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Integrative analysis reveals prognostic
value of cuproptosis and copper
hemostasis related genes in
immunotherapy for non-small cell
lung cancer
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Yajie Zhang1 & Hecheng Li1

Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality, and it remains
challenging to predict immunotherapy responses. This study integrates RNA sequencing data from
five NSCLC immunotherapy cohorts to identify three molecular subtypes, with a copper-dependent
proliferation subtype showing poor prognosis and an immunosuppressive tumor microenvironment.
We developed a prognostic model that stratifies patients into high- and low-risk groups by a machine
learning pipeline combining 101 algorithmic models. The low-risk group exhibited higher immune
infiltration and better progression-free survival, characterized by activation of immune-related
pathways, such as IL-2/STAT5 and IFN-γ signaling. CEACAM5+ epithelial cells were identified as a
high-risk subgroup linked to poorer survival and immunotherapy response via mapping the score of
the model and clinical information into single-cell sequencing data. Finally, analysis of clinical
specimens with different immunotherapy responses confirmed, by western blot and
immunohistochemistry, that expression of CEACAM5+ epithelial cells related markers was
significantly higher in epithelial cells of the non-MPR group compared with the MPR group. Our
findings highlight the importance of genes related to cuproptosis and copper hemostasis as
biomarkers for immunotherapy prediction and prognosis stratification.

Lung cancer is the most commonmalignant tumor worldwide, with the
leading mortality rate among all cancer types1. Non-small cell lung
cancer (NSCLC) is the predominant pathological subtype, accounting
for approximately 85% of lung cancer cases. Traditional treatments for
NSCLC include surgical resection, chemotherapy, and radiation ther-
apy. However, due to the nonspecific nature of chemotherapy and
radiation, these treatments often cause side effects such as bonemarrow
suppression and gastrointestinal reactions. With the continuous
exploration of precision medicine, targeted therapy directed at muta-
tion hotspots has become an important treatment modality for
NSCLC2. When sensitive mutations are absent, immunotherapy has

become another crucial approach for NSCLC treatment, showing
improvements in efficacy and tolerability compared to conventional
chemotherapy and radiation therapy3,4. In recent years, several forms of
cell death that could precisely induce death of tumor cells have gained
widespread attention, offering potential new targets for precision
therapy in NSCLC.

Cuproptosis is a novel formof cell death dependent on copper ions and
mitochondrial respiration. Tsvetkov et al. have identified ten key genes
closely related to cuproptosis by a genome-wide CRISPR knockout screen,
which play crucial roles in the process of cuproptosis. For example, the
FDX1 gene exhibits significant cytotoxicity and functional enhancement by
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reducing copper ions from divalent to monovalent copper5. Similarly,
CDKN2A, GLS, and MTF1 genes were shown to be decisive for cell sensi-
tivity to cuproptosis6. Further studies revealed that genes such as SLC31A1,
ATP7A, and ATP7B influenced the cell death process by regulating intra-
cellular copper ion concentration6. Among them, SLC31A1 is responsible
for the intracellular transport of copper ions, while the ATP7A and ATP7B
genes are involved in the extracellular excretion of copper ions, which
together constitute an important mechanism of cellular copper ion trans-
port and directly affect the intra- and extracellular homeostasis of copper7–9.
A recent study demonstrated that Zinc transporter 1 (ZnT1, encoded by
SLC30A1), as a novel copper ion transporter, mediates the entry of copper
ions into cells and induces cuproptosis10. Therefore, these genes are also
considered as cuproptosis key genes (CKGs), including CDKN2A, FDX1,
DLD, DLAT, LIAS, GLS, LIPT1, MTF1, PDHA1, PDHB, ATP7A, ATP7B,
SLC30A1, and SLC31A1.

With the deeper exploration of CKGs within the field of oncology,
more and more studies have begun to focus on the expression of these
genes in different tumor types and their potential prognostic value.
Several studies have confirmed the role of CKGs, as well as long non-
coding RNAs (lncRNAs) associated with cuproptosis, including in
NSCLC11–14. In addition, the association between tumor immune
microenvironment (TIME) and CKGs has attracted extensive attention.
Early studies have revealed a close link between TIME and a series of
regulatory cell death processes, including apoptosis, ferroptosis, pyr-
optosis, necrosis, and autophagy15–17. Induction of these inflammatory
forms of cell death in the tumor environment may trigger the release of
damage-associatedmolecular patterns (DAMPs) and specific cytokines,
which in turn modulate the function of innate and adaptive immune
cells involved in anti-tumor immune responses. Furthermore, mole-
cular subtypes based on ferroptosis18, pyroptosis19,20, and necrosis21 have

been developed and help predict the prognosis and the efficacy of
immunotherapy.

Nevertheless, the potential links between CKGs and the immune
microenvironment of non-small cell lung cancer (NSCLC), as well as their
use as an effective model for predicting immunotherapy prognosis, are still
unclear. Therefore, this study aimed to explore the association between
CKGs and NSCLC prognosis and immune microenvironment character-
istics, and to establish a prognostic gene signature by using a machine
learningmodel, so as to further explore the association between cuproptosis
and NSCLC in depth, and to provide some references for the precise
diagnosis and treatment of NSCLC.

Results
The workflow of this study is shown in (Fig. 1). To investigate the rela-
tionship between cuproptosis and immunotherapy in NSCLC, we included
439 of 891 cases in OAK and POPLAR cohorts, who underwent immu-
notherapy rather than chemotherapy only.

