratification10. We used the survfit function from the R
package “survival” to analyze the differences in prognosis between different
groups of samples. We then assessed the difference in gene expression
between the groups using the limmamethod in the Sangerbox platform50–52

(http://www.sangerbox.com/tool, a free online platform for comprehensive
data analysis).

The prevalence and distribution of genomic alterationswere visualized
using the R package “maftools”53. The “IOBR” package is used for immune
infiltration analysis54. The R package “ggplot2” was used to draw the box-
plots. The nonparametric Wilcox test was subsequently used to test for the
significance of the difference in means between the two populations. For
exploratory post hoc comparisons, multiple testing adjustments were per-
formed using the FDR to control the false discovery rate.

Data availability
The data supporting this study’s findings are available on request from the
corresponding author. The data are not publicly available due to privacy or
ethical restrictions.

Abbreviations
PDAC pancreatic adenocarcinoma
KRAS Kirsten Rat Sarcoma
PD-L1 Programmed Death-Ligand 1
TP53 Tumor Protein 53
TPS Tumor Proportion Scores
TMB Tumor Mutational Burden
MSI MicroSatellite Instability
OS Overall Survival
PFS Progression-Free Survival
TGF-Beta Transforming Growth Factor-Beta
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