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Artificial intelligence-driven prediction of
lymph node metastasis in T1 esophageal
squamous cell carcinoma using whole
slide images
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Li-Hua Ren1,7 , Yuan Ding2,7, Yue-Xin Zhang3,7, Ke-Han Teng2,4,7, Lu Wang5, Wan-Yue Zhang2, Ye Zhu1,
Jia-Jia Xu4, Xiao-Ying Wei4, Bin Wang2,6, Kai Hu3 & Rui-Hua Shi1

Accurate prediction of lymph nodemetastasis (LNM) in T1 esophageal squamous cell cancer is critical
for guiding treatment decisions after endoscopic submucosal dissection (ESD). We developed a deep
learning-based artificial intelligencemodel usingwhole slide images (WSIs) to predict LNMand reduce
overtreatment. The model was trained, validated, and internally tested on 160 surgically resected
cases (72 LNM+, 88 LNM–) from 374 patients without prior ESD, achieving an AUC of 0.949 (95%CI:
0.912–0.986) on internal test. Further validation was performed on an external ESD cohort comprising
clinically high-risk cases with invasion depths from MM to SM2. The model attained an accuracy of
90.1%, sensitivity of 81.8%, specificity of 91.4%, and an F1-score of 69.2%. It correctly classified
90.1% of samples, with a negative predictive value (NPV) of 96.9%. The high NPV and specificity
underscore the model’s utility in minimizing overtreatment while preserving diagnostic accuracy in
high-risk T1 esophageal cancer.

Esophageal squamous cell carcinoma (ESCC) remains a substantial
global health burden, with disproportionately high incidence and mor-
tality rates in China1,2. For early-stage lesions limited to the mucosa or
superficial submucosa (T1a), endoscopic submucosal dissection (ESD) is
established as the first-line curative treatment3. Post-ESD histopatholo-
gical evaluation identifies high-risk features such as lymphovascular
invasion (LVI) and tumor budding, which correlate with lymph node
metastasis (LNM), and often prompt recommendations for supple-
mental esophagectomy4. However, the significant invasiveness and
morbidity associatedwith esophagectomy, particularly in the old or those
with multiple comorbidities, raise concerns about overtreatment, as only
~10% of patients with LVI ultimately develop nodal metastases5. These
findings underscore the critical need for refined risk stratification in post-
ESD specimens to accurately identify occult LNM, thereby enabling
personalized management and reducing unnecessary surgery in low-risk
cohorts.

The conventional diagnostic paradigm for detecting tumormetastases,
particularly micrometastases, relies on labor-intensive manual slide eva-
luation by pathologists, a process prone to diagnostic uncertainty due to
subtle morphological features6. These challenges highlight the need for
automated, objective tools to augment histopathological assessment. Over
the past decade, artificial intelligence (AI) has emerged as a transformative
tool inmedical diagnostics, enabling automated or semi-automated analysis
of complex imaging data7. Advances in computational pathology-fueled by
high-throughput slide scanning, enhanced computing power, and scalable
storage solutions, have further expanded AI’s capacity to mine microscopic
lesions and interpret gigapixel-sized digital images (WSIs)8. While AI-
driven prediction of LNM has been explored in multiple cancers9,10, its
application to ESCC remains unexplored, representing a critical gap in
optimizing risk stratification for early-stage disease.

A cornerstone of AI implementation in WSIs analysis involves seg-
menting high-resolution images into smaller, computationally manageable
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patches.Currentmethodologies predominantly employ supervised learning
frameworks, utilizing dichotomized LNM status (positive/negative) as
supervisory labels11,12. Thismethodology offers distinct advantages for LNM
prediction in cancer. First, supervised learning leverages histologically
validated labels to establish a robust ground truth, enabling models to dis-
cernmetastasis-associated features with high diagnostic accuracy13. Second,
it explicitlymodels known clinicopathological features such as LVIor tumor
budding that correlate strongly with metastatic risk, ensuring biologically
relevant feature prioritization14. Third, supervised frameworks enhance
interpretability by linking predictions to specific histopathological patterns,
a prerequisite for clinical adoptionwheremodel transparency and reliability
are paramount15. Finally, the flexibility of supervised learning supports
integration with advanced architectures, including convolutional neural
networks (CNNs) and graph neural networks (GNNs), which excel at
capturing spatial and contextual dependencies within WSIs16.