NSCLC cuproptosis subclusters and characteristics
We performed non-negative matrix factorization (NMF) clustering on the
OAK and POPLAR cohorts to identify distinct groups of patients with
NSCLCbasedon the genesetsmentioned in theMethod section (Fig. S1a, b).
The analysis yielded three clusters (k = 3), labeled Cluster 1, Cluster 2, and
Cluster 3, which exhibited significant differences in 29 immune-related
pathways, as well as cuproptosis and copper hemostasis scores (Fig. 2a).
Cluster 2 exhibited characteristics of an immune-infiltrated subtype, char-
acterized by significantly high infiltration of immune cells, including T cells,
macrophages, and NK cells. This cluster also displayed immune response
pathways and cytokine signaling, suggesting a strong immune response
profile. In contrast, Cluster 3 represented an immune desert landscape,
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Fig. 1 | Overview of the study design andmethodology. First, identification of hub
genes was conducted using the OAK and POPLAR cohorts from the European
Genome-phenomeArchive (EGA). Gene expression data were analyzed using Non-
negative Matrix Factorization (NMF) and Weighted Gene Co-expression Network
Analysis (WGCNA). Subsequently, development of a machine-learning-based
prediction model for NSCLC immunotherapy cohorts was undertaken. The model
was trained and internally validated using RNA-seq and clinical profiles from the

OAK (n = 344) and POPLAR (n = 95) cohorts, with external validation conducted
using datasets from GSE126044 (n = 16) and GSE135222 (n = 27), as well as a
Nanfang hospital cohort (n = 20). Finally, model selection and functional explora-
tion were conducted, with survival analysis, pathway enrichment, and gene
expression profiling visualized. Additionally, single-cell RNA sequencing validation
was performed using GSE207422 and GSE229353 to further explore immune cell
populations in NSCLC.
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characterized by an enrichment in stromal components and low immune
cell infiltration. This cluster was defined by high expression of genes related
to stromal remodeling and immune suppression, consistent with a stroma-
enriched immune desert phenotype. Cluster 1, on the other hand, exhibited
a prominent tumor proliferation signature, characterized by high levels of
genes associated with tumor proliferation. Interestingly, this cluster exhib-
ited significant enrichment in genes associatedwith cuproptosis and copper
homeostasis simultaneously, indicating it as a distinct subtype of copper-
dependent tumor proliferation. This subtypemay represent a unique group

with a potential for targeted therapy based on its copper metabolism
dependency. Survival analysis revealed that Cluster 1 had the worst prog-
nosis forPFS,whileCluster 2 showed the best survival outcome, as indicated
by the Kaplan-Meier curves (Fig. 2b). The differences in survival between
Cluster 1 vs. Cluster 2 (p < 0.001) and Cluster 3 vs. Cluster 2 (p = 0.001)
statistically significant.

Next, we identified differentially expressed genes (DEGs) between
Cluster 1 and the other two clusters (Cluster 2 and Cluster 3) (Fig. 2c). A
total of 2277 DEGs were identified. To further explore the biological
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significance of the DEGs, we conducted Gene Ontology (GO) and KEGG
pathway enrichment analyses. As shown in Fig. 2d, e, GO terms related to
skindevelopment, epidermis development, and epithelial cell differentiation
were enriched in Cluster 1. In contrast, immune response-related terms,
including leukocyte cell-cell adhesion and positive regulation of leukocyte
activation, were downregulated compared toCluster 2 andCluster 3. KEGG
pathway analysis revealed downregulated genes in Cluster 1 were enriched
in pathways related to TIME signaling, including the cytokine-cytokine
receptor interaction pathway and T cell regulation (Fig. 2f). Gene Set
EnrichmentAnalysis (GSEA) ofMSigDBC2 genesets further supported the
distinct biological processes observed in the clusters. In Cluster 1, pathways
related cell proliferation and poor survival were enriched (Fig. 2e). These
findings suggest that Cluster 1 may represent a less immune-responsive
subgroupofNSCLC, associatedwith poor prognosis and copper-dependent
tumor progression.

Co-expression analysis for screening core genesets
To figure out the core gene modules associated with Cluster 1 and
cuproptosis, we performed Weighted Gene Co-expression Network
Analysis (WGCNA) usingDEGs identified fromCluster 1 versus Clusters
2 and 3. We selected an optimal soft-thresholding power to ensure scale-
free topology (Fig. 3a) and evaluated the mean connectivity of the net-
work (Fig. 3b). Based on hierarchical clustering, we identified multiple
gene co-expression modules represented by different colors (Fig. 3c). To
determine the biological relevance of these modules, we correlated them
with key functional traits, particularly cuproptosis-related gene sig-
natures. The module-trait heatmap (Fig. 3d) revealed that the blue
module showed the strongest positive correlation with cuproptosis-
related genes, while other modules exhibited varying degrees of associa-
tion. A scatter plot of module membership versus gene significance for
cuproptosis-related genes (Fig. 3e) further confirmed the enrichment of
cuproptosis-associated genes in the blue module (correlation = 0.37,
p < 0.0001), suggesting a potential role in the copper-dependent tumor
proliferation phenotype observed in Cluster 1. To identify clinically
relevant hub genes, we intersected WGCNA module genes with sig-
nificant prognostic genes derived from univariate Cox regression analy-
sis, which yielded 85 hub genes serving as potential biomarkers or
therapeutic targets for NSCLC patients with a copper-dependent tumor
proliferation subtype (Fig. 3f).

Constructing machine learning prediction models based on
hubgenes
With the aim to construct Cluster1 feature markers with better prognostic
value and immunophenotyping, we utilized a combination of 101 machine
learning algorithms to analyze. All the five cohorts were integrated with
combat algorithm to remove the batch effect (Fig. S2a, b). The EGA dataset
was partitioned into a training set and an internal validation set in a ratio of
1:1. In the training set, we used a ten-fold cross-validation framework, fitted

101 predictive models, and computed C-indexes for all training and vali-
dation datasets, as shown in Fig. 4a. Among these 101 models, the top 10
predictive models ranked according to the average C index were finally
constructed using the StepCox combined with Ridge regression, Lasso and
Enet algorithm. Among them, StepCox[both] plus Lasso regression showed
better prediction ability in both the training dataset, and the external vali-
dation dataset. In conclusion, after a thorough screening, we identified
StepCox[both]+ Lasso as a predictive model with high accuracy and
prognostic relevance.

