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Integrative analysis of KEAP1/NFE2L2
alterations across 3600+ tumors reveals
an NRF2 expression signature as a
prognostic biomarker in cancer

Check for updates
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Luca Sala2, Andrea Aroldi2, Rocco Piazza1,2, Diego Cortinovis1,2, Luca Mologni1 & Daniele Ramazzotti1

Non-small cell lung cancer (NSCLC) remains a formidable global health challenge, with heterogeneous
molecularcharacteristics influencingprognosisand treatment response.Wepresentanovelcomputational
framework named ASTUTE (Association of SomaTic mUtaTions to gene Expression profiles), designed to
perform genotype-phenotype mapping through the integration of genomic and transcriptomic data.
Through the systematic analysis of over 3600 samples from diverse NSCLC datasets andmultiple cancer
types, we uncovered intricate associations between KEAP1/NFE2L2mutations and the NRF2 pathway
activation. Our study identified novel NRF2-related functionalities associated with specific genetic
alterations and revealed a KEAP1/NFE2L2 expression signature predictive of prognosis across different
cancer types. These findings enhance our understanding of cancer pathogenesis and drug resistance
mechanisms mediated by NRF2 activation, paving the way for tailored therapeutic interventions and the
development of prognostic biomarkers. Our approach exemplifies the power of integrating genomic and
transcriptomic data to elucidate cancer mechanisms, thereby advancing the field of precision oncology.

Lung cancer is the leading cause of cancer-relatedmortality on a global scale,
accounting for an estimated 1.6 million lives lost annually. Among its het-
erogeneous subtypes, non-small cell lung cancer (NSCLC) represents a
significant proportion, with diverse histological manifestations. Notably,
NSCLC encompasses two predominant subtypes, lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC), each presenting dis-
tinct molecular profiles and clinical behaviors1.

Over the years, considerable efforts have been devoted to deciphering
the intricategenomic landscapeofNSCLC, shedding light on the critical role
of driver gene mutations in its pathogenesis and progression. Notable
among these driver genes we find: the epidermal growth factor receptor
(EGFR), theKirsten rat sarcomaviral oncogenehomolog (KRAS), the tumor
protein p53 (TP53), and the Kelch-like ECH-associated protein 1 (KEAP1),
along with its downstream effector, the nuclear factor erythroid 2-related
factor 2 (NRF2).Mutations in these key genesorchestrate a complex cascade
of events, influencing tumor evolution, therapeutic response, and patient
prognosis.While EGFRmutations are prevalent in a subset of NSCLC cases
and can typically be associated with a more favorable prognosis, also due to

targeted therapies2, KRAS and TP53 mutations are associated with aggres-
sive tumor behavior and resistance to most therapies, except for immu-
notherapy, where thesemutationsmay actually indicate a better response to
immune checkpoint blockade3. Furthermore, the dysregulation of the
KEAP1-NRF2 pathway, primarily attributed to somatic mutations in
KEAP1 orNuclear factor erythroid-derived 2-like 2 (NFE2L2), has emerged
as a significant determinant of disease progression and therapeutic resis-
tance in NSCLC4. Recent evidence indicates that mutations in the KEAP1
gene, a key regulator of cellular response to oxidative stress, exert a detri-
mental impact on the prognosis of NSCLCpatients5 and are correlated with
resistance to immunotherapy in LUAD6 and to KRAS inhibitors7. The
KEAP1 gene plays a critical role in maintaining cellular homeostasis. It
oversees the cellular defense against oxidative damage and metabolic stress
by modulating the activity of NRF2, a master transcription factor that
controls the expression of antioxidant and detoxification enzymes. Muta-
tions in KEAP1 prevent its binding to the NRF2 degron motifs, thereby
impeding the targeting for proteasomal degradation. This results in NRF2
entering the nucleus, where it triggers the expression of target genes
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containing antioxidant response elements (ARE) in their promoters. Con-
sequently, this facilitates metabolic reprogramming and detoxification8.

Similarly, mutations in the NFE2L2 gene occur in the KEAP1 binding
sites, resulting in the constitutive activation of the NRF2 pathway. This
activation contributes to disease progression, metastatic spread, and
enhanced resilience against cytotoxic substances8.

The comprehensive understanding of the intricate genomic landscape of
complex cancers such as NSCLC may greatly benefit from the effective inte-
gration of both genomic and transcriptomic data. This integrative approach
may allow for a deeper examination of the interplay between somatic muta-
tions and gene expression, thereby potentially offering invaluable insights into
tumor biology and guiding therapeutic strategies. To address this critical need,
we here introduce theAssociation of SomaTicmUtaTions to gene Expression
profiles (ASTUTE) framework, designed to characterize genotype-phenotype
associations incancer.Through the integrationofgenomicand transcriptomic
datasets, ASTUTE provides a sophisticated analytical tool to uncover novel
molecular mechanisms driving cancer progression and treatment response,
thus contributing to the advancement of precision oncology. Employing
ASTUTE, we here systematically analyzed distinct NSCLC datasets, followed
by an exploration across different cancer types harboring KEAP1 or NFE2L2
mutations. This comprehensive investigation allowed us to elucidate the
intricate correlation betweenKEAP1/NFE2L2mutations and the activation of
the NRF2 pathway, shedding light on novel NRF2-related functionalities

associated with specific genetic alterations. Additionally, we identified an
expression signature associated with mutations in KEAP1 or NFE2L2 genes
acrossdifferent cancer types, showinga robust associationwithprognosis.Our
discoveries offer significant insights into the underlying mechanisms of
NSCLC pathogenesis and drug resistance. While several NRF2-related gene
signatureshavebeenpreviously reported,ourapproachdiffers in that itderives
a mutation-driven expression signature through a rigorous statistical frame-
work. By leveraging a robust approach to associate somatic mutations in
KEAP1/NFE2L2 to gene expression, rather than expression-based clustering
or pathway annotations, we aim to delineate a mechanistically grounded,
reproducible transcriptional program associated with NRF2 pathway activa-
tion. These results present a promising avenue for the development of tailored
therapeutic interventions and prognostic biomarkers. Furthermore, the rele-
vance of this study becomes even more evident as specific inhibitors of the
NRF2 axis become available in clinical practice.

Results
Genotype-phenotype mapping in cancer: the ASTUTE
framework
Understanding how genetic mutations influence observable traits is crucial.
ASTUTE is a novel computational framework capable of performing
genotype-phenotype mapping between somatic mutations and expression
data (Fig. 1).