To address the unmet need for precise LNM risk assessment in early-
stage ESCC with invasion depths from MM to SM2, we developed an AI-
drivenGNNmodel using supervised learning inorder to analyzeWSIs from
ESD specimens. This approach aims to reduce diagnostic subjectivity,
improve detection of micrometastases, and ultimately guide personalized
post-resection management.

Results
Study population and cohort characteristics
This study was conducted utilizing two independent patient cohorts. The
model was developed from a surgical cohort comprising 374 patients who
underwent primary esophagectomywithout prior ESD.Within this cohort,
72 patients were LNM+, and 302 were LNM–. To address the class
imbalance and enhance model generalizability, a balanced training set was
constructed, comprising 72 LNM+ and 88 randomly selected LNM– cases.
The representativeness of this LNM subset was confirmed, as no significant
differences in key baseline characteristics were observed compared to the
remaining 214 LNM– patients (Table S1).

This cohort of 160 patients was then randomly divided into a training/
validation set (n = 112, 442WSIs) and an internal test set (n = 48, 217WSIs)
in a 7:3 ratio. The distribution of critical prognostic factors, including
LVI (61.6% vs. 64.6%) and actual LNM rate (46.4% vs. 41.6%), was
well-balanced between these sets, with no statistically significant
differences in age, sex, tumor size, clinical stage, tumor location,
differentiation grade, lymphovascular or perineural invasion status,
or lymph node yield (Table 1).

For external validation, we utilized a separate cohort of 35 high-risk
patients who had previously undergone ESD. This cohort comprised
patients who subsequently received esophagectomy with systematic lym-
phadenectomy (n = 18, 85 WSIs) and those who managed with surveil-
lance alone (n = 17, 76WSIs), resulting in a total of 161WSIs for analysis.
The final nodal status, confirmed by histology or follow-up, identified 4
patients as LNM+ and 31 as LNM–. The model’s performance was rig-
orously evaluated on this independent ESD cohort to assess its clinical
applicability.

Validation performance of the AI model
As illustrated in Fig. 1, the optimal cutoff value for the model was deter-
mined from the internal test set. At this optimized threshold, the model
demonstrated robust performance in predicting LNM in ESCC, achieving
an area under the ROC curve (AUC) of 0.949 (95% CI: 0.912–0.986) in the
internal validation cohort and 0.866 (95% CI: 0.768–0.964) in the external
ESD validation cohort.

Test performance and clinical utility
Table 2 summarizes the distribution of histopathological features, including
submucosal invasion depth and tumor budding grade, within the external
validation cohort, providing context for correlation analyses with model
predictions.

On a per-slide basis within the external cohort, the AI model achieved
an accuracy of 90.1%. Performance metrics included a sensitivity of 81.8%,
specificity of 91.4%, an F1-score of 69.2%, and a negative predictive value
(NPV) of 96.9% (Fig. 2). This high NPV suggests a potential to reduce
unnecessary surgeries by correctly identifying a substantial proportion of
non-metastatic cases, highlighting its utility forpatient stratification towards
non-surgical surveillance.