Meanwhile, the prediction efficacy of the model was tested on the
training set and validation set. The StepCox[both]+ Lasso model per-
formed well on both the training set and external validation set (Fig. 4b–d),
presenting a significantly high hazard ratio based on the risk score (Fig. 4e).
Moreover, the selected model also functioned well in 1-year, 2-year, and
3-year PFS prediction (Fig. 4f).

Immune and functional enrichment analysis based on risk score
To further validate the clinical relevance of themachine learningmodel, we
conducted an in-depth analysis of immune infiltration and functional
enrichment pathways based on the risk groups (low risk vs. high risk)
generated by the StepCox[both] + Lasso model. We first analyzed the
immune microenvironment in both high- and low-risk groups via xcell,
CIBERSORT, estimate and ssGSEA. The heatmap (Fig. 5a) shows the
immune cell infiltration profiles across different risk types. The low-risk
group exhibited significantly higher immune score and microenvironment
score, indicating a more immune-infiltrated microenvironment. To be
specific, there was a potentially higher infiltration of B cells and CD4+
memory T cells in the low-risk group, which are typically associated with a
more activated and anti-tumor immune response.

As shown in Fig. 5b, we identified several enriched biological processes
in both risk groups. For example, the low-risk group exhibited significant
enrichment in immune-related pathways, including T cell-mediated cyto-
toxicity and positive regulation of leukocyte-mediated cytotoxicity, con-
sistent with an anti-tumor tumor microenvironment. KEGG pathway
enrichment analysis (Fig. 5c) also demonstrated that low-risk groups were
enriched in antigen processing and presentation, suggesting a more active
immune response.

We then explored the enrichment of immune-related pathways from
theMsigDBC7 database. The analysis revealed that the low-risk group had
significant enrichment in IL-6/JAK-STAT3 signaling, interferon-gamma
response, and IL2-STAT5 signaling (Fig. 5d). These findings suggest that
the low-risk group may have immune activation mechanisms linked to
cytokine interaction. Meanwhile, patients with high IL-2/STAT5 signaling
scores showed significantly better survival outcomes compared to those
with low scores (Fig. 5e, top left). High expression of IL-6/JAK-STAT3,
interferon-gamma, and KRAS signaling also correlated with better prog-
nosis, further confirming the active immune nature of the low-risk group
(Fig. 5e).

Fig. 2 | NSCLC subclusters and characteristics related to cuproptosis and
immune pathways. aHeatmap of gene expression across 31 pathways: The heatmap
displays the expression patterns of three main clusters related to copper-dependent
tumor proliferation, immune infiltration, and stromal enrichment across three
distinct clusters (Cluster 1, Cluster 2, Cluster 3) in the OAK+ POPLAR cohort. The
color scale indicates the degree of expression, with blue representing low expression
and red representing high expression. Categories such as Treg, B cells, immune
responsemarkers, andmatrix remodeling are highlighted, providing insight into the
differential gene signatures in these groups. b Kaplan–Meier survival analysis: The
survival curve compares the progression-free survival (PFS) between the three
clusters in theOAKandPOPLAR cohort. Cluster 1 exhibits a significantly worse PFS
compared to Cluster 2 (p-value < 0.001). c Volcano plot of differential gene
expression: This plot shows the differential expression analysis between Cluster 1
and Clusters 2 and 3. Red points indicate significantly upregulated genes, green
points indicate significantly downregulated genes, and gray points represent genes
with no significant change. d Enrichment analysis: The bar plot shows the top

enriched biological processes (BP) identified through Gene Ontology (GO) analysis
for upregulated genes in cluster1. The x-axis represents the significance
(−log10(FDR)) of the enriched terms, while the y-axis lists the top GO terms. Terms
related to skin development, keratinization, and cell communication are highlighted.
e Enrichment analysis of downregulated genes in Cluster 1. f Network of differen-
tially expressed genes: a network analysis reveals the complex interactions among
differentially expressed genes, highlighting key regulatory pathways. The network
nodes represent genes, with edges indicating interactions. Enriched biological pro-
cesses (BP), molecular functions (MF), and KEGG pathways are shown, under-
scoring the connectivity between immune response, cell adhesion, and tumor
progression pathways. g Gene set enrichment analysis (GSEA): The GSEA plot
illustrates the enriched KEGG pathways in the different clusters. Notably, “Cervical
Cancer Proliferation” and “Antigen-activated lymphocytes” are among the top
enriched terms, with a significant enrichment score. The term’s ranking in the
ordered dataset is shown below the plot.
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Single-cell sequencing integrated analysis
Two NSCLC immunotherapy datasets, GSE207422 and GSE229353
(Fig. 6a–c), were combined and re-analyzed (Fig. S3a–d) to identify specific
cell subtypes related to the model we constructed previously using the
SCISSOR algorithm to map bulk RNA-seq phenotype data onto scRNA-seq

data. It revealed thedifferent distributionofmodel risk score (scissor_model),
survival outcomes (scissor_survival), and therapeutic responses (scissor_re-
sponse) amongdifferent cell subgroups (Fig. 6d).Additionally, the expression
patterns of key genetic mutations, including EGFR, KRAS, and TP53, across
various cell types were calculated by SCISSOR as well (Fig. 6e). The analysis
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led to the selection of two specific subgroups, scissor+ epithelial and neu-
trophil, for further investigation. These subgroups were selected based on
their significant enrichment in risk score and correlationwith the phenotype,
including worse survival and less response to immunotherapy.