Fig. 1 | Overview of the ASTUTE framework. In A–C we illustrate how our frame-
work can efficiently integrate mutations with gene expression data to perform the
extraction of dysregulated genes associated with KEAP1 or NFE2L2mutations in distinct
NSCLC datasets. InDwe highlight the consistent association of the identified genes with
the NRF2 pathway. In E we show that ASTUTE can stratify patients based on the

identified expression signatures, thus enhancing the prognostic insights returned by the
approach. Finally, in F we showcase that ASTUTE could determine a set of genes con-
sistently dysregulated across in NSCLC andother cancer types, emphasizing their role in
prognosis at the pan-cancer level. ASTUTE’s multidimensional analysis enables a deeper
understanding of genotype-phenotype associations in cancer.
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Leveraging regularized regression with the LASSO penalty, ASTUTE
employs a sophisticated approach based on regularized linear regression
and the bootstrap9 that incorporates a penalty term into the loss function,
thus effectively mitigating overfitting and performing feature selection10.
The LASSO penalty is determined by summing the absolute values of the
model coefficients and then multiplying this sum by a regularization
parameter, whose selection is optimized through cross-validation to
determine the degree of penalty applied to the model. This process induces
feature selection by encouraging coefficients associated with the less influ-
ential variables to shrink toward zero, resulting in a more interpretable
model that emphasizes the most significant variables for predictive pur-
poses.Consequently, the resultingmodelsmay include coefficients denoting
features lacking a significant association with driver gene mutations, while
other genes may exhibit significantly altered expression levels due to the
presence of specific mutations. The application of the ASTUTE framework
to distinct NSCLC datasets extracted a set of genes consistently upregulated
or downregulated in associationwithmutations in eitherKEAP1orNFE2L2
genes in lung cancer (Fig. 1A–C). Most of these genes are known to be
associated with the NRF2 pathway (Fig. 1D).

Furthermore, ASTUTE offers the capability to estimate baseline gene
expression levels, calculate fold changes with respect to the baseline, and
compute p values using the bootstrapping technique to determinewhether a
fold change significantly indicates over- or under-expression. The selected
features can be exploited for further analyses, such as Gene Set Enrichment
Analysis (GSEA), to elucidate the biological implications of genetic somatic
mutations (Fig. 1C).

Unlike multi-omics latent factor approaches, ASTUTE is specifically
tailored to infer direct genotype-to-phenotype associations. While multi-
omics factor analysis methods typically focus on identifying latent variables
that explain joint variationacrossdata types,ASTUTE isdesigned to capture
direct, interpretable associations between somatic mutations and gene
expression changes. This makes ASTUTE particularly well-suited for
mechanistic studies and biomarker discovery, rather than exploratory
dimensionality reduction. It employs LASSO regularization to extract
sparse, interpretable gene sets whose expression changes are directly linked
to specific somatic mutations. This design makes ASTUTE well-suited for
biomarker discovery and mechanistic inference, rather than broad unsu-
pervised factor analysis.

Moreover, ASTUTE enables patient stratification based on the iden-
tified expression signatures, enhancing prognostic insights (Fig. 1E). The
signatures, associated with specific gene mutations, provide a phenotypic
characterization of the related somatic mutations, which, in turn, can serve
as clinical biomarkers. In the case of the identified NRF2 expression sig-
natures, our approach discovered a set of genes consistently dysregulated in
both NSCLC and other cancer types. These genes could effectively stratify
patients based on prognosis in all the analyzed cancers, which presented
frequent mutations in the KEAP1/NFE2L2 genes and were consistently
overexpressed in cancers with worse prognoses (Fig. 1F).We describe these
results in detail in the next sections.

Identification of a NRF2 expression signature associated with
KEAP1 and NFE2L2mutations in NSCLC
We applied the ASTUTE framework to analyze five distinct datasets pro-
viding both somatic mutations and gene expression data from LUAD and
LUSCpatients. Specifically, for LUAD,we considered data from theClinical
Proteomic Tumor Analysis Consortium (CPTAC) consortium (110
samples)11, the Pan-Cancer Atlas (510 samples)12, and the study by Chen
et al. (169 samples)13, for a total of 789 LUADpatients. For LUSC, data from
the CPTAC consortium (108 samples)14 and the Pan-Cancer Atlas
(481 samples)15 were included, comprising 589 LUSC patients. In total, our
analysis encompassed 1378 NSCLC samples. ASTUTE was independently
executed on each dataset, and the results were compared to identify con-
sistent findings across all datasets (Supplementary Data 1 and 2).

ASTUTE revealed significant upregulation of a specific set of genes
strongly associated with the NRF2 pathway activation in LUAD patients

harboring KEAP1 mutations and in LUSC patients with either KEAP1 or
NFE2L2 mutations. The low frequency of NFE2L2 mutations in LUAD
patients precluded extensive exploration within this cohort.

Theseupregulated genes, previously identified asNRF2 targets, fall into
three main functional classes crucial for cellular processes (Table 1). First,
genes involved in glutathione synthesis, such as GCLM and GCLC, play

Table 1 | LUAD/LUSC NRF2 expression signature. Genes
identified by the ASTUTE framework in association with the
presence of NFE2L2 or KEAP1 mutations in both LUAD
and LUSC

LUAD/LUSC NRF2 signature

Genes Functional classes References

GCLC Glutathione synthesis 16,17

GCLM

ABCB6 Cellular oxidative response
Detoxification
Ferroptosis inhibition

72

AKR1B10 73

AKR1C1

AKR1C2

AKR1C3

ALDH3A1 74

ALDH3A2

CBR1 75

CBR3

CYP4F3 76

CYP4F11

EPHX1 77

GPX2 78

GSR 79

LRP8 76

NQO1 80

OSGIN1 81

PIR 72

PRDX1 82

PTGR1 83

RIT1 20

SRXN1 84

TXN 84

TXNRD1 54

UCHL1 85

G6PD Carbohydrate metabolism
NADPH generation

86

ME1 87

PGD 88

TALDO1 89

TKT 90

UGDH 91

B4GALNT1 Other functions 92

CABYR 20

CBX2 25

JAKMIP3 93

PANX2 94

TRIM16 20

TRIM16L 95

These genes can be categorized into 5 functional classes and are associated with the NRF2
pathway activation.
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significant roles in maintaining redox balance16,17. Second, a substantial
group of genes implicated in cellular oxidative response, detoxification, or
inhibition of ferroptosis (Table 1), underscores the critical role of NRF2 in
protecting cells from oxidative stress and promoting survival under toxic
conditions18. Third, genes associated with carbohydrate metabolism and
NADPH generation (Table 1), highlight the NRF2 pathway’s involvement
in sustaining metabolic flexibility and anabolic growth in cancer cells19. To
experimentally validate these findings, the expression of 10 NRF2 targets
was investigated by quantitative PCR in LUAD cells carrying comparable
geneticmakeupbut differentNFE2L2mutational status. Specifically,H2228
cells harbor a gain-of-function mutation in NFE2L2 (G31A), while H3122
cells are wild-type for both KEAP1 and NFE2L2 (see Methods). All tested
genes were strongly upregulated in KEAP1-mutated cells compared with
KEAP-WT cells (Supplementary Fig. 1).