The corresponding confusion matrix is detailed in Table 3, which
shows 18 true positives (TP), 4 false negatives (FN), 127 true negatives
(TN), and 12 false positives (FP). These results underscore the model’s
high accuracy and reliability, particularly in correctly classifying non-

Table. 1 | Baseline clinicopathological characteristics of the
training and validation set and internal test set of surgical
cohorts (n = 160)

Training and
validation set
Surgical
cohort (N = 112)

Internal test set
Surgical
cohort (N = 48)

P-
value

Age (years) 66.77 ± 7.752 67.42 ± 7.234 0.612

Sex, n (%) 0.216

Male 86 (76.8%) 41 (85.4%)

Female 26 (23.2%) 7 (14.6%)

Tumor size (mm) 39.32 ± 15.15 31.54 ± 13.61 0.265

Location, n (%) 0.961

Upper 7 (6.3%) 3 (6.3%)

Middle 54 (48.2%) 22 (45.8%)

Lower 51 (45.5%) 23 (47.9%)

Invasion depth 0.896

Submucosa 15 (13.4%) 7 (14.6%)

Muscularis propria 25 (22.3%) 12 (25.0%)

Adventitia 72 (64.3%) 29 (60.4%)

Clinical stage 0.908

Stage Ⅰ 15 (13.4%) 8 (16.7%)

Stage Ⅱ 53 (47.3%) 20 (41.7%)

Stage Ⅲ 40 (35.7%) 18 (37.5%)

Stage IV 4 (3.6%) 2 (4.2%)

Lymphovascular
invasion, n (%)

69 (61.6%) 31 (64.6%) 0.722

Perineural invasion,
n (%)

51 (45.5%) 25 (52.1%) 0.447

Differentiation grade,
n (%)

0.405

Poorly differentiated 20 (17.9%) 13 (27.1%)

Moderately
differentiated

87 (77.7%) 34 (70.8%)

Well differentiated 5 (4.5%) 1 (2.1%)

Tumor budding* 0.405

Low-grade budding 5 (4.5%) 1 (2.1%)

Intermediate-grade
budding

87 (77.7%) 34 (70.8%)

High-grade budding 20 (17.9%) 13 (27.1%)

Lymph node
metastasis (+), n (%)

52 (46.4%) 20 (41.6%) 0.579

Number of dissected
lymph nodes, n

29.98 ± 11.21 27.65 ± 10.50 0.426

*Tumor budding, defined as isolated cancer cell clusters (≤5 cells) at the invasive margin, was
graded as BD1 (0–4 buds/field), BD2 (5–9 buds/field), or BD3 (≥10 buds/field) under 200×
magnification.
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metastatic cases, thereby effectivelyminimizing the risk of false-positive
predictions.

Case-level diagnostic performance alignedwith clinical practice
Reflecting real-world clinical decision-making, where a single positive slide
typically defines a case as high-risk, we aggregated slide-level predictions to
the case level using a max-pooling rule. In the external ESD cohort, the

model achieved robust case-level performance, with a sensitivity of 100.0%
(4/4), a specificity of 83.9% (26/31), and an overall accuracy of 85.7% (30/
35). Notably, the NPV at the case level reached 100.0% (26/26) (Table 4).
This exceptionally high NPV indicates the model’s high reliability in
identifyingpatientswhocan safely avoid esophagectomy,whilemaintaining
high sensitivity for the detection of true metastatic cases.

Discussion
The strategic management of T1 ESCC with submucosal invasion (MM-
SM2) following ESD remains a considerable clinical challenge, primarily
due to the substantial risk of LNM (approximately 15~30%)17,18. Current
clinical guidelines rely on conventional histopathological assessment,
evaluating features such as depth of invasion, LVI, poor differentiation, and
other high-risk histopathological features, to guide decisions regarding
additional esophagectomy19,20. Nevertheless, this approach is hampered by
considerable interobserver variability and limited reproducibility in iden-
tifying features predictive of nodal involvement. The suboptimal dis-
criminative capacity of these morphological criteria can lead to potential
overtreatment of patients with minimal LNM risk and underscoring the
urgent need for more precise and objective risk stratification tools21,22.

