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Machine learning-driven comprehensive
profiling of tumor heterogeneity and
sialylation in hepatocellular carcinoma
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Hepatocellular carcinoma (HCC) exhibits profound cellular heterogeneity, the understanding of which
is critical for improving prognosis and therapy. Using single-cell RNA sequencing of 32,247 cells from
humanHCCsamples,we characterized the tumor ecosystemand identified fivemalignant hepatocyte
subpopulations with distinct molecular profiles and stage-specific enrichment. Among these, the
S100A6⁺ C1 and S100A9⁺ C4 subpopulations were predominantly associated with advanced tumors
and actively remodeled the tumor microenvironment through enhanced signaling pathways such as
MDK and MIF. We further identified PGAM2 as a key transcriptional regulator in early-stage tumors,
whose activity correlated with sialylation—a process linked to immune evasion. Based on these
findings, we developed a prognostic model integrating PGAM2 and sialylation-related genes, which
robustly stratifiedpatients into high- and low-risk groupswith significantly different survival outcomes,
immune contextures, and predicted therapeutic responses. Functional experiments validated AGRN,
a component of the signature, as a functional driver of HCCproliferation and invasion. Collectively, our
results decode the cellular and molecular heterogeneity of HCC, provide a clinically relevant
prognostic tool, and highlight potential targets for further investigation.

Liver cancer is a leading cause of cancer-related mortality worldwide, with
over 760,000 new cases and 870,000 deaths reported in 20221. Among its
various subtypes, hepatocellular carcinoma (HCC) represents the pre-
dominant form, accounting for ~80%of all cases2. Despite advancements in
diagnostic methods, the prognosis for HCC remains poor, with a 5-year
survival rate below 20%3. This is partly due to the diagnostic and therapeutic
challenges posed by the tumor heterogeneity4,5. The complexmolecular and
histological variability within and between tumors complicates early
detection and effective treatment6, underscoring the need for a deeper
understanding of its underlying mechanisms.

Tumor heterogeneity in HCC manifests at multiple levels, including
genetic, epigenetic, and phenotypic diversity7,8. This variability is driven by
factors such as genetic mutations, tumor microenvironment interactions,
and the dynamic behavior of cancer stem cells (CSCs)9,10. The presence of
distinct tumor subpopulationswith differingmolecular profiles complicates
treatment, as certain cell populationsmay exhibit resistance to conventional
therapies11.Additionally, the process of lineage transition,where cancer cells
evolve to adopt drug-resistant or metastasis-prone phenotypes, further

exacerbates treatment failure and tumor recurrence12. Understanding these
mechanisms is crucial for developing more precise therapeutic strategies.

Sialylation, a glycosylationmodification that adds sialic acid residues to
proteins and lipids, plays a critical role in regulating tumor progression13. In
HCC, aberrant sialylation influences several key processes, including
immune evasion, metastasis, and resistance to therapy14–16. Elevated
expression of sialyltransferases, such as St3gal3, has been linked to poor
prognosis and aggressive tumor phenotypes17. Sialylated glycans interact
with Siglec receptors on immune cells, promoting immune suppression and
creating an immunosuppressive tumor microenvironment (TME)15,18.
These modifications not only contribute to immune evasion but also affect
tumor cell signaling pathways, thus influencing tumor survival and pro-
gression. Targeting sialylation presents a promising therapeutic approach to
overcome these barriers.

The complexity and high-dimensional nature of single-cell and bulk
transcriptomic data pose a significant challenge to deciphering the cellular
andmolecular underpinningsof tumorheterogeneity. Traditional analytical
methods often fall short in capturing the nonlinear relationships and
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intricate patterns within such data. To this end, machine learning approa-
ches have emerged as powerful tools for unbiased exploration and inte-
gration of multi-omics data19. In the context of HCC, machine learning
algorithms can deconvolute the tumor microenvironment, reconstruct
cellular trajectories, and infer cell-cell communication networks, thereby
revealing previously unappreciated layers of heterogeneity20.