We further validated the identified signatures using proteomics data
fromCPTAC. Specifically, we compared protein levels of the genes listed in
Table 1 between LUAD (Supplementary Fig. 2) and LUSC (Supplementary
Fig. 3) patients, stratified by the presence or absence of KEAP1/NFE2L2
mutations. Patients with mutations consistently showed higher expression
of the selected genes at the protein level as well.

In addition to these categories, we identified other NRF2 targets with
roles extending beyond these classes (Table 1). TRIM16 stands out among
these genes, which has been reported to associate with the p62-KEAP1-
NRF2 complex, suggesting a potential positive feedback loop that may
enhance NRF2 signaling activation, offering insights into the regulatory
mechanisms driving this pathway20,21.

Association of other driver genes with the LUAD/LUSC NRF2
expression signature
Some genes listed in Table 1 also exhibited significant associations with
other driver mutations. Notably, in LUAD, the genes AKR1C1, AKR1C2,
AKR1C3, and ALDH3A1 were positively associated with STK11mutations
(0.2 < log2FC < 1), while GPX2 showed a similar association with
SMARCA4 mutations (0.3 < log2FC < 0.5). In LUSC, the genes AKR1C1,
AKR1C2, AKR1C3, and GPX2 were associated with KMT2D mutations
(0.2 < log2FC < 0.7), and AKR1C1, AKR1C2, ALDH3A1, CYP4F3, GCLC,
GCLM, and GPX2 were associated with TP53 mutations
(0.2 < log2FC < 1.3).

These results underscore the varying degrees of association between
different mutations and the expression of the NRF2 signature genes in both
LUAD and LUSC.WhileKEAP1/NFE2L2mutations are primary drivers of
the NRF2 pathway activation, these findings suggest the existence of alter-
native mechanisms influencing NRF2 expression independently of these
mutations.

Interestingly, ABCC222, SLC7A1123, AIFM224, and NEIL325 genes were
identified asNRF2 target genes associatedwithKEAP1mutations in LUAD,
while in LUSC, these genes were linked with NFE2L2 mutations. This
divergence might reflect distinct molecular pathways underlying NRF2
activation in these cancer types.

Moreover, our analysis revealed two genes involved in the NRF2
pathway selectively upregulated in LUAD but not LUSC in the presence of
KEAP1mutations:CPLX2, known for its role in regulatingNRF2 expression
in hepatocellular carcinoma (HCC)26 and recognized as a potential prog-
nostic biomarker in lung cancer27, and KYNU, extensively linked to NRF2
pathway activation28,29. Additionally, we observed other genes associated
with promoting lung cancer progression, which exhibited positive asso-
ciations with KEAP1, SMARCA4, and STK11mutations in LUAD but not
LUSC: S100P, which encodes a calcium-binding protein implicated in
KEAP1/NRF2 signaling that regulates the mobility of lung cancer cells30,31,
and SERPINB5, acting as a prognostic biomarker and promoter of pro-
liferation in LUAD32.

These findings not only deepen our understanding of NRF2 pathway
regulation in lung cancer but also highlight potential biomarkers and
therapeutic targets for personalized treatment strategies in different mole-
cular subtypes of LUAD and LUSC.

Identification and characterization of a LUSC-specific
NRF2 signature
Furthermore, our analysis has revealed the upregulation of 25 genes (see
Table 2) specific for LUSC patients harboring either KEAP1 or NFE2L2
mutations. Notably, this upregulation has not been directly observed in
association with KEAP1 mutations in LUAD patients. Particularly note-
worthy among these genes are two classes involved in detoxification pro-
cesses: (i) the Glutathione S-transferase Mu (GSTM) gene family (GSTM2,
GSTM3, and GSTM4), critical in eliminating electrophilic compounds by
conjugatingwith glutathione33,34, and (ii) theUDP-glucuronosyltransferases
family, essential for drug clearance through the glucuronidation process35,36.
We will refer to the genes listed in Table 1 as LUSC NRF2 expression
signature, to indicate theNRF2 target geneswhose expressionwas identified
by ASTUTE to correlate with the presence of NFE2L2 and KEAP1 muta-
tions exclusively in LUSC.

As for the NRF2 identified expression signature common to LUAD
and LUSC, some of the genes associated with KEAP1/NFE2L2 mutations
selectively in LUSC also exhibit significant associations with other driver
mutations. For instance,UGT1A6,ADH7, andNDRG4 genes are positively
associated with TP53 mutations (log2FC > 0.5), while also ADAM23,
UGT1A1, and GSTM3 show a positive association but a lower strength
(log2FC < 0.5). Additionally, ADH7 correlates strongly (log2FC = 0.75)
with KMTD2 mutations, and UGT1A7 and NDRG4 are associated with
CDKN2A mutations (0.2 < log2FC < 0.5). ABCA4 and NELL1 gene
expression is linked with EGFR mutations (0.2 < log2FC < 0.7) specifically
in LUSC. These findings suggest that while LUAD and LUSC patients with
KEAP1 or NFE2L2 mutations share a common NRF2 pathway activation
signature, LUSC also exhibits a distinct NRF2 signature. Notably, many of
these genes show increased upregulation in LUSC patients with TP53

Table 2 | LUSC NRF2 expression signature

LUSC NRF2 signature

ABCA4

ABCC3

ADAM23

ADH7

AKR1B15

ALDH1A1

CES1

GSTM2

GSTM3

GSTM4

NDRG4

NELL1

RAB3B

RAB6B

RPS6KA6

SCN9A

SLC47A1

SOX2

SQSTM1

UGT1A1

UGT1A3

UGT1A4

UGT1A6

UGT1A7

WNT11

Genes identified by the ASTUTE framework in association with the presence of NFE2L2 or KEAP1
mutations exclusively in LUSC.
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mutations, suggesting a potential synergistic effect between thesemutations.
Interestingly, in addition to canonical regulators, we identified several

non-canonical alterations—such as CUL3mutations,AKT2 amplifications,
and PTEN deletions—that are associated with upregulation of NRF2 target
genes in specific tumor types. Thesefindings suggest that theNRF2pathway
may also be modulated through broader signaling mechanisms, including
ubiquitination, phosphorylation, and metabolic reprogramming. We
explored the impact ofCUL3mutations, detected in approximately 3–4%of
both LUSCandLUADpatients, on theNRF2 signature.CUL3, amember of
the E3 ubiquitin ligase complex, plays a role in NRF2 degradation. Notably,
we observed the presence of numerous genes reported in LUAD/LUSC
NRF2 expression signature or LUSC NRF2 expression signature (Supple-
mentaryData 1 and 2) in LUSCpatients carryingCUL3mutations, whereas
this signature was not corroborated in LUAD.