In this section, we explored the potential mechanisms underlying the
interactions between immune cell subpopulations using CellChat analysis.
The network analysis revealed significant communication patterns and
interactions between various cell types, including epithelial, macrophages,
neutrophils, T cells, and other immune cells in the tumor microenviron-
ment (Fig. 7a, b).

It is observed that the high-risk epithelial and neutrophil subgroups
exhibited robust communication patterns, particularly with immune cells
such asmacrophages andT cells. These interactionswere further confirmed
through heatmaps that illustrated the frequency and strength of these cel-
lular communications, highlighting the dynamic nature of immune sig-
naling within the tumor. Particularly, we focused on specific signaling
pathways that were enriched in these interactions, namely ADGRE, CEA-
CAM, and TWEAK signaling pathways (Fig. 7c–e). Through these path-
ways, we also identified gene CEACAM5 of CEACAM pathway distinct
between the major response (MPR) and Non-MPR subgroups, suggesting
the potential roles in modulating immune responses in NSCLC (Fig. 7f, g).
Specifically, CEACAM5 expression was found to be enriched in the epi-
thelial subset, supporting its role as amarker for immunotherapyprediction.
Furthermore, we investigated the prognostic significance of the
CEACAM5+ epithelial signature (Fig. S4a–c). Survival analysis revealed that
patients with high expression of CEACAM5+ epithelial had significantly
worse PFS compared to those with low expression in all cohorts (Fig. 7h, i).
This result suggests that the CEACAM5+ epithelial subgroupmay serve as a
critical biomarker for stratifying patients based on their immune responses
and survival prospects.

In-vitro experiments validation of CEACAM+ epithelial
marker genes
We collected 3 pairs of lung cancer samples with different pathological
responses to immunotherapy to validate the differential protein
expression of marked genes of CEACAM5+ epithelial with western blot
and immunohistochemistry (Fig. 8a). The results showed that AKAP12,
CEACAM5, CEACAM6, TRIM31, DDK1, FAM83A, SLC16A4, S100P
were overexpressed in non-MPR group. The significant difference in
expression of these proteins were confirmed through relative expression
level (Fig. 8b).

To clarify the spatial location of CEACAM5+ epithelial markers,
immunohistochemistry was conducted in 4 main proteins, including
CEACAM5, FAM83A, S100P, and TRIM31 (Fig. 9a–d). The DAB staining
demonstrated a higher expression of the four proteins in the non-MPR
group.Among them,CEACAM5, S100P, andTRIM31 showed significantly
lower expression in the MPR group. Moreover, the staining of CEACAM5
and S100P revealed a potential pattern of co-localization, which indicates

the key roles of CEACAM5 and S100P in representing CEACAM5+ epi-
thelial cells.

Discussion
In this study, we used CKGs and copper hemostasis genes to characterize
and predict prognostic and immune microenvironmental features of
NSCLC patients underwent immunotherapy through multi machine
learningmodels. The results showed that the risk scoring system composed
of the characteristic geneset of cuproptosis andcopperhemostasis couldwell
stratify NSCLC patients undergoing immunotherapy exhibiting different
prognostic and immune infiltration characteristics.

In clinical practice, the use of molecular biomarkers to accurately
assess the prognosis of patients with malignant tumors is crucial, a
process that involves predicting clinical risk groups and selecting effec-
tive treatment strategies, making it a key area of current research22.
Although significant progress has been made to date in the development
and validation of molecular prognostic and/or predictive markers
associated with NSCLC, a clear set of specific genes to serve as a reference
standard has yet to be identified. In this study, we aimed to explore the
molecular prognostic features among different subtypes by selecting
cuproptosis-related genes for machine learning analysis and identified a
representative set of CKGs. Predictive tools constructed on the basis of
these CKGs are not only closely related to the prognosis of NSCLC, but
also help us to gain a deeper understanding of the complex biological
mechanisms ofNSCLC: sampleswith low-risk scores show amore higher
survival, active immunomodulatory pathways, higher immune scores,
and richer M1-type macrophage and CD8+ T cell23,24 infiltration, which
play key regulatory and protective roles in the immune microenviron-
ment, whereas samples with high risk scores showed lower survival,
active tumor-promoting pathways, high abundance of tumor-promoting
immune cells M2-type macrophages, and low immune scores. This may
provide some insight into immunotherapy for NSCLC, where immune
checkpoint inhibitors (ICIs) may be less effective in patients with a high-
risk score.

In our study, we identified CEACAM5+ epithelial as the specific cell
subtype that was closely related to the prognostic model we conducted.
CEACAM5 has been used as a tumor marker for colorectal cancer since
1965 to aid in diagnosis and monitor tumor progression25,26. In recent
years, with the advancement of research, CEACAM5 has emerged as a
promising therapeutic target for the development of new drugs. The
Phase I clinical trial (PROCEADE-CRC-01) has brought new hope to
patients with advanced CRC: the global first anti-CEACAM5 antibody-
drug conjugate (ADC) Precem-TcT has demonstrated significant safety
and encouraging efficacy in heavily pretreated metastatic colorectal
cancer patients27. CEACAM5 is highly expressed in approximately 20%
of patients with lung adenocarcinoma. In 2020, Xinwen Zhang et. al.
reported elevated CEACAM5 expression in both NSCLC tissues and cell
lines. Immunohistochemical (IHC) analysis of tumor samples from 87