This study aims to explore how tumor heterogeneity and sialylation
modifications regulateHCCprogressionand influence treatment outcomes.
By integrating these machine learning-powered insights, we aim to develop
a prognosticmodel that integrates tumormolecular profiles and sialylation-
related signatures, which could improve patient stratification and guide
therapeutic decision-making.

Results
Comprehensive single-cell profiling reveals key cellular
heterogeneity in HCC
To explore the cellular diversitywithinHCC,we performed single-cell RNA
sequencingona cohort of 32,247 cells. Through rigorous quality control and
dimensionality reduction, we identified eightmajor cell types based onwell-
established marker genes: hepatocytes, fibroblasts, endothelial cells, T/NK
cells, B cells, plasma cells, myeloid cells, andMAST cells (Fig. 1A, B). These
classifications were further validated by analyzing the cell cycle and dis-
tribution of cell types across early and advanced tumor stages, hepatocytes
from advanced stage tumors showed a significant reduction in proportion
compared to early-stage tumors, highlighting thedynamic changes in tumor
cell composition as the disease progresses (Fig. 1C, D). Marker expression
for each cell type was subsequently visualized (Fig. 1E, F), ensuring accurate
classification. Hepatocytes were characterized by high ALB expression,
fibroblasts by high DCN expression, endothelial cells by high PECAM1
expression, T/NK cells by highCD3DandNKG7 expression, B cells by high
CD79A expression, plasma cells by high JCHAIN expression, myeloid cells
by high LYZ expression, andmast cells by highKIT expression.Notably, we
also observed distinct distributions of cell cycle scores (G2M, S) and RNA
features (nFeatureRNA and nCountRNA) across the different cell types
(Fig. 1G,H), providing further insight into the functional state of these cells.
Hepatocytes exhibited the highest number of features and counts, indicating
their active participation in tumor progression and cellular heterogeneity
within the tumor microenvironment. KEGG pathway enrichment analysis
highlighted critical biological processes associated with each cell type.
Hepatocytes, in particular, showed significant enrichment for pathways
related to “Chemical carcinogenesis - reactive oxygen species,” suggesting a
key role of oxidative stress in driving liver cancer progression (Fig. 1H).

Identification of distinct malignant subpopulations with stage-
specific molecular profiles
To further analyze the heterogeneity of hepatocytes, we performed sec-
ondary dimensionality reduction and clustering, identifying five distinct
hepatocyte subpopulations (Supplementary Fig. 1A). When cross-
referenced with the TNM staging system, we observed that cluster 4 was
predominantly composed of stage IV hepatocytes, underscoring its rele-
vance in advanced tumor progression (Supplementary Fig. 1B).We assessed
CNV in hepatocytes using infercnv, with fibroblasts and endothelial cells
serving as reference populations. In terms ofCNVscores, cluster 4 exhibited
the highest scores, consistent with its association with stage IV tumors,
which also showed the highest CNV scores (Supplementary Fig. 1C-D).
Based on the gene expression profiles, we identified five distinct sub-
populations of malignant cells, labeled as C0 (CYP2D6+ malignant), C1
(S100A6+malignant), C2 (UBE2C+malignant), C3 (HULC+malignant),
and C4 (S100A9+malignant) (Fig. 2A, B). Subpopulations C0, C2, and C3
were predominantly present in early-stage tumors, while C1 and C4 were
enriched in advanced-stage tumors, with C4 almost exclusively observed in
advanced samples (Fig. 2B–E). Thesefindingswere further supported by the
Ro/e heatmap analysis, which confirmed C1 and C4 as the dominant
populations in advanced tumors (Fig. 2F). Differential marker expression
was visualized, revealing key markers associated with each subpopulation,

For example, C4 cells exhibited high expression of S100A8, S100A9, SLPI,
S100P, andCCL26, highlighting their distinctmolecular profile (Fig. 2G,H).
CNV scores were significantly higher in C4 compared to other sub-
populations (Fig. 2I, J), supporting its role as a prominent malignant cell
type. Additionally, GO enrichment analysis revealed that C0 was enriched
for metabolic pathways, C1 for ribosomal functions, C2 for nuclear-related
processes, C3 for mitochondrial energy metabolism, and C4 for protein
translation (Fig. 2K–M). Notably, pathway analysis for metabolic processes
revealed that, compared to the other four subpopulations, C4 exhibited
significantly enhanced oxidative phosphorylation scores, suggesting a
heightened metabolic activity associated with its malignant pheno-
type (Fig. 2N).