Impact of the NRF2 signatures across cancer types
We applied ASTUTE to other cancer types to investigate whether the
NRF2 gene expression signatures identified in NSCLC were also observed
in association with NFE2L2 or KEAP1 mutations at the pan-cancer level.
We considered cancers where either KEAP1 or NFE2L2 mutations were
present in at least 5% of the patients for a total of 2258 distinct samples. In
particular, we selected HCC (361 samples), head and neck squamous cell
carcinoma (HNSCC, 507 samples), uterine corpus endometrial carcinoma
(UCEC, 515 samples), cervical squamous cell carcinoma (CSCC,
288 samples), bladder urothelial carcinoma (BLCA, 406 samples), and
esophageal adenocarcinoma (EAC, 181 samples) from the Pan-Cancer
Atlas studies37.

In HCC, KEAP1 and NFE2L2 mutations occur respectively in about
5% and 3% of the patients. Of note, the activation of the NRF2 pathway has
been reported to induce tumor cells to immune escape in HCC38. Addi-
tionally, NRF2 was identified as a prognostic factor associated with
decreased survival in HCC patients39. ASTUTE confirmed the correlation
between the upregulation of many members of the NRF2 signature and
NFE2L2 mutations in HCC (Supplementary Data 3). In particular, the six
genes most upregulated (log2FC > 1.9) were NRF2 targets: AKR1B15,
NQO1, AKR1B10, CABYR, TRIM16L, and CPLX2. Similar results were
observed for KEAP1 mutations, which positive correlated (log2FC > 1.9)
with CPLX2, CABYR, TRIM16L, TRIM16, AKR1B15, and AKR1B10.

In head and neck squamous carcinoma, KEAP1 and NFE2L2 muta-
tions are observed, respectively, in about 4% and 5% of patients. It was
reported that the activation of NRF2 signaling promotes the acquisition of
resistance to cisplatin andmetastasis inHNSCC40. ASTUTE correlated both
mutations with the expression of many genes of the LUAD/LUSC NRF2
expression signature (Supplementary Data 4). Interestingly, these genes
appear to be among the most upregulated ones in the presence of these
mutations (log2FC > 1) in this cancer type. We also identified a strong
correlation between KEAP1 and NFE2L2 mutations and the expression of
genes identified in the LUSC NRF2 expression signature.

In CSCC, 1% and 6% of patients harbor, respectively KEAP1 and
NFE2L2 mutations. The expression of NRF2 was found to be higher in
CSCCpatients with lymph nodemetastasis, and in additionNRF2 pathway
was positively associated with epithelial to mesenchymal transition41.

KEAP1 and NFE2L2 mutations were identified to be strongly asso-
ciated with both the expression of genes within the LUAD/LUSC NRF2
expression signature and the ones related to LUSC NRF2 expression sig-
nature (Supplementary Data 5).

About 4% and 8% of the patients with UCEC harbor respectively
KEAP1 or NFE2L2 mutations. NRF2 overexpression was found to be
associated with endometrial neoplasms with serous differentiation42. In this
tumor type,ASTUTEwas able to correlate thesemutations to the expression
of ALDH3A1, AKR1C2, GPX2, AKR1C1, NQO1, TRIM16L, CYP4F3,
JAKMIP3, AKR1B10, AKR1C3, and GCLC (log2FC > 0.5) (Supplementary
Data 6). Additionally, other LUAD/LUSC NRF2 signature genes were
identified to correlate with a major impact with NFE2L2 mutations in
comparison to KEAP1 mutations. While among the genes identified the

LUSCNRF2 signature, we found only that CES1, andUGT1A6 consistently
correlated with KEAP1/NFE2L2mutations (log2FC > 0.7).

In BLCA, KEAP1 mutations are present in 2% of patients, while
NFE2L2 mutations occur in 6%. NRF2 expression was associated with
cisplatin resistance in BLCA43. Among the most upregulated genes in the
context of NFE2L2 mutations (log2FC > 0.8) in bladder cancer, ASTUTE
identified 35 genes belonging to the LUAD/LUSC NRF2 expression sig-
nature, and 8 genes belonging to the LUSC NRF2 expression signature
(Supplementary Data 7). While for the KEAP1 mutations 13 genes of the
LUAD/LUSC NRF2 signature, and 6 genes specific for the LUSC NRF2
signature (log2FC > 0.8) were found.

Finally, 3%of patients with esophageal adenocarcinoma (EAC)harbor
KEAP1 mutations, while 10% of patients harbor NFE2L2 mutations. In
EAC, NRF2 expression promotes tumor cells' survival, and, in addition, it
was demonstrated that NRF2 has a protective role against stress-triggered
apoptosis and ferroptosis44. ASTUTE revealed the upregulation of 35 genes
of the LUAD/LUSC NRF2 signature in association with NFE2L2mutations
(log2FC > 0.9), and 13 genes of LUSC NRF2 signature (log2FC > 1) in the
EAC (Supplementary Data 8). We were not able to find similar results for
KEAP1 mutations, in which only the upregulation of KYNU and
B4GALNT1 was found.

Overall, ASTUTE’s results demonstrate high consistency across cancer
types and reveal a widespread expression of the identified NRF2 signatures
at the pan-cancer level.