Fig. 3 | Co-expression analysis for screening core genesets. a Scale independence
vs. soft threshold (power): The plot shows the relationship between the scale-free
topology model fit and the soft threshold (power) used in weighted gene co-
expression network analysis (WGCNA). A soft threshold of 6 was chosen based on
the highest value, ensuring a scale-free network topology. bMean connectivity vs.
soft threshold (power): This plot illustrates the mean connectivity of genes in the
network as a function of the soft threshold. A soft threshold of 6 was selected to
balance the scale-free topology and mean connectivity. c Cluster dendrogram of
genes: The hierarchical clustering dendrogram shows the co-expression modules
identified by WGCNA. Genes are grouped into modules based on their expression
patterns. The module colors are displayed at the bottom, with each color repre-
senting a distinct genemodule.dModule-trait relationships: The heatmap shows the
correlation between the identifiedWGCNAmodules (rows) and the trait of interest
(Cuptosis-related genes, column). Positive and negative correlations are shown in

blue and red, respectively, with statistical significance (p-value) indicated on the
right. The blue modules (e.g., MEcyan, MEturquoise) show significant positive
correlations, while other modules exhibit weaker or no significant relationships.
eModule membership vs. gene significance for Cuptosis-related genes: The scatter
plot demonstrates the correlation between module membership (i.e., the degree of a
gene’s association with a given module) and the gene significance for Cuptosis-
related genes. A positive correlation (cor = 0.37, p = 1.9e-30) indicates that genes in
the bluemodule are highly associatedwith theCuptosis-related trait. fVenndiagram
ofWGCNAmodule genes and uni-cox regression results: The Venn diagram shows
the overlap between the genes identified byWGCNA (896 genes) and those selected
through uni-cox regression (4260 genes). The intersection (85 genes) represents
genes that are common to both analyses, highlighting potential key genes related to
Cuptosis.
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patients further revealed that CEACAM5 expression was significantly
associated with tumor stage, lymphatic invasion, and histological grade.
Moreover, in vitro experiments in this study demonstrated that CEA-
CAM5 can promote NSCLC cell proliferation and migration by inhi-
biting the p38-SMAD2/3 signaling pathway28. Tusamitamab ravtansine

(TUSA) is the first antibody-drug conjugate (ADC) targeting CEA-
CAM5. In previous Phase I/II trials (NCT02187848), the drug achieved
an objective response rate (ORR) of 20.3% (95% CI: 12.27–31.71%) in a
cohort of non-squamous NSCLC patients (n = 64) with CEACAM5
expression ≥50%29. Anti-CEACAM5 therapy holds promise for broader
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applications in lung cancer. Based on our findings, CEACAM5 was
highly expressed in the non-MPR group, suggesting the potential value
of combining anti-CEACAM5 therapy with immunotherapy. However,
its specific efficacy requires further confirmation through ethical
approval and prospective clinical trials.

Several key challenges remain to be addressed in the use of CKGs to
phenocopy the TIME and predict clinical outcomes. First, the role of cell
death in TIMEmay be different for distinct cell types. Given that sensitivity
to cuproptosis is dependent onmitochondrial respiration6 andupregulation
of mitochondrial and tricarboxylic acid cycle metabolism is a prerequisite
for the proliferation and function of both cancer cells and T cells21,30, both
types of cells are susceptible to cuproptosis, but the result may lead to either
increased or decreased antitumor activity. In other words, apoptosis in
cancer cells and T cells drives response and resistance to ICIs,
respectively31,32. However, our analysis used pre-treatment bulk-seq data
and post-treatment scRNA-seq data, which may not capture the unique
contribution of CKGs to TIME in different cells before immunotherapy. It
could be further elucidated by analyzing pre-treatment scRNA-seq data
with corresponding outcomes of ICIs treatment. Second, cuproptosis may
be a double-edged sword like other cell death mechanisms. Depending on
the context, cellular pyroptosis and necrotic cell death may promote or
inhibit inflammatory responses, ultimately enhancing anti-tumor immu-
nity or promoting tumor growth and metastasis33. Third, copper, as a
cofactor for enzymes that regulate a wide range of biological processes, also
has pros and cons that need to be resolved34. In addition to cuproptosis,
coppermay induce copper proliferative effects thatmediate a variety of pro-
tumorigenic cellular processes tightly linked to cell proliferation, angio-
genesis, and metastasis. Fourth, whether cuproptosis is a predictive or
prognostic biomarker has not been confirmed. The data analyzed in this
study were obtained from published literature and public databases, which
are retrospective studies that require validation through prospective ana-
lyses or, in some cases, combinedwithmolecular experiments.Although the
different protein expression of the CEACAM5+ epithelial marker between
MPR and non-MPR groups was confirmed by western blot and immuno-
histochemistry, the potential mechanism underlying the cuproptosis-
related genes and CEACAM5+ epithelial requires further investigation.

In conclusion, we identified unique intercellular communication net-
works andmarkers based on the cuproptosis and copper hemostasis related
genes, such as CEACAM5, which can potentially help stratify NSCLC
patients for personalized immunotherapy. The CEACAM5+ epithelial sig-
nature may serve as a valuable tool for predicting patient survival and
tailoring treatment strategies.

Methods
Data acquisition and processing
RNA-seq sequence analyses were applied from the European Genome
Database for two advanced non-small cell lung cancer immunotherapy
clinical studies, theOAKcohort aswell as thePOPLARcohort,with samples

obtained from pre-treatment surgical/puncture specimens (https://ega-
archive.org). One NSCLC cohort with immunotherapy from Nanfang
hospital (https://figshare.com/articles/dataset/Nanfang_hospital_NSCLC_
immunotherapy_cohort/21564015) and another two immunotherapy
cohorts from theGene ExpressionOmnibus (GEO)databases (GSE126044,
GSE135222) were also included for subsequent analyses, which had com-
plete clinical information and survival data, and were combined and ana-
lyzed using the COMBAT algorithm after de-batching. Transcripts per
thousand base million (TPM) data from a total of 891 (OAK= 699,
POPLAR = 192) patients from the OAK as well as the PAPLAR cohorts
were extracted according to previously described methods35, and were used
as training (dataset1) and internal validation (dataset2) dataset to assess the
association of filtered geneswith prognosis of immunotherapy. A total of 63
NSCLC patients from the GEO database and Nanfang hospital were
included in the external validation dataset (dataset3).