To address this critical unmet need, we developed an AI-drivenmodel
for predicting LNM using computational pathology. Our model utilizes a
hierarchical GNN architecture to autonomously learn multi-scale histo-
pathological representations fromWSIs, capturing intricate morphological
patterns without relying on subjective human interpretation. Due to the
scarcity of ESD specimens with surgically confirmed nodal status, model
development incorporated surgically resected T1–T4 cases, while external
validation was rigorously restricted to T1 ESD cases to ensure clinical
relevance. This approach enables a fully automated, objective, and repro-
ducible prediction of metastatic risk. The model demonstrated robust
performance in internal validation (AUC: 0.949), and, crucially, in an
external cohort of real-world MM-SM2 ESD cases, the most relevant sub-
group of post-ESD decision-making. It achieved a sensitivity of 81.8% and a
high NPV of 96.9%, with case-level max-pooling further enhancing its
clinical utility (100% sensitivity, 100% NPV, 83.9% specificity). The con-
sistently high NPV underscores the model’s capability to reliably identify
patients at low risk of LNM, for whom conservative management may be
appropriate, thereby potentially reducing unnecessary surgeries.

Fig. 1 | ROC curves of the training and testing set. a Area under the ROC curve for the attention-based WSIs deep learning model for predicting LNM in ESCC of the
validation set; b The model was used in the test set to predict LNM in ESD specimens. ROC receiver operating characteristic, AUC area under the curve.

Table. 2 | Clinicopathological characteristics and outcomes of
the external ESD test cohort (n = 35)

Variable Total (n = 35) Surgery
group (n = 18)

Surveillance
group (n = 17)

Age (years, mean ± SD) 66.00 ± 6.97 65.11 ± 5.20 66.94 ± 8.52

Sex (Male, %) 25 (71.4%) 14 (77.8%) 11 (64.7%)

Tumor size (mm) 23.00 ± 16.06 25.94 ± 16.80 19.88 ± 15.11

Depth of invasion

MM 12 (34.3%) 5 (27.8%) 7 (41.2%)

SM1 (≤200 µm) 9 (25.7%) 6 (33.3%) 3 (17.6%)

SM2 (>200 µm) 14 (40.0%) 7 (38.9%) 7 (41.2%)

Differentiation

Well 28 (80.0%) 15 (83.3%) 13 (76.5%)

Moderate 5 (14.3%) 2 (11.1%) 3 (17.6%)

Poor 2 (5.7%) 1 (5.6%) 1 (5.9%)

Lymphovascular
invasion (LVI)

13 (37.1%) 7 (38.9%) 6 (35.3%)

Tumor budding

BD1 (0–4 buds) 28 (80.0%) 15 (83.3%) 13 (76.5%)

BD2 (5–9 buds) 5 (14.3%) 2 (11.1%) 3 (17.6%)

BD3 (≥10 buds) 2 (5.7%) 1 (5.6%) 1 (5.9%)

Positive margin
(horizontal and/or
vertical)

23 (65.7%) 12 (66.7%) 11 (64.7%)

Lymph node
metastasis (LNM)

4 (11.4%) 4 (22.2%) 0
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A key innovation of our framework is its ability to transcend the
limitations of conventional region-of-interest (ROI) or patch-based
analyses10,23,24. By constructing a biologically interpretable k-nearest neigh-
bor graph integrating multimodal features (including color histograms,
spatial coordinates, and deep feature embeddings)25–27, our GNN archi-
tecture effectively models local and global tissue architecture without
manual annotation, overcoming the limitations of methods that introduce
noise or fail to capture spatial dependencies. This end-to-end, supervised
approach explicitly captures spatial relationships among histopathological
patches, addressing the “needle-in-a-haystack” challenge inherent in WSI
analysis and identifying subtle metastatic signatures potentially overlooked
in conventional assessment28,29.

Notably, our AI system autonomously learned prognostically
relevant morphological patterns directly from WSIs, without explicit
programming of established risk factors30,31, It successfully identified
a subset of low-risk patients, confirmed by postoperative histology,
who might otherwise have been recommended for surgery under
current guidelines32,33. To enhance interpretability and mitigate the
“black box” concern, we generated decision heatmaps that visualized
model-prioritized regions. These heatmaps consistently highlighted
areas concordant with established high-risk features, such as the
invasive front and lymphocyte-rich stroma, a finding validated by
independent expert pathologists, thereby providing biologically

plausibility to the model’s predictions. Nevertheless, it should be
acknowledged that heatmaps remain indirect proxies of the under-
lying model reasoning.