NRF2 expression as a prognostic biomarker at the pan-
cancer level
To assess the prognostic implications of the identified expression signatures,
we considered the overall survival (OS) data provided by the Pan-Cancer
Atlas studies37. We initially focused on genes associated with KEAP1 or
NFE2L2mutations in LUADandLUSC,filtering for log2 fold change values
greater than 1 and less than−1.We applied the same filtering criteria to the
six other considered cancer types as described before, and we narrowed
down our analysis to the genes identified by ASTUTE in LUAD or LUSC
and in these cancer types. Subsequently, we conducted standard univariate
Cox regression analysis across all eight cancers (LUAD, LUSC, and the six
other cancer types), considering the selected genes. Only genes exhibiting
consistent correlation with risk, as indicated by ASTUTE, were considered.
For instance, if ASTUTE suggested that KEAP1/NFE2L2 mutations posi-
tively impacted gene expression, such genes were classified as oncogenes,
and its higher expression had to positively correlate with worse prognosis.
This initial screening yielded a list of genes strongly associated with both
ASTUTE results andprognosis.We then proceeded to conductmultivariate
regularized Cox regression analysis, identifying 14 genes whose expression
significantly correlated with negative prognosis in at least one of the ana-
lyzed cancers (Table 3 and Supplementary Data 9). Several of the 14 genes
comprising theprognosticNRF2 signature, such as SRXN1andCABYR, are
known canonical NRF2 targets, while TRIM16 has been reported to mod-
ulate NRF2 activity via the p62-KEAP1 complex. Notably, these genes were
identified through our mutation-centric framework independently of prior
pathway annotation, reinforcing the biological validity of the ASTUTE-
derived signature and its ability to recover functionally relevant targets.
Importantly, this signaturewas derived through a de novomutation-centric
approach and validated across multiple cancer types, offering both
mechanistic insight and potential clinical applicability.

Interestingly, several of the identified genes have been reported as
NRF2 target genes in the literature and belong to the two signatures iden-
tified inNSCLC.Notable examples includeCABYR, which is upregulated in
HCC and suggested as a cancer-testis antigen in lung cancer45. GCLM has
been implicated as a tumor promoter and immunological biomarker in
bladder cancer46 and linked to cisplatin resistance in NSCLC47. ME1 is
associatedwith poor prognosis inHCC48 and breast cancer49, whileNQO1 is
significantly associated with prognosis, immune infiltrates, and drug resis-
tance across multiple cancer types50. SRXN1 is identified as an inducer of
hepatocellular carcinogenesis and metastasis, correlating with poor
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prognosis in HCC patients51. TXNRD1 is an unfavorable prognostic bio-
marker in HCC52, breast cancer53, and NSCLC54. Additionally, SPP1, asso-
ciated with NFE2L2 mutations in LUSC, is reported as a prognostic
biomarker in urothelial bladder cancer55 and ovarian cancer56. These find-
ings highlight the relevance of these genes in NRF2 pathway activation and
their potential as significant biomarkers across various cancer types.

We then used the hazard ratios estimated by the regularized Cox
multivariate regression for the identified14 genes to compute a risk score for
each patient of the 8 cancer subtypes (see “Methods”). Hierarchical clus-
tering was performed considering the computed risk scores, resulting in the
classification of patients into two risk groups within each cancer subtype.
Further Kaplan-Meier analysis confirmed significant differences in prog-
nosis for the risk groups in all cancers. In particular, in BLCA (p = 0.0024),
CSCC (p = 0.004), EAC (p = 0.035), HNSCC (p = 0.0082), HCC
(p = 0.0013), LUAD (p = 0.017), LUSC (p = 0.035), andUCEC (p = 0.0019).
Moreover, all the 14 genes were overexpressed in the patients with worse
prognosis in all cancer types (Fig. 2).

We finally validated our findings on external cohorts by replicating the
analysis using the LUAD dataset from Chen et al13. (Supplementary Fig. 4),
primarily comprising patients with EGFR mutations, and the one from
Pleasance et al.57 (Supplementary Fig. 5), comprising metastatic lung
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NRF2 signature as a prognostic biomarker

Fig. 2 | Impact of the NRF2 expression signatures based on the identified 14
prognostic genes across eight cancer types. Bladder Cancer (BLCA), Cervical
Squamous Cell Carcinoma (CSCC), Esophageal Adenocarcinoma (EAC), Head and
Neck Squamous Cell Carcinoma (HNSCC), Hepatocellular Carcinoma (HCC),
Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), and
Uterine Corpus Endometrial Carcinoma (UCEC). We show boxplots displaying the
expression levels of the 14 prognostic genes in patients categorized into two risk
groups based on hierarchical clustering of computed risk scores. The higher
expression levels of these genes are associated with the worse prognosis group across
all cancer types. Kaplan–Meier survival curves illustrate significant differences in

overall survival (OS) between the two risk groups within each cancer type. The p-
values for each cancer type are as follows: BLCA (p = 0.0024, low-risk group n = 246,
high-risk group n = 107), CSCC (p = 0.004, low-risk group n = 173, high-risk group
n = 89), EAC (p = 0.035, low-risk group n = 124, high-risk group n = 37), HNSCC
(p = 0.0082, low-risk group n = 38, high-risk group n = 448), HCC (p = 0.0013, low-
risk group n = 229, high-risk group n = 102), LUAD (p = 0.017, low-risk group
n = 336, high-risk group n = 117), LUSC (p = 0.035, low-risk group n = 383, high-
risk group n = 45), and UCEC (p = 0.0019, low-risk group n = 220, high-risk
group n = 247).
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cancers. Hierarchical clustering was performed based on the risk scores
computed from the 14 identified prognostic genes. Kaplan–Meier analysis
confirmed the presence of two distinct risk groups. Although the two curves
did not reach statistical significance in the dataset from Chen et al. possibly
due to the overrepresentation of patients carrying EGFRmutations, which
correlated with a limited number of patients in the cluster exhibiting the
NRF2 signature and the shortest OS (p value = 0.064), the trend was con-
sistent. Instead, in the dataset from Pleasance et al., including metastatic
cancers, the discovered NRF2 prognostic signature identified two clusters
with clearly different prognosis (p = 0.026). In the cluster with the worse
prognosis, the 14 genes comprising the NRF2 signature were significantly
upregulated, and a significantly higher frequency of KEAP1mutations was
observed (0% vs 33%, p value adjusted for false discovery rate = 0.027),
hence validating our results.

Mutational landscape associated with the NRF2 prognostic
signature
To further elucidate the mutational landscape underlying the identified
NRF2 prognostic signature, we examined the clusters with significantly
different survival across the considered eight cancer types. Patients were
stratified into two groups in each cancer type—those with better prognosis
and those with worse prognosis—based on their pan-cancer NRF2 prog-
nostic signature scores. Consistently, we observed a significantly higher
expression of the pan-cancer NRF2 prognostic signature in the worse
prognosis clusters across all cancer types. Subsequently, we conducted a
differential mutational analysis between the two survival-based clusters
within each cancer type. Using a z-score test for proportions, corrected for
false discovery rate (p < 0.05), we identified specific genetic alterations that
were significantly enriched in theworse prognosis clusters. These alterations
include mutations in key driver genes and other genetic events potentially
contributing to the aggressive phenotypes observed (Fig. 3). Detailed results
of the differential mutational analysis are provided in Supplementary
Data 10.