Composition of genesets
Fourteen genes (CDKN2A, FDX1, DLD, DLAT, LIAS, GLS, LIPT1, MTF1,
PDHA1, PDHB, ATP7A, ATP7B, SLC30A1, and SLC31A1) were strongly
associatedwith cuproptosis as previously described andnamedasCKGs.To
improve the predictive efficacy of themodel, 32 genes corelatedwith copper
homeostasis and copper metabolism were also included34. Meanwhile, to
further explore the correlation between cuproptosis and TIME, 29 immune
pathway genesets published in previous studies were added to help identify
specific cluster as well36.

Unsupervised clustering and co-expression analysis
The NMF package was utilized to identify immunotherapy subtypes and
corresponding prognosis37. Patients were categorized into three dis-
tinct clusters based on the gene expression score of cuproptosis,
copper hemostasis, and immune-related pathways via the NMF
algorithm. Differential expression was assessed using the DESeq2
package for R (version: 1.42.0). To correct for false-positive results in
the expression data, we adopted adjusted P values. The criteria for
screening differentially expressed RNA were set as adjusted P-
value < 0.05 and |fold change| > 1.

Weighted gene co-expression network (WGCNA) was used in this
paper to further screendifferential genes and involved them into the training
of machine learning model, so as to improve the biological significance of
the model we generated.

Functional enrichment analysis
Functional enrichment analyses were performed using Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods to com-
pare the differential signaling pathways and biological effects between low-
and high-expression cohorts of CKG. GO and KEGG pathways were eval-
uated using the “clusterProfiler” package in R38. Enrichment analysis for GO
and KEGG was based on q-value and p-value thresholds, both set at <0.05.

Fig. 4 | Constructing machine learning prediction models based on hubgenes.
a Performance of 101machine learningmodels: This table presents the evaluation of
101 machine learning models, including various regression and classification algo-
rithms, based on their concordance index (C-index) across multiple datasets. The
model StepCox[both]+ Lasso (highlighted in the red box) shows the best perfor-
mance with the highest C-index values in both training and validation cohorts. The
table also includes results from other models, such as random survival forests (RSF),
support vectormachines (SVM), and others, demonstrating their predictive abilities.
b Kaplan–Meier survival analysis for StepCox[both]+ Lasso (Dataset1): The
Kaplan–Meier survival curve illustrates the survival probabilities of patients strati-
fied by the predicted risk from the StepCox[both]+ Lasso model in Dataset1. High-
risk (red) patients show significantly lower survival compared to low-risk (gray)
patients (p < 0.001, hazard ratio = 2.23, 95%CI: 1.74–2.65). cKaplan–Meier survival
analysis for StepCox[both]+ Lasso (Dataset2): The survival analysis for Step-
Cox[both]+ Lasso in Dataset2 shows similar trends, with high-risk patients (red)

having worse survival outcomes compared to low-risk patients (gray) (p < 0.001,
hazard ratio = 1.82, 95% CI: 1.26–2.62). d Kaplan–Meier survival analysis for
StepCox[both]+ Lasso (Dataset3): In Dataset3, the survival analysis shows a sta-
tistically significant difference between high-risk and low-risk groups, with a p-value
of 0.007 and Hazard Ratio = 2.11 (95% CI: 1.18–3.77), indicating the robustness of
the StepCox[both]+ Lasso model across datasets. eMeta-analysis of univariate Cox
regression: Thismeta-analysis table summarizes the hazard ratios (HR) and p-values
from univariate Cox regression across three datasets. The model StepCox[both]+
Lasso shows consistent results across all cohorts, with a pooled hazard ratio of 2.25
(95% CI: 1.68–2.73), demonstrating strong prognostic ability across different
populations. f 1-, 2-, and 3-year survival prediction AUC: The bar plots show the
Area Under the Curve (AUC) for survival prediction at 1, 2, and 3 years using the
StepCox[both]+ Lasso model across three datasets. The model achieves high AUC
values, with 1-year survival AUC = 0.74, 2-year AUC = 0.73, and 3-year AUC = 0.68
in Dataset1, indicating reliable performance in long-term survival prediction.
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Characterizationof the immunemicroenvironment:CIBERSORT,
ssGSEA and ESTIMATE
To characterize the immune infiltration in different database, expression
data were loaded into CIBERSORT (https://cibersort.stanford.edu/) and
repeated 1000 times to determine the relative percentages of 22 immune

cell types39. Meanwhile, this paper utilizes the ESTIMATE algorithm
based on RNA-seq expression levels using the R package “estimate”40

The ESTIMATE score, immune score and stroma score of all datasets
were calculated using the R package “estimate”, and the immune cell
infiltration abundance was obtained by single-sample gene set
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enrichment analysis (ssGSEA) using the R package “GSVA”, which were
combined to validate the immune cell abundance obtained by
CIBERSORT.