Notwithstanding these promising performances, several limita-
tions merit consideration. The single-center, retrospective design
may affect generalizability, necessitating future multi-institutional
prospective validation. The inclusion of multiple tumor slides per
patient, while improving data utilization, introduces analytical
complexity regarding intra-patient dependency. Furthermore, the
incorporation of more advanced ESCC cases during training,
necessitated by the limited availability of node-positive T1 ESD cases,
creates a potential domain shift, a common compromise in compu-
tational pathology. In the external cohort, the inference of nodal
status based on recurrence-free survival for non-surgical patients,
while clinically accepted, represents an indirect method of outcome
assessment. Future work should also systematically investigate case-
level prediction integration, which may yield even higher diagnostic
performance.

In conclusion, we developed and validated a pathologist-independent
AI model that accurately predicts LNM risk in T1 ESCC from WSIs. This
GNN-based framework provides a robust, automated decision-support tool
to optimize post-ESDmanagement pathways, facilitating personalized care
and potentially improving quality of life. Future efforts should focus on

Table. 3 | The confusion matrix and performance metrics of AI in the external test set

Prediction of positive lymph node metastasis Prediction of negative lymph node metastasis Performance metrics

Lymph node metastasis (+) 18 4 Sensitivity = 81.8% (18/22)

Lymph node metastasis (−) 12 127 Specificity = 91.4% (127/139)

Column total 30 131 Accuracy = 90.1% (145/161)

Composite metrics PPV = 60.0% (18/30) NPV = 96.9% (127/131) F1-score = 69.2%

Table. 4 | Case-level diagnostic performance of the AI model in the external ESD cohort

Prediction of positive lymph node metastasis Prediction of negative lymph node metastasis Performance metrics

Lymph node metastasis (+) 4 0 Sensitivity = 100.0% (4/4)

Lymph node metastasis (−) 5 26 Specificity = 83.9% (26/31)

Column total 9 26 Accuracy = 85.7% (30/35)

Composite metrics PPV = 44.4% (4/9) NPV = 100.0% (26/26) F1-score = 61.5%

Fig. 2 | The confusion matrix and performance metrics of AI in patients undergoing additional surgery.
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external validation, real-world clinical integration, and the development of
hybrid models combining AI predictions with molecular biomarkers for
enhanced risk stratification.

Methods
Study design
This retrospective single-center study enrolled 374 patients with
ESCC, stages T1–T4, who underwent primary esophagectomy with
systematic lymphadenectomy without previous ESD at Zhongda
Hospital Affiliated to Southeast University from January 2019 to
December 2024 (Fig. 3). Among them, 72 were LNM+ and 302 were
LNM–. To address class imbalance, 72 LNM+ and 88 randomly
selected LNM– cases were included as the surgical cohort (n = 160)
for model training, validation, and internal testing.

An independent external validation cohort comprised 35 patients with
T1ESCC (MMto SM2)whounderwent ESD. This cohort included patients
with LNM+ status confirmed by subsequent surgical resection, as well as
LNM– patients defined by the absence of tumor recurrence during a 3-year
follow-up period after ESD34. This follow-up criterion is grounded in
established oncological principles, where 3-year recurrence-free survival

(RFS) serves as a clinically validated surrogate for confirming true nodal
negativity in non-surgically managed patients35.

This AI model employed a supervised GNN framework to analyze
histopathological patterns in WSIs. Notably, no handcrafted histologic
features (such as submucosal invasion depth, tumor budding, LVI, etc.)
were manually extracted or explicitly incorporated as input variables.
Instead, the model was trained directly on raw WSIs, allowing it to infer
predictive patterns from the underlying morphology in a data-driven
manner. The study protocol was approved by the institutional ethics review
committee (No. 2024ZDSYLL385-P01).