In LUAD,mutations inKEAP1 (5.8% vs 53.4%) andNFE2L2 (2.1% vs
6.9%) are enriched in the cluster with higher NRF2 prognostic signature,
thus playing a central role in activating the NRF2 pathway, potentially
disrupting its regulatory mechanisms. This disruption likely leads to
enhanced antioxidant responses, contributing to drug resistance and
metabolic reprogramming that supports tumor cell survival under oxidative
stress. Additionally, enriched mutations in STK11 (10.1% vs 26.7%) and
ROS1 (4.3% vs 12.1%) may further contribute to NRF2 pathway activation,
although the precise mechanisms require further investigation. Further-
more, we found enrichment of copy number gains in IDH2 (9.8% vs 22.4%)
in the LUAD patients with high NRF2 expression, a gene potentially
impacting tumor metabolism and survival58,59. Similarly, in LUSC, we
observed mutations in KEAP1 (9% vs 23.3%) and NFE2L2. This activation
enhances antioxidant defenses, which could support tumor progression.
Concurrent observed enriched mutations in genes like ARID5B (2.2% vs
11.6%) andTAF1 (4.6%vs 16.3%)might augmentNRF2 activity, facilitating
tumor growth and resistance to therapeutic interventions60,61.

Other cancer types, such as BLCA, CSCC, and EAC, also exhibit NRF2
activation influenced by specificmutational profiles. In BLCA,mutations in
NFE2L2 (2.9% vs 15.1%) are enriched, suggesting a potential enhancement
of antioxidant defenses. Additionally, enriched copy number loss inPPARG
(9.9% vs 20.8%) may influence NRF2 activity indirectly through its reg-
ulatory networks, affecting metabolic and stress response pathways62,63. In
CSCC, enriched mutations in ADAMTS9 (0.6% vs 6.2%) and AFF1 (0% vs
6.2%) might augment NRF2-mediated antioxidant responses, aiding in cell
survival under oxidative stress conditions. The enriched demethylation of
CST6 (9.9% vs 21%) could potentially affect NRF2 regulation, although its
specific interaction requires further investigation. In EAC,NFE2L2 (3.2% vs
37.8%) mutations are also enriched. Additionally, enriched mutations in
MST1R (0% vs 8.1%) and ZNF217 (0.8% vs 10.8%) might suggest potential
pathways through which NRF2 activity could be modulated, influencing
cellular proliferation and survival mechanisms64.

InHNSCCpatientswith highNRF2 signature showhigher frequencies
of pointmutations inCDKN2A (5.7%vs 22.4%) andTP53 (34.3%vs 74.4%).
While in HCC, the enriched mutations in KEAP1 (1.4% vs 12.5%) and
NFE2L2 (1.4% vs 8.3%), along with copy number loss in ARID2 (6.9% vs
20.8%), suggest a significant association with NRF2 activation and its reg-
ulatory pathways65,66.

Finally, in UCEC, several key genetic alterations are enriched,
underscoring the potential implications of NRF2 pathway activation in this
cancer. Mutations in TP53 (24.2% vs 51.5%) are known to disrupt redox
homeostasis, leading to increased oxidative stress within cells. This can
activate NRF2 as a protective mechanism, enhancing antioxidant defenses
and promoting cell survival. Concurrently, amplification ofAKT2 (6.6% vs
21.5%), a regulator of growth factor signaling, may directly phosphorylate
NRF2, stabilizing its protein levels and promoting transcription of anti-
oxidant genes67. Additionally, copy number loss inAXIN1 (5.7% vs 21.9%),
associated to the activation of theWnt signaling pathways, might suggest a
potential indirect modulation of NRF2 activity through crosstalk
mechanisms68. Furthermore, methylation of TRIM31 (10% vs 20.7%),
through its direct interactionwithNRF2, requires further elucidation, likely
influences gene expression profiles involved in oxidative stress responses69.
Together, these genetic alterations in UCEC collectively highlight diverse
pathways through which NRF2 overactivation may contribute to tumor
progression, emphasizing the need for targeted therapeutic strategies aimed
at disrupting NRF2-dependent oncogenic processes.

Overall, while NRF2 pathway activation appears to be a common
feature across multiple cancer types, the specific genetic alterations influ-
encing its activity can vary. These findings highlight the complexity of
NRF2-mediatedmechanisms in cancer and underscore the need for further
research to elucidate these pathways fully, potentially informing targeted
therapeutic strategies aimed at disrupting NRF2-dependent oncogenic
processes.

Discussion
In this study, we employed the ASTUTE framework to conduct a com-
prehensive analysis of KEAP1 and NFE2L2mutations in NSCLC, focusing
on their influence on NRF2 expression and their potential as prognostic
biomarkers. Our findings suggest a significant association between genetic
alterations in the KEAP1/NRF2 pathway and NSCLC progression, offering
valuable insights into the underlyingmechanisms of pathogenesis and drug
resistance.

Our analysis revealed a robust association between KEAP1/NFE2L2
mutations and the upregulation of NRF2 target genes critical in antioxidant
response, detoxification, and metabolism. Notably, KEAP1mutations were
prevalent in both LUAD and LUSC subtypes, whereas NFE2L2mutations
were more frequent in LUSC. This highlights the necessity of subtype-
specific considerations in understanding NRF2’s role in NSCLC and sug-
gests implications for personalized therapeutic interventions.

Furthermore, we identified specific gene signatures associated with
KEAP1/NFE2L2 mutations that could serve as prognostic biomarkers in
NSCLC. For instance, upregulation of the GSTM family members and
UDP-glucuronosyltransferases in LUSCpatients harboring thesemutations
suggests enhanced detoxification capacity, potentially influencing treatment
response and outcomes. Moreover, genes selectively upregulated in LUAD
or LUSC due to KEAP1mutations, such as CPLX2 and KYNU, underscore
the subtype-specific activation of NRF2 and its implications for disease
prognosis.

We also unveiled intriguing associations between NRF2 expression
signatures and other key genetic alterations, notablyTP53mutations. Several
genes upregulated in LUSCpatientswithKEAP1/NFE2L2mutations showed
positive associations with TP53 mutations as well, hinting at potential
crosstalkbetween theNRF2andTP53pathways indriving tumorigenesis and
drug resistance. Understanding these interactions could unveil novel ther-
apeutic targets and combination strategies for NSCLC treatment.

Importantly, we conducted a comprehensive survival analysis reveal-
ing a set of 14 genes consistently associated with prognosis across different
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cancers, underscoring the NRF2 signature’s robustness as a prognostic
biomarker at the pan-cancer level.