Machine learning models
The EGA dataset (OAK, POPLAR cohort) was randomly divided into a
training set and an internal validation set according to a 1:1 ratio to
ensure a balanced distribution of clinical features between the two
groups. The GEO dataset (GSE126044, GSE135222) and Nanfang hos-
pital cohort was set as the external validation set. Integration of including
Lasso, Ridge, Stepwise Cox, CoxBoost, Random Survival Forest (RSF),
Elastic Networks (Enet), Cox’s Partial Least Squares Regression
(plsRcox), Supervised Principal Components (SuperPC), Generalized
Augmented Regression Modeling (GBM), and Survival Support Vector
Machines (survival-SVM) ten machine learning algorithms. In the
training dataset, based on the ten-fold cross-validation framework, we
organize 101 combinations of these ten algorithms for variable selection
and model construction.

All constructed models were conducted through the package
MIME141. For each model, we calculated its C-index in the training set,
internal validation set and external validation set. The predictive perfor-
mance of the models was then ranked based on the average C-index. A
combination of algorithms with both robust performance and clinical
translational significance was selected, and appropriate model validation
methods were chosen based on the best performance.

Construction and validation of cuproptosis-associated immune
gene signature
The filtered geneset obtained from the above model was reintroduced into
the final model analysis to create a prognostic risk score in the training
dataset. Subsequently, patients were categorized into high-risk and low-risk
groups based on the risk score. The difference in PFS between the two
groups was assessed using the Kaplan–Meier method. The same formula
and statistical analysis were used to verify the prognostic value of geneset in
the other datasets.

Integration of single-cell RNA sequencing datasets
Two single cell RNA sequencing (scRNA-seq) datasets fromGEODatabase
(GSE207422, GSE229353) were integrated with the quality control strategy
described in their original article. Cluster specific markers were identified
through FindAllMarkers algorithm in Seurat V5.

SCISSOR analysis
We used SCISSOR42 to associate phenotypic data from bulk RNA-seq
experiments with single-cell data. Clinical profile and gene expression data
of OAK and POPLAR cohorts were obtained from the EGA database.
SCISSORwas runon the resolutionof eachpatient individually according to
the SCISSOR tutorial using model risk level, immunotherapy response and
mutation data (logistic regression), and Progress-free survival (cox-regres-
sion) as dependent variables.

Antibodies
CEACAM5 (CST, 2383 T), CEACAM6 (CST, 85102 T), S100P (PTG,
11803-1-AP), FAM83A(PTG, 20618-1-AP), AKAP12 (PTG, 25199-1-AP),
SLC16A4 (PTG, 20889-1-AP), TRIM31 (PTG, 12543-1-AP), DKK1 (PTG,
21112-1-AP).

Western blot
Tissue sampleswerehomogenized inRIPAbuffer (Sigma-Aldrich, St. Louis,
MO) containing 1× HALT protease inhibitor (Thermo Fisher Scientific,
Waltham, MA) on ice for 30min. The homogenates were centrifuged at
10,000 rpm for 10min, and the supernatant was collected. Protein con-
centrationswere quantifiedusing the BCAassaywith a BSA standard curve.
Equal amounts of protein were mixed with LDS sample buffer and boiled
with 10 μM TCEP (Thermo, Cat# 77720).

For insoluble fractions, tissue pellets were resuspended in RIPA buffer
with benzonase and processed similarly to the soluble fractions. Proteins
were separated by SDS-PAGE on Bis-Tris 4–12% gels and transferred to
nitrocellulose membranes. Membranes were blocked for 1–2 h at room
temperature in blocking buffer (5% BSA, 0.1% Tween-20 in 1× TBS) and
incubated overnight at 4 °C with primary antibodies. After washing with
TBST, membranes were incubated with secondary antibodies for 2 h at
room temperature before imaging.

Immunohistochemistry
Paraffin-embedded tissue sections (4 μm thick) were deparaffinized in
xylene and rehydrated through a graded ethanol series. Antigen retrieval
was performed by incubating slides in 0.01M citrate buffer (pH 6.0) and
heating in a microwave for 15min. After cooling to room temperature,
sections were washed with phosphate-buffered saline (PBS) and blocked
with 5% normal goat serum in PBS for 30min to reduce non-specific
binding.

Primary antibodies were applied overnight at 4 °C. The following day,
sections were washedwith PBS and incubatedwith appropriate horseradish
peroxidase (HRP)-conjugated secondary antibodies for 1 h at room tem-
perature. Immunoreactivity was visualized using the DAB substrate kit
(abcam, ab64238), and the staining reaction was monitored under a light
microscope. Sections were counterstained with hematoxylin, dehydrated
through a graded ethanol series, cleared in xylene, and mounted with a
resinous mounting medium. The stained sections were then imaged and
analyzed for protein expression.

Data analysis
All statistical analyses were performed using R (version 4.32).Wilcoxon test
was used to analyze variables thatwerenot normally distributedbetween the
two groups. The chi-square test was used to analyze differences in para-
meters between the high- and low-risk groups. The Kaplan–Meier meth-
odologywas used to compare differences inPFS betweengroups.Univariate
Cox regression analysis was performed and presented as risk ratios (HRs)
and 95% confidence intervals (CIs) using the “Forestplot” package. In this
study, a P value of <0.05 was considered statistically significant.