Conventional histologic assessment
All specimens obtained were immediately fixed in 10% neutral buffered
formalin. They were then cut at the point where the deepest invasion
area could be exposed on the cut end surface. Histological sections of
ESD specimens were cut into parallel 2–3 mm-thick sections, and
esophagectomy specimens into 4–5 mm-thick sections, followed by
Hematoxylin and eosin (H&E) staining. All specimens were diagnosed
on the basis of the 2019 World Health Organization Classification of
Tumors and the categorizing lesions as well differentiated, moderately
differentiated, or poorly differentiated3,5. Submucosal invasion depth

Fig. 3 | Study workflow. From January 2019 to December 2024, 160 patients with
1284 WSIs were considered for the surgical cohort, 625 WSIs were excluded due to
no tumor tissue, the remaining 160 patients with 659 WSIs were randomly divided
into a training set (112 patients, 442WSIs) and a test set (48 patients, 217WSIs) at a

7:3 ratio, and an ESD cohort of 35 patients with 161 WSIs was used as an external
validation set for the prediction model. Only surgically resected cases were used for
model training and internal validation. ESD cases were used solely for external
testing to simulate real-world post-ESD clinical scenarios.
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was measured vertically from the muscularis mucosa, with cases stra-
tified as SM1 (≤200 μm) or SM2 (>200 μm)17. LVI was assessed through
combined immunohistochemical (D2-40) and histochemical methods
(Victoria blue staining)17. Tumor budding, defined as isolated cancer
cell clusters (≤5 cells) at the invasive margin, was graded as BD1 (0–4
buds/field), BD2 (5–9 buds/field), or BD3 (≥10 buds/field) under 200×
magnification4. At our institution, additional surgery following ESD is
recommended if any of the following features are present: (1) sub-
mucosal invasion depth >200 μm (SM2), (2) presence of LVI, (3) poorly
differentiated histology, (4) positive vertical or horizontal resection
margins, and (5) tumor budding grade ≥BD2. For surgically resected
cases, both the number of metastatic lymph nodes and the total number
of dissected lymphnodeswere recorded frompathology reports. Lymph
node yield was used to assess the adequacy of lymphadenectomy, with
reference to guideline standards (≥15 nodes for accurate staging
according to AJCC criteria)36.

Data preparation and preprocessing
Among the 1284 WSIs obtained from the surgical cohort, slides
without tumor tissue, slides of inadequate quality, or those con-
taining only blank regions were excluded. As a result, 659 WSIs
containing sufficient tumor regions were retained for model devel-
opment. To provide a clinically interpretable workflow, the selected
WSIs were then divided into small patches, morphological and spatial
features were extracted, and graphs were constructed to represent the
histological architecture. The proposed computational framework
implements a unified analytical workflow for predicting LNM in T1-
stage ESCC by systematically combining multimodal computational
histopathological feature extraction with a hierarchical GNN archi-
tecture. Multimodal features (color histograms, spatial coordinates,
ResNet-50 embeddings) were concatenated and normalized to a
shared latent space via a fully connected layer (512 dimensions).

The overall framework of the proposed method is illustrated in Fig. 4.
The ‘GNNClassifier’ leverages two graph convolutional layers (GCNConv)
with ReLU activation and dropout (p = 0.4) to propagate node features
across the graph structure, ultimately aggregating slide-level representations
via global mean pooling for classification. Results, including predicted
probabilities and binary classifications, are systematically logged in

‘prediction_results.txt’ for retrospective analysis. Auxiliary utilities validate
CUDA compatibility and GPU acceleration prerequisites, completing a
robust computational ecosystem that bridges histopathological feature
engineering with clinical decision support through modular, reproducible
design.