While our pan-cancer analysis demonstrates that theNRF2 expression
signature identified by ASTUTE is consistently associated with prognosis
across diverse tumor types, we acknowledge that NRF2 signaling might be
context- and tissue-specific. Previous studies have shown that super-
enhancer regulation might play a critical role in modulating NRF2 tran-
scriptional activity, with implications for lineage-restricted gene expression
programs. Additionally, hypoxia and other tumor microenvironmental
factors are known to influence NRF2 activity and its downstream effects.

Although our current analysis does not incorporate enhancer-state data or
microenvironmental features such as oxygen tension, the reproducibility of
our mutation-derived signature across squamous and adenocarcinoma
subtypes suggests that it captures a broadly conserved core ofNRF2pathway
activation. Future studies incorporating chromatin accessibility and single-
cell resolution datasets could further refine the context-specific components
of NRF2 signaling.

Several NRF2-related gene expression signatures have been proposed in
previous studies, often derived via clustering or curated pathway annotations.
In contrast, ourworkbuilds aprognostic signature throughamutation-centric

Lung Squamous Cell Carcinoma Uterine Corpus Endometrial Carcinoma

Liver Hepatocellular Carcinoma Lung Adenocarcinoma

Esophageal Adenocarcinoma Head and Neck Squamous Cell Carcinoma

Bladder Urothelial Carcinoma Cervical Squamous Cell Carcinoma

Good Prognosis Bad Prognosis Good Prognosis Bad Prognosis

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Fr
eq

ue
nc

y
KEAP1 NFE2L2

A) KEAP1/NFE2L2 mutations associated to the NRF2 signature

Lung Squamous Cell Carcinoma Uterine Corpus Endometrial Carcinoma

Liver Hepatocellular Carcinoma Lung Adenocarcinoma

Esophageal Adenocarcinoma Head and Neck Squamous Cell Carcinoma

Bladder Urothelial Carcinoma Cervical Squamous Cell Carcinoma

Good Prognosis Bad Prognosis Good Prognosis Bad Prognosis

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Fr
eq

ue
nc

y

Mutated

B) Other mutations associated to the NRF2 signature

Fig. 3 | Differential mutation frequencies associated with the NRF2 prognostic
signature across eight cancer types. In A we show barplots representing the fre-
quency of KEAP1 and NFE2L2 mutations in patients with worse prognosis clusters
compared to those with better prognosis clusters across the eight studied cancer
types: Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC),
Bladder Cancer (BLCA), Cervical Squamous Cell Carcinoma (CSCC), Esophageal
Adenocarcinoma (EAC), Head and Neck Squamous Cell Carcinoma (HNSCC),
Hepatocellular Carcinoma (HCC), and Uterine Corpus Endometrial Carcinoma
(UCEC). KEAP1 and NFE2L2 mutations were particularly enriched in LUAD,
LUSC, and EAC, indicating a significant role in activating the NRF2 pathway and

contributing to worse prognosis in these cancer types. In B we show the aggregated
frequency of other significant genetic alterations in the worse prognosis clusters
compared to better prognosis clusters in the same eight cancer types. These muta-
tions include, but are not limited to, STK11, ROS1, IDH2, ARID5B, TAF1,
ADAMTS9, AFF1, MST1R, ZNF217, CDKN2A, TP53, ARID2, AKT2, AXIN1, and
TRIM31. These alterations might suggest alternative mechanisms of NRF2 activa-
tion and regulation, highlighting the complexity of NRF2 pathway dysregulation
across different cancers and emphasizing the necessity for diverse therapeutic
strategies.
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approach thatdirectly linksKEAP1/NFE2L2alterations to expressionprofiles,
enablingmechanistic attribution. The identification of well-established NRF2
targets suchasSRXN1andCABYR, aswell asNRF2modulators likeTRIM16,
within our expression signature, derived solely from mutation-based asso-
ciations, supports the capacity of ASTUTE to capture mechanistically
grounded transcriptional programs without relying on prior pathway
knowledge. This methodological distinction enhances the mechanistic inter-
pretability and relevance of the signature for precision oncology.

The mutational landscape associated with the NRF2 prognostic sig-
nature revealed specific genetic alterations across various cancer types that
significantly enrich NRF2 activity, promoting tumor progression, drug
resistance, and metabolic reprogramming. These findings not only deepen
our understanding of KEAP1 and NFE2L2 mutations in NSCLC but also
hold promise for guiding therapeutic strategies and advancing precision
oncology tailored to individual patient subtypes. Further validation in
external patient cohorts is warranted to substantiate these observations and
elucidate the molecular mechanisms driving NRF2 activation in NSCLC.

It is important to note that in certain tumor types, such asEAC,KEAP1
and NFE2L2mutations are relatively infrequent. This low prevalence poses
challenges in terms of statistical power and increases the risk of spurious
associations. To address this, we applied bootstrapped regularized regres-
sion and false discovery rate (FDR) correction to reduce false positives.
Moreover, gene-level associations identified in low-frequency mutation
contexts were interpreted cautiously and primarily emphasized when sup-
ported by consistent trends across multiple datasets or cancer types. This
limitation underscores the need for validation in larger or prospectively
curated cohorts.

Another limitation of our study is its reliance on retrospective, publicly
available datasets, which may introduce confounding variables such as het-
erogeneity in sequencing technologies, treatment regimens, and clinical
annotations. These sources of variabilitymay affect the generalizability of our
findings and should be carefully considered when interpreting the results.

Moreover, while our 14-geneNRF2prognostic signature demonstrates
robust associations with patient outcomes across multiple cancer types, its
clinical utility must ultimately be evaluated in the context of established
biomarkers such as PD-L1 expression and tumor mutational burden.
Unfortunately, the retrospective datasets used in this study lack standar-
dized and complete annotations for these variables, limiting our ability to
perform comparative multivariate Cox regression models. Future pro-
spective studies with harmonized clinical, immunological, and molecular
profiling will be essential to assess the incremental prognostic value and
potential complementarity of our NRF2 signature relative to existing bio-
markers. Such efforts will also help determine its cost-effectiveness and
practical feasibility for integration into clinical decision-making.

In conclusion, our study demonstrates the clinical relevance of NRF2
activation pathways inNSCLC and highlights the potential for personalized
treatment approaches based on subtype-specific molecular profiles. By
elucidating the complex interplay between genetic alterations and the
NRF2-driven pathways, our findings pave the way for innovative ther-
apeutic avenues and enhance our broader understanding of cancer biology
and precision medicine.