Tumor cell differentiation trajectories define early and late-stage
progression in HCC
To investigate the differentiation trajectories of tumor cells, we performed
monocle2 trajectory analysis, which revealed distinct differentiation paths.
C1 was primarily located at the early stages of the trajectory, while C0, C2,
and C3 were situated in the later stages. Interestingly, C4 formed a separate
branch, indicating a unique differentiation pathway (Fig. 3A–E). Slingshot
trajectory analysis further defined two main differentiation paths, with C4
occupying an intermediate position in the trajectory. Combining the
CytoTRACEscoreswith its intermediate location in thedifferentiationpath,
it is evident that C4 represents a pivotal population in driving disease
progression (Fig. 3G–I). Marker gene expression along pseudotime
demonstrated distinct functional changes across cell populations, providing
further insights into the dynamic changes in gene regulation as tumor cells
differentiate (Fig. 3J). Genes correlated with pseudotime were identified,
which allowed us to investigate the transcriptional dynamics underlying
tumor progression (Fig. 3K).

IMalignant cell communication networks highlight key signaling
interactions driving tumor progression
Cell-cell communication analysis was performed using CellChat, revealing
significant interactions between malignant tumor subpopulations (C1 and
C4) and other cell types, particularly endothelial and myeloid cells
(Fig. 4A–C). Upon comparing the incoming and outgoing communication
patterns, we found that tumor cells exhibited significant activity in several
signaling pathways, includingMIF, MIK, SPP1, and PARs, suggesting their
critical role in tumor microenvironment modulation (Fig. 4D). We iden-
tified key signaling pathways involved in these interactions, with a focus on
theMKpathway, whichwas highly active in bothC1 andC4 (Fig. 4E, F). C1
cells exhibited increased release of MK signaling molecules, influencing
endothelial and fibroblast cells (Fig. 4E). Additionally, the MIF-CD74/
CXCR4 signaling axis was strongly active between C1 malignant cells and
myeloid cells (Fig. 4G), highlighting a potential immune evasion mechan-
ism. Expression of key ligand genes in these pathways, including MIF and
MDK,was significantly elevated inC1 cells (Fig. 4H), further supporting the
importance of these interactions in tumor progression. The MDK-NCL
communication network was also visualized, suggesting potential ther-
apeutic targets (Fig. 4I).

PGAM2 acts as a pivotal regulator in the transcriptional
landscape of HCC
We identified key transcription factors regulating tumor progression by
analyzing the CSI matrix and performing clustering. Three major tran-
scriptional modules (M1, M2, and M3) were identified (Fig. 5A–C). By
integrating transcription factor activity scores (AUC values), we found that
module M1 exhibited high activity across C0, C1, C2, and C3 populations,
whereas module M3 showed pronounced activation specifically in C1 and
C4 cells (Fig. 5D, E). These findings indicate distinct transcriptional reg-
ulatory programs underlying different malignant subpopulations. At the
individual transcription factor level, XBP1 activity was predominant in C0,
C2, and C3 subpopulations, while PGAM2 was most active in C1 cells
(Fig. 5F). Furthermore, XBP1 exhibited the highest activity in early-stage
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Fig. 1 | Single-cell expression atlas of HCC. A, B UMAP plots showing the clus-
tering of single cells from HCC tumors into eight distinct cell types: hepatocytes,
fibroblasts, endothelial cells, T/NK cells, B cells, plasma cells, myeloid cells, and
MAST cells.C Proportion of different cell types across the G1, S, and G2Mphases of

the cell cycle. D Proportion of cell types across early and advanced tumor stages.
E, F Expression of cell type-specific markers in each cluster shown in bubble plots
and UMAP plots. G Distribution of cell cycle scores and RNA metrics across dif-
ferent cell types. H KEGG enrichment analysis for cell type-specific markers.
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tumors, whereas PGAM2 and ELF3 were markedly activated in
advanced-stage tumors, reflecting a stage-dependent shift in tran-
scriptional regulation (Fig. 5G). Across all five malignant cell sub-
populations, PGAM2 showed the highest AUC score in C1, ELF3
exhibited strong activity in both C1 and C4, and XBP1 maintained
consistently high activity across C0–C3 (Fig. 5H, I). Collectively,
these results suggest that PGAM2, ELF3, and XBP1 function as key

transcriptional regulators orchestrating stage-specific tumor pro-
gression and malignant phenotype transitions.