WSI acquisition and annotation
H&E-stained slides of all the tissue masses in each case were selected for
further analysis. The slides were captured as WSIs at 40× magnification
using NanoZoomer (Hamamatsu Photonics, Hamamatsu, Japan). QuPath
(https://qupath.github.io) was used to annotate and designate cancerous
regions by two experienced pathologists (T.K.H. and X.J.J.). All results were
double reviewed and were discussed with an independent and blinded
pathologist (W.X.Y.) if not in concordance. The captured WSIs were par-
titioned into non-overlapping 224 × 224 pixel patches. Blank patches
and patches without cancerous areas were excluded. Patches were
assigned slide-level labels according to the LNM status of the cor-
responding patient, and patches in cases without LNM were defined
as LNM-negative patches.

Data preprocessing and feature extraction
Tobalance computational efficiencywith tissue representation, amaximum
of 1000 patches per WSI was retained. Data augmentation strategies
included random horizontal/vertical flipping and 30° rotation to enhance
rotational invariance, supplemented by a multi-scale sampling strategy
(0.5~1.5× scaling) by randomly selecting patches across different WSI
pyramid levels to improve scale invariance. For feature extraction, a pre-
trained ResNet-50 architecture (with final classification layers removed)
generated 2048-dimensional feature vectors. These features were subse-
quently reduced to 512 dimensions via a fully connected layer. To address
illumination invariance, LAB color space-based histogram matching was
applied for standardization, with additional random brightness/contrast
perturbations (±20%) simulating tissue staining variations under diverse
exposure conditions. Spatial coordinateswere normalized to the [0,1] range,
followed by construction of a 10-nearest neighbor graph (k = 10) using the
‘knn graph’ function, establishing topological connections to model spatial
relationships between adjacent tissue regions. The selection of k = 10 for
nearest neighbor graph construction was empirically validated through

Fig. 4 | A hierarchical GNN-based model was built for predicting lymph node
metastasis.Theworkflow comprises: (1) InputWSIs are divided into 224 × 224 pixel
patches (stride 112), followed by spatial domain preprocessing and graph con-
struction. (2) ResNet-50 extracts patch features (2048 channels), reduced to 512
channels via dimensionality reduction, and fused through multimodal integration.

(3) A hierarchical architecture with two-stage graph convolutional layers
(GCNConv), feature compression, and global context aggregation modules learns
spatial dependencies and semantic representations. (4) Global mean pooling and a
softmax classifier perform binary classification, outputting invasion probabilities.
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ablation studies (k = 5, 10, 15, 20). Performance peaked at k = 10, which
balances local context capture and computational efficiency.

Graph neural network architecture
The proposed hierarchical GNN model was trained on graph representa-
tions constructed from WSIs. First, each WSI was divided into non-
overlapping 224 × 224 pixel patches. Patch-level feature vectors were
extracted using a pretrained ResNet-50 backbone (2048 dimensions), fol-
lowed by a linear compression layer that reduced the features to 512
dimensions. Spatial adjacency among patches was then used to construct a
graph, where each patch served as a node and neighboring patches were
connected via edges. This hierarchical design was chosen to capture both
local tumor microenvironment features and global tissue architecture,
which are both critical for predicting LNM. The detailed process of patch
division, feature extraction, and graph construction is shown in Table 5.

The resulting graph was processed through two graph convolutional
layers (GCNConv) with 512 hidden units, ReLU activation, and dropout. A
global mean pooling layer was applied to aggregate node-level information
into a slide-level embedding. Finally, a fully connected classification head
(512→ 2 units)with softmax activation outputs the predicted probability of
LNM. The GCN layers allowed themodel to capture spatial patterns within
the tumor microenvironment, while global pooling enabled holistic WSI-
level prediction based on local features.

Supervised training protocol
Themodel was trained using PyTorch Lightning with class-weighted cross-
entropy loss to address class imbalance.Optimizationwasperformedvia the
Adam optimizer (initial learning rate = 1 × 10⁻⁴) paired with a ‘Redu-
ceLROnPlateau’ scheduler (factor = 0.1, patience = 5 epochs). Early stop-
ping (patience = 4000 epochs) monitored validation accuracy to mitigate
overfitting,whilemixed-precision training (16-bit) onNVIDIAA100GPUs
accelerated computational efficiency. Early stopping at 4000 epochs was
determined by plateau analysis of validation loss (no improvement for 50
epochs), preventing overfittingwhile ensuring convergence.Classweighting
and early stopping were implemented to reduce bias from class imbalance
and to prevent overfitting, thereby improving the generalizability of the
model. Five-fold cross-validation demonstrated stable performance across
partitions (accuracy: 88.7% ± 1.1%, F1-score: 0.85 ± 0.03). Three indepen-
dent trials with randomized seeds yielded consistent results (accuracy:
89.2% ± 1.3%, F1-score: 0.87 ± 0.02), confirming low variance. Augmenta-
tion robustness tests with randomized parameters (rotation, flipping,multi-
scale sampling) showed negligible performance degradation (accuracy
<1.5%), underscoring feature invariance under diverse transformations.
This multi-faceted validation framework ensured statistical reliability and
minimized bias in clinical deployment.

Evaluation of the trained model
Model performance was evaluated using the area under the curve (AUC),
sensitivity, specificity, positive predictive value (PPV), and negative pre-
dictive value (NPV).Theoptimal classification thresholdwasdeterminedby
maximizing Youden’s J statistic. Results were compared against the actual
pathological condition. Threshold optimization prioritized NPV (max-
imizing Youden’s J with NPV > 95%), as false negatives (missed LNM)may
lead to under-treatment, whereas false positives (unnecessary surgery) were
deemed clinically tolerable.

Model interpretability and attention heatmap generation
To improve model interpretability, we computed node-level attention
scores from the hierarchical GNN and generated attention heatmaps
overlaid on the original WSIs. Each node corresponded to a histopatholo-
gical patch,with color intensity reflecting its relative contribution to thefinal
prediction. These heatmaps consistently highlighted histological regions of
interest, such as invasive tumor fronts and areas rich in lymphoid tissuewith
clustered vessels, features that are known to be associatedwithLNMrisk.All
heatmapswere independently reviewed by two gastrointestinal pathologistsT
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(both with >10 years of diagnostic experience), who confirmed that the
high-attention regions corresponded closely with established pathological
risk areas. Representative examples are shown in Fig. 5.

Statistical analysis
The translation model was developed using Python 3.8 (Python Software
Foundation) with PyTorch 1.12.0 and PyTorch Geometric 2.2.0 libraries.
The architecture integrated a GNN with CNNs. Statistical analyses were
conducted using SPSS 26.0 (IBM, Armonk, NY). Continuous variables
were assessed for normality via the Shapiro–Wilk test and homogeneity of
variance with Levene’s test. Normally distributed variables were compared
using Student’s t-test, while non-parametric data were analyzed with the
Mann–Whitney U-test. Categorical variables were evaluated by χ²-test or
Fisher’s exact test when expected cell counts fell below 5. The dis-
criminativeperformance of the predictivemodelwas quantifiedby the area
under the receiver operating characteristic curve (AUC), with 95% con-
fidence intervals (CI) calculated through bootstrap resampling (1000
iterations) using the percentile method. For the primary endpoint of
predicting LNM in patients with T1 ESCC undergoing ESD, model per-
formance was evaluated using standard diagnostic metrics, including
sensitivity, specificity, accuracy, PPV, NPV, F1-score, and ROCAUC. The
results were comprehensively summarized both in tabular format and
through graphical presentations. All P-values were two-sided, and P < 0.05
was considered statistically significant. Predictions were saved to a file that
contains detailing filenames, LNM probabilities, and classifications for
clinical review.

Data availability
Due to theprivacy of patients, the data related to patients cannot be available
for public access, but can be obtained from the corresponding author on
reasonable request approvedby the institutional review board of all enrolled
centers.

Code availability
The underlying code for this study is available on GitHub and can be
accessed via this link: https://github.com/dingy97/WSI-main.
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