Fig. 5 | Immune and functional enrichment analysis based on risk score.
a Immune infiltration analysis: The heatmap shows the immune cell infiltration
patterns in the high-risk and low-risk groups. Each row represents a different
immune cell type, and each column corresponds to a sample. The color intensity
reflects the level of immune cell infiltration, with higher infiltration in the low-risk
group observed for several immune cell types, such as CD4+ memory T cells. b GO
enrichment analysis of upregulated genes in the low-risk group: The violin plots
show the distribution of Gene Ontology (GO) terms associated with upregulated
genes in the low-risk group. Key terms, such as “adaptive immune response,”
“regulation of leukocyte-mediated cytotoxicity,” and “positive regulation of T cell-
mediated cytotoxicity,” are enriched in the low-risk group, suggesting a stronger
immune response. c KEGG GSEA analysis for upregulated genes in the low-risk
group: The Gene Set Enrichment Analysis (GSEA) plot shows the running

enrichment score (ES) for the top KEGG pathways in the low-risk group. The
pathways, including “T cell differentiation” and “cytokine-cytokine receptor inter-
action,” are significantly enriched, reflecting immune-related processes. dMSigDB
C7 pathway analysis for upregulated genes in the low-risk group: The bar plot shows
the enriched pathways from the MSigDB C7 collection in the low-risk group, with
pathways such as “ALLERGY REACTION,” “INTERFERON GAMMA
RESPONSE,” and “IMMUNE SYSTEM PROCESS” significantly enriched in upre-
gulated genes in the low-risk group. e Survival analysis based on pathway scores from
MSigDB C7: The Kaplan–Meier survival curves demonstrate that higher scores for
key pathways (e.g., “IL2/STAT5 SIGNALING” and “INTERFERON GAMMA
RESPONSE”) in the low-risk group are associated with better survival outcomes,
with significant differences between the high and low-score subgroups (log-rank p-
values < 0.001).
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Fig. 6 | scRNA-seq integrated analysis. a Single-cell clustering: The UMAP plot
shows the clustering of single-cell RNA-seq data, with different cell types annotated
in various colors. Each point represents an individual cell, and the clusters are
labeled by the corresponding cell type, including B cells, epithelial cells, macro-
phages, neutrophils, plasma cells, and T cells, among others. b Cell proportion
across samples: The stacked bar plot displays the relative proportion of different cell
types in each sample. The proportion of each cell type, such as B cells, T cells, and
epithelial cells, is represented as a percentage for each sample, providing insights
into the cell composition across samples. c Cell marker expression: The heatmap
illustrates the expression levels of key cell markers for different cell types. Each row
represents a marker, and each column represents a different cell type. The heatmap

shows high expression of specific markers in their respective cell types, highlighting
the cellular identity of each cluster. d SCISSOR algorithm – phenotype mapping:
The UMAP plot shows the SCISSOR algorithm’s mapping of bulk RNA-seq data
onto single-cell data. Cells are colored based on the predicted survival outcome, with
blue representing cells associated with better survival and red indicating worse
survival outcomes. e SCISSOR algorithm—gene mutation mapping: The UMAP
plots demonstrate the SCISSOR algorithm’s mapping of bulk RNA-seq data onto
single-cell data for various genes. The cells are colored based on gene expression
levels for EGFR, KRAS, and TP53 (left to right). Blue indicates lower expression,
while red indicates higher expression.
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Fig. 7 | Cell-cell interactions and cell subgroup identified. a Cell-cell interaction
network: The network plots show the number of interactions (left) and the inter-
action strength (right) between different cell types, including Mast cells, Neu-
trophils, Plasma cells, T cells, and others. The interaction edges are colored based on
the strength of the interaction, with the size of each node representing the relative
abundance of each cell type. b Interaction matrix: The heatmaps provide a quanti-
tative representation of the interactions between cell types. The first heatmap (left)
shows the number of interactions, while the second heatmap (right) indicates the
interaction strength, with darker colors representing stronger interactions.
c ADGRE signaling pathway network: The circular diagram shows the network of
cell-cell interactions involved in the ADGRE signaling pathway, with lines repre-
senting interactions between sender, receiver, and mediator cells. The heatmap
below visualizes the signaling intensity and interaction frequencies across different
cell types for this pathway. dCEACAM signaling pathway network: Similar to panel
c, the circular diagram displays the interactions within the CEACAM signaling
pathway. The heatmap below shows the signaling intensity for each cell type

involved, highlighting key interactions. e TWEAK signaling pathway network: This
panel shows the interactionswithin the TWEAK signaling pathway, with the circular
diagram illustrating the cell types involved in signaling and the heatmap revealing
the interaction strength and intensity across cell types. f Gene expression in MPR
andNon-MPR groups: UMAPplots show the expression of the gene TNFRSF12A in
MPR(left) and non-MPR(right) population. The plots reveal significant differential
expression between the two groups. gDifferential expression of CEACAM5: UMAP
plots demonstrate the expression of CEACAM5 inMPR andNon-MPR groups. The
differential distribution of CEACAM5 indicates its potential role in distinguishing
between these two subgroups. h Survival analysis based on CEACAM5+ epithelial
signature: Kaplan–Meier survival curve comparing high and low expression of the
CEACAM5+ epithelial signature. The log-rank test indicates a significant difference
in survival between the high and low groups in OAK+ POPLAR cohort (p = 0.010)
and GEO+Nanfang cohort (p = 0.044), with higher expression associated with
poorer survival.

Fig. 8 | In-vitro experiments and protein expression of CEACAM5+ epithelial
markers. a Clinical samples with different responses to immunotherapy were col-
lected for western blot and Immunohistochemistry. bWestern blot of 8 key markers

and β-Actin as internal control (n = 3). c Relative expression level based on western
blot. ****Means P < 0.0001; **Means P < 0.01; *Means P < 0.05; ns not significant.
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Fig. 9 | Immunohistochemistry of CEACAM5+ epithelial markers.
a CEACAM5 staining in MPR (up) and non-MPR (down) groups (n = 2).
b FAM83A staining in MPR (up) and non-MPR (down) groups (n = 2). c S100P

staining in MPR (up) and non-MPR (down) groups (n = 2). d TRIM31 staining in
MPR (up) and non-MPR (down) groups (n = 2).
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Data availability
The datasets used in this paper are available online, as described in the
“Methods section”.

Code availability
No new algorithms were developed for this article. All code generated for
analysis is available from the authors upon request.
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