We investigated the relationship between PGAM2 expression and
sialylation (Supplementary Fig. 2A, B), a post-translational modification
often associated with cancer progression. Using ssGSEA, we calculated
sialylation scores and found that C1 cells, which are in the early stage of
tumor differentiation, exhibited significantly higher sialylation scores
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compared to late-stage cells (C2, C3) (Supplementary Fig. 2C). A positive
correlation between PGAM2 expression and sialylation was confirmed,
suggesting that PGAM2 may regulate sialylation pathways, which are cri-
tical for tumor cell metastasis and immune evasion (Supplemen-
tary Fig. 2D).

Development of a prognostic model based on PGAM2 and
sialylation-related genes in HCC
To further evaluate the clinical significance of PGAM2 and its associated
sialylation-related pathways, we constructed a prognosticmodel integrating
genes linked to both PGAM2 expression and sialylation activity. Candidate

Fig. 5 | Transcription factor activity in tumor cell
subpopulations. AHeatmap of transcription factor
activity in tumor cell subpopulations, based on CSI
matrix and clustering of regulatory modules (M1,
M2, M3). BUMAP plot showing the distribution of
five distinct tumor subpopulations. C UMAP plot
showing the distribution of early and advanced stage
tumor cells. D, E AUC scores for transcription fac-
tors in each cluster. F Scatter plot showing RSS for
different transcription factors in the five tumor
subpopulations. G Scatter plot showing RSS for
different transcription factors in early and advanced
tumor subpopulations. H, I Visualization of four
transcription factors (PGAM2, ELF3, XBP1, JUNB)
using AUC bar plots and UMAP plots.
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genes were first identified through univariate Cox regression analysis,
yielding 12 prognosis-related genes, among which ST6GALNAC4,
SIGLECL1, GALNTL5, B4GALT5, and AGRN were identified as promi-
nent risk factors associated with poor survival outcomes (Fig. 6A). Subse-
quently, LASSO regression andmultivariate Cox analysis refined themodel
to nine key prognostic genes, with GALNTL5, B4GALT5, and SIGLECL1
emerging as the most statistically significant contributors to patient

prognosis (Fig. 6B, C). The derived risk score model demonstrated strong
predictive capacity. Kaplan–Meier survival analysis revealed that patients in
thehigh-risk groupexhibited significantly shorter overall survival compared
to those in the low-riskgroup (Fig. 6D–F), indicating the clinical relevanceof
the gene signature. PCA further showed a clear separation between high-
and low-risk groups, reflecting distinct transcriptional profiles underlying
the two risk categories (Fig. 6G). In addition, time-dependent ROC curve

Fig. 6 | Prognostic model based on PGAM2-regulated genes and sialylation.
A Forest plot showing the results of univariate Cox regression analysis for 12 genes
associated with survival, selected from the PGAM2-related transcription factor
TARGET gene chain (importance > 10) and sialylation-related genes.B LASSO-Cox
regression analysis to select prognostic genes, leading to the identification of a risk
model based on 9 genes. C Multivariate Cox regression analysis and forest plot
showing the hazard ratios for each prognostic gene.DBar plot displaying the Coef of

the 9 prognostic genes used to calculate risk scores. E, F Risk score vs survival time
scatter plot and heatmap showing the expression of prognostic genes across different
risk groups. G PCA plot showing dimensionality reduction of prognostic genes,
visualizing the separation between high- and low-risk groups. H Time-dependent
ROC curves for 1, 3, and 5 years, demonstrating the predictive accuracy of the risk
model. I Kaplan–Meier survival curve comparing high-risk and low-risk groups.
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analysis showed that the model achieved robust predictive accuracy, with
AUCvalues exceeding 0.7 for 1-, 3-, and 5-year survival (Fig. 6H). Together,
these findings demonstrate that the PGAM2- and sialylation-associated
gene signature provides an effective tool for prognostic stratification in
HCC, highlighting its potential utility for risk assessment and clinical
decision-making (Fig. 6I).

High-risk and low-risk subgroups exhibit distinct functional sig-
natures linked to tumor progression
Differential expression analysis between the high-risk and low-risk groups
revealed a distinct transcriptional landscape that underpins their divergent
clinical outcomes. Several genes, including CA9, PAEP, EPO, and SLC10A1,
weremarkedly upregulated in the high-risk subgroup (Fig. 7A, B), suggesting
their potential involvement in promoting tumor aggressiveness and meta-
bolic reprogramming. To further elucidate the biological processes associated
with these differential expression patterns, KEGG pathway enrichment
analysis demonstrated a significant enrichment of the IL-17 signaling
pathway (Fig. 7C), a well-established mediator of tumor-associated inflam-
mation and immune modulation. In parallel, GO enrichment analysis
revealed that high-risk group–associated genes were predominantly linked to
cell cycle–related processes, includingmitotic nuclear division and chromatid
segregation (Fig. 7D), indicating that enhanced proliferative activity is a
hallmark of tumors with poor prognosis. Additionally, GSEA analysis
identified key pathways related to cell chemotaxis and sphingolipid meta-
bolism that were upregulated in high-risk tumors, providing further insights
into the molecular mechanisms driving tumor progression (Fig. 7E, F).

Immune microenvironment, mutation patterns, and drug sensi-
tivity further define high-risk tumor characteristics
Immune infiltration analysis revealed a higher proportion of Tregs in the
high-risk group, along with decreased infiltration of anti-tumor immune
cells (Fig. 8A, B). Correlation analysis between immune cell populations and
risk scores identified significant associations with macrophages and Tregs
(Fig. 8C, D). Additionally, the TIDE algorithm predicted poorer responses
to immunotherapy in the high-risk group (Fig. 8E). Further comprehensive
assessment of immune infiltration levels in HCC using the ESTIMATE,
CIBERSORT, and xCell algorithms consistently demonstrated an immu-
nosuppressivemicroenvironment in thehigh-risk group (Fig. 8F).Mutation
frequency analysis and drug sensitivity predictions further emphasized the
clinical relevance of the prognosticmodel, with high-risk patients exhibiting
poorer responses to common therapies (Fig. 8G–I).

Functional validation of AGRN and its role in liver cancer
progression
The role of AGRN as a prognostic marker in HCC was further explored
through experimental validation. Comparison of mRNA expression
levels between HCC tumor and adjacent normal tissues revealed sig-
nificantly higher AGRN expression in the tumors (Fig. 9A). Among
several HCC cell lines, Hep 3B and HuH-6 exhibited the highest AGRN
levels, and were selected for subsequent experiments (Fig. 9B). To
investigate the functional role of AGRN, siRNA targeting AGRN was
transfected into HCT116 and Hep 3B cells, resulting in a substantial
reduction in AGRN expression (Fig. 9C). Cell proliferation, measured by
the CCK-8 assay, showed a significant decrease in growth rates in
AGRN-depleted cells, suggesting that AGRN promotes HCC cell pro-
liferation (Fig. 9D, E). Flow cytometry-based apoptosis assays revealed a
marked increase in apoptosis in AGRN-knockdown Hep 3B cells com-
pared to controls (Fig. 9F, G). Further functional assays using transwell
chambers demonstrated that AGRN knockdown significantly reduced
cell migration and invasion, supporting the notion that AGRN enhances
the aggressive behavior of HCC cells (Fig. 9H, I).

Discussion
Our single-cell transcriptomic analysis of HCC delineates five distinct
malignant cell subpopulations with stage-specific dominance. The

advanced-stage associatedC1andC4subpopulations engage in specificpro-
tumorigenic crosstalk, such as MDK and MIF signaling, within the tumor
microenvironment. Building on this, we established a potent prognostic
model centered on PGAM2 and sialylation-related genes, which effectively
stratifies patients and reflects an immunosuppressive phenotype in high-
risk cases. Furthermore, functional validation confirmed AGRN, a key
model component, as a bona fide oncoprotein driving HCC proliferation
and invasion.

Our findings reinforce the concept of cellular heterogeneity in HCC,
central to understanding its aggressive nature and therapeutic resistance.
Previous studies have suggested that hepatocellular carcinoma, like many
cancers, is driven by a subpopulation of tumor-initiating cells (TICs) with
stem-like properties and immune evasion capabilities21,22. Our trajectory
analysis revealed distinct differentiation pathways for tumor cells, suggest-
ing that different subpopulations—particularly C1may drive early and late-
stage progression, respectively. This is consistent with the concept of early
dissemination and high neoantigen intratumor heterogeneity observed in
metastases, which complicates immune recognition and treatment
efficacy23.

Our results underscore the cellular diversity within HCC, where dis-
tinct tumor subpopulations contribute to various stages of tumor progres-
sion. The C1 subpopulation, predominantly found in early-stage tumors,
exhibited elevated expression of S100A11 and increased secretion of MDK
—findings consistent with previous literature linking MDK to tumor pro-
gression and metastasis24,25. Specifically, circMDK, derived from the MDK
gene, has been identified as an oncogenic circRNA that activates the PI3K/
AKT/mTOR pathway, promoting tumor cell proliferation, migration, and
invasion26. This observation aligns with our finding that C1 cells secrete
higher levels of MDK, suggesting a potential link between PGAM2-driven
metabolic changes and MDK signaling in HCC progression.

Additionally, the elevated expression of S100A11 in C1 tumor cells is
consistent with prior studies highlighting its role in inflammation and
tumor progression27. S100A11 is often deregulated early in hepatocellular
carcinoma, particularly in the context of steatosis, and is involved in mul-
tiple stages of cancer development28. Our findings suggest that S100A11, in
conjunction with PGAM2 and MDK, may contribute to the aggressive
nature of early-stage tumors, making it a potential therapeutic target for
early intervention.

Beyond the early-stage PGAM2-driven dynamics, our study highlights
theC4 subpopulation (S100A9⁺malignant) as ametabolic engine propelling
advanced HCC. Characterized by the highest CNV burden and near-
exclusive enrichment in late-stage tumors, C4 cells undergo profound
metabolic rewiring, transitioning from glycolysis to a predominant reliance
on oxidative phosphorylation (OXPHOS). Importantly, this OXPHOS
surge is not merely a metabolic adaptation but is intimately coupled to
elevated reactive oxygen species (ROS) production, positioning ROS as a
central signaling mediator and driver of malignancy. This OXPHOS–ROS
axis establishes a self-reinforcing loop that fuels tumor aggressiveness. The
enhanced OXPHOS satisfies the substantial energy and biosynthetic
demands of rapidly proliferating and invasive cells29, while the concomitant
ROS burst functions as a potent intracellular signal. Elevated ROS can
stabilize hypoxia-inducible factors (HIFs) even under normoxic conditions,
reinforcing a pro-tumorigenic transcriptional program30,31. Concurrently,
ROS promotes degradation of key tumor suppressors such as E-cadherin—
via mechanisms including RNF25-mediated ubiquitination—thereby
facilitating EMT and metastatic potential32.

The marked enrichment of S100A9 in C4 provides a plausible
upstream mechanism for this vicious cycle. S100A9, often induced under
TACE-associated hypoxia, can scaffold PGAM5, enhancing its stability and
promotingmitochondrial fission33. The resulting fragmentedmitochondria
are predisposed to ROS generation, locking C4 cells in a state of sustained
OXPHOS-driven oxidative stress. Moreover, this ROS-enriched environ-
ment functions as a selective pressure favoring cancer stem-like properties34,
activating stress-response pathways such as Nrf2 and triggering
mitophagy35, processes that are closely linked to stemness maintenance and
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therapy resistance in HCC, as observed in ADAR1-enriched LCSCs36.
Positioned at a critical branch point in the differentiation trajectory, C4 cells
leverage their OXPHOS–ROS core not only to meet energetic demands but
also to orchestrate a pro-metastatic signaling network, sustain stem-like

plasticity, and resist therapeutic pressures. Together, these features under-
score C4 as a pivotal driver of late-stage HCC malignancy.