Methods
Input datasets
We considered genomic and transcriptomic data from five distinct datasets
comprising NSCLC patients, specifically LUAD and LUSC. For LUAD,
datasets included genomic profiles from the CPTAC (110 samples)11, the
Pan-Cancer Atlas (510 samples)12, and Chen et al. (169 samples)13, totaling
789 patients. LUSC datasets encompassed samples from CPTAC
(108 samples)14 and the Pan-Cancer Atlas (481 samples)14, comprising 589
patients. To minimize batch effects, each dataset was analyzed indepen-
dently using ASTUTE to identify associations between somatic mutations
and gene expression profiles, without direct data merging or cross-cohort
normalization. This ensured that dataset-specific technical variability did
not confound the genotype-to-expression associations.

Additionally, ASTUTE was also utilized to investigate the pan-cancer
implications of NRF2 gene expression signatures in cancers where KEAP1
or NFE2L2 mutations were observed in at least ≥5% of the patients,
including HCC, HNSCC, UCEC, CSCC, BLCA, and EAC from the Pan-
Cancer Atlas studies37.

To validate our findings, we conducted a further analysis using the
LUAD datasets from Chen et al.13 and from Pleasance et al.57. The data are
publicly available and were downloaded from cBioPortal70.

The ASTUTE framework
ASTUTE is a computational framework designed to integrate somatic
mutation data with gene expression profiles to elucidate their functional
implications in cancer biology. It employs a regularized regression model
using the LASSO penalty within a linear regression framework10. The
LASSO penalty introduces a regularization parameter (lambda), which is
optimized through k-fold cross-validation, typically with k = 10, to control
model complexity, promote feature selection, and minimize prediction
error. In particular, the regularization parameter used in the LASSOmodel
by ASTUTE was selected via 10-fold cross-validation. All regularized
regression procedures were implemented using the glmnet R package.

To enhance robustness, ASTUTE repeats this procedure multiple
times (e.g., 100 iterations) using bootstrap resampling of the input data. The
algorithm is reapplied in each iteration, and the final results are computed
through bootstrap aggregation. This approach enables ASTUTE to identify
gene expression features most significantly associated with somatic muta-
tions in driver genes. Additionally, ASTUTE estimates baseline expression
levels for each gene and calculates fold changes to quantify the impact of
specific mutations. Finally, the fold changes computed at each bootstrap
iteration are used to estimate whether they are significantly lower or greater
than1, enabling the calculationof p values that provide confidence estimates
of the associatedmutations either increasing or decreasing the expression of
specific genes. In particular, for each gene, p values were derived from the
distribution of fold changes obtained across bootstrap iterations. These p
values were adjusted for multiple testing using the Benjamini-Hochberg
FDR correctionmethod. The R glmnet packages was used to implement the
regularized regression procedures.

Survival analysis
Prior to survival modeling, we applied a preliminary log2 fold-change
threshold (±1) as a conservative filter to retain genes with biologically
meaningful expression changes associatedwithKEAP1/NFE2L2mutations.
This step reduced noise and focused the analysis on robust candidates. We
then employed regularized Cox regression with LASSO penalty to investi-
gate the prognostic impact of gene expression profiles on OS in various
cancer types. We utilized the R glmnet package to implement regularized
Cox regression. This technique facilitates variable selection by shrinking the
coefficients of the less relevant predictors to zero, thereby highlighting the
most significant associations between gene expression and survival out-
comes. Cross-validation was employed to determine the optimal penaliza-
tion parameter (lambda) thatminimized prediction error and improved the
robustness of our survival predictions. For each patient, we calculated risk
scores based on the estimated hazard ratios of gene expression changes
identified through LASSO regression. These risk scores were used to stratify
patients into different risk groups, enabling the identification of high-risk
subgroups with poorer survival outcomes. The clustering analysis was
performed by hierarchical clustering using the dynamic tree cut approach71

implemented by the dynamictreecut R package to group patients based on
their risk scores. Kaplan–Meier survival curves were generated to assess the
differences in survival between risk groups, and statistical significance was
determined using the log-rank test.

Mutations enrichment analysis
We conducted an enrichment analysis to assess differences in the propor-
tions of mutation occurrences across predefined clusters. We consider the
clusters obtained from the survival analysis and computed the proportion of
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mutations in the set of genes of interest. Todetermine statistical significance,
we employed a z-test to compare these proportions, adjusted for multiple
comparisons using false discovery rate correction. Genes were considered
significantly enriched if they exhibited a q value < 0.05, indicating sig-
nificance after controlling for false discovery. We further assessed the
alterations that can directly influence gene expression, such as copy number
gains anddemethylations,whichcan result in increasedgene expressionand
copynumber losses andmethylations, leading to decreased gene expression.
To validate their impact on gene expression levels, we conducted t-tests
(p < 0.05) to confirm the significant impact of the enriched alterations to
expression. This approach allowed us to systematically evaluate and com-
pare mutation patterns across distinct clusters associated to the NRF2
pathway expression.

RNA extraction, reverse transcription, and quantitative real-
time PCR
H2228 andH3122 NSCLC cell lines were cultured in biological triplicates
and seeded at a density of 3 × 106 cells per T75 flask. Cells were harvested
at ~70% confluence. Total RNAwas extracted using the RNeasyMini Kit
(QIAGEN, Germany) following the manufacturer’s instructions. Two
micrograms of RNA were reverse-transcribed using the LunaScript RT
SuperMix (Euroclone, Italy) in a final reaction volume of 40 µL. Quanti-
tative PCRwas performed in technical duplicates using 2 µL of cDNA and
2X Mastermix (GeneSpin, Italy) on a QuantStudio™ Real-Time PCR
system (Life Technologies). Gene expression levels were normalized to
GAPDH and calculated using the 2−ΔCt method. Target genes included
CYP4F11, AKR1C1, AKR1C2, AKR1C3, AKR1B10, CYP4F3, GPX2,
CABYR, JAKMIP3, and UCHL1, using commercially available TaqMan
assays.

Software and statistical analysis
ASTUTE is available as an R package and can be installed from GitHub
(https://github.com/ramazzottilab/ASTUTE). All computational analyses
were conducted using R (version 4.4.1). Key R packages included glmnet
for the regularized regression analyses, dynamicTreeCut for the clustering
analysis, and the survival package for survival analysis. Statistical sig-
nificance was determined at p < 0.05, unless otherwise specified.

Data availability
Data is provided within themanuscript or supplementary information files.
ASTUTE is available as an R package and can be installed from GitHub
(https://github.com/ramazzottilab/ASTUTE). All computational analyses
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