Sialylation modifications have long been implicated in cancer pro-
gression, particularly in immune evasion andmetastasis. Our study found a

Fig. 7 | Functional analysis of high- and low-risk groups. AHeatmap of the top 30
differentially expressed genes between high-risk and low-risk groups, sorted by
logFC.BVolcano plot showing the differential gene expression analysis of high- and

low-risk groups. C, D KEGG and GO enrichment analysis of upregulated genes in
the high-risk group. EHeatmap of pathway scores frommsigdb. FGSEA results for
five key biological pathways.
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significant correlation between PGAM2 expression and increased sialyla-
tion in early-stage tumor cells, supporting the idea that sialylation is critical
for metastasis and immune evasion. The HBV X protein has been reported
to regulate sialyl Lewis A synthesis, suggesting that viral proteins modulate
glycosylation events to enhance metastatic potential37. Interestingly, our
study also revealed that higher sialylation scores were associated with early-
stage C1 cells, which further supports the hypothesis that sialylation is not
only a feature of late-stage disease but also a key factor in early-stage tumor

progression. These findings contribute to the growing body of evidence
linking sialylation to immune escape in liver cancer.

Beyond sialylation,we observed significant enrichment in sphingolipid
metabolism pathways in high-risk tumor subgroups. This is in line with
literature reports linking sphingolipid metabolism in tumor-associated
macrophages to resistance to immunotherapy in hepatocellular
carcinoma38. Our study’s finding that high-risk tumors exhibit altered
sphingolipid metabolism suggests that metabolic reprogramming in the

Fig. 8 | Immune infiltration, mutation landscape, and drug sensitivity. A, B Bar
and box plots showing immune cell composition predicted by the CIBERSORT
algorithm in high-risk and low-risk groups. C Correlation between immune cell
infiltration and risk scores. D Heatmap showing the correlation between immune
cell infiltration and prognostic genes. E TIDE analysis showing significantly higher
scores in the high-risk group. FHeatmap of immune infiltration levels inHCC based

on ESTIMATE, CIBERSORT, and xCell algorithms. G Mutation waterfall plot
comparing the top 20 mutations in high- and low-risk groups. H Correlation ana-
lysis between immune checkpoint genes and prognostic genes. I Box plots com-
paring drug sensitivity between high-risk and low-risk groups for 12 chemotherapy
agents.
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TME plays a crucial role in conferring resistance to treatment, particularly
immunotherapy. This highlights the potential for targeting metabolic
pathways such as sphingolipid metabolism to improve therapeutic out-
comes in HCC.

PGAM2, identified as a key regulator of early-stageHCC, exhibited the
highest expression in C1 tumor cells, which are associated with early tumor
stages. This is consistent with existing literature, which implicates PGAM2
in promoting glycolysis—a hallmark of cancer metabolism39. Our results
further support the notion that PGAM2 plays a pivotal role in metabolic
reprogramming during tumor progression, particularly in early-stageHCC,
where high glycolytic activity is essential for tumor growth and survival40.

Although our study did not directly investigate the regulatory mechanisms
of PGAM2, existing literature suggests that PGAM2 activity is regulated by
post-translational modifications, such as acetylation at lysine 10041. The
acetylation status of PGAM2 affects its enzymatic activity, and
enzymes like SIRT2 can regulate this process39. Oxidative stress has
been shown to promote PGAM2 activation, thereby enhancing gly-
colysis in tumor cells. This suggests that PGAM2 may function as a
metabolic switch, responding to the tumor microenvironment to
support cancer cell proliferation. Furthermore, PGAM2’s involve-
ment in glycolysis, nucleotide biosynthesis, and redox homeostasis
highlights its broad role in cancer metabolism.

Fig. 9 | Expression and functional analysis of AGRN in HCC. A Relative AGRN
mRNA expression in HCC tumors and adjacent normal tissues. B AGRN mRNA
levels in LO2 and various HCC cell lines. C qRT-PCR validation of AGRN knock-
down efficiency in Hep 3B and HuH-6 cells post-siRNA transfection. D, E CCK-8

assays evaluating cell proliferation over 4 days in control and AGRN knockdown
groups (n = 5 per group). F, G Flow cytometric analysis of apoptosis in AGRN-
silenced Hep 3B cells.H, I Transwell migration and invasion assays in Hep 3B cells
with AGRN knockdown.
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Our functional validation firmly establishes AGRN as a potent onco-
protein in HCC, driving proliferation, invasion, and suppressing apoptosis.
Although studies on AGRN in liver cancer remain scarce, the convergence
of evidence from other malignancies underscores its potential as a central
orchestrator of HCC malignancy, extending beyond a prognostic marker.
Mechanistically, AGRN appears to operate through two interconnected
axes: tumor-intrinsic signaling and tumor-immune modulation. Intrinsi-
cally, the pronounced pro-invasive phenotype associated with AGRN
expression alignswith its capacity to activate theNOTCH1pathway, a well-
established driver of EMT and invasion in HCC42. This positions the
AGRN–NOTCH1 axis as a plausible mechanistic core underlying the
aggressive traits observed in our high-risk subgroup. Extrinsically, the
immunosuppressive microenvironment characterized by Treg enrichment
and predicted poor response to immunotherapy in high-risk patients may
be partially explained by AGRN-mediated immune modulation. Evidence
frombreast cancer indicates thatAGRNcan scaffold interactions stabilizing
PD-L1, and its knockdown enhances CD8⁺ T cell infiltration43. By analogy,
elevated AGRN in our high-risk HCC cohort may actively sculpt an
immune-coldmicroenvironment, contributing to therapy resistance. Taken
together,AGRNemerges not as a passive component but as a nexus protein,
potentially coordinating a dual assault on tumor progression: promoting
aggressive tumor cell behavior via pathways such as NOTCH1, while
simultaneously suppressing anti-tumor immunity. This integrated model,
grounded in our functional data and informed by cross-cancer insights,
elevates AGRN from a gene signature component to a compelling ther-
apeutic candidate, offering a strategy to simultaneously curb tumor growth
and restore immune surveillance in HCC.

While this study provides valuable insights into the cellular hetero-
geneity of HCC, there are several limitations. Although the sample size of
32,247 cells is substantial, itmay not fully capture the diversity of rare tumor
or immune cell subpopulations. Future studies with larger cohorts could
provide a more comprehensive view of the tumor microenvironment.
Additionally, while PGAM2 was identified as a key regulator, functional
validationusing techniques such asCRISPR-Cas9 is necessary to confirm its
role in tumorprogressionand therapy response.Lastly,while ourprognostic
model showed strong predictive power, it requires validation in indepen-
dent cohorts to ensure its clinical applicability.

In conclusion, our work delineates an association between metabolic
reprogramming, immune evasion, and clinical prognosis in HCC. Our data
suggest that PGAM2may serve as a key node, connecting glycolytic flux to
sialylation, which is correlated with an immunosuppressive micro-
environment and aggressive tumor behavior. The prognostic model we
developed, rooted in these observations, effectively stratified patients in our
cohort and offers a candidate tool for outcome prediction. Future work
focused on validating these targets in preclinical models is essential to
determine the translational potential of these insights for HCC patients.

Materials and methods
Acquisition and processing of transcriptomic data
RNAexpressiondata forHCCand corresponding clinical informationwere
obtained from the Xena database (https://xenabrowser.net/) for a cohort of
368 patients. The transcriptomic data were pre-processed and converted to
transcripts per million (TPM) format. Log2 transformation was applied for
downstream analyses. A validation cohort was used to assess the stability
and accuracy of the predictive model. Gene expression data were normal-
ized and subsequently analyzed for model development and validation.

Acquisition and processing of single-cell RNA sequencing data
Single-cell RNA sequencing (scRNA-seq) data was downloaded from the
GEO database (GSE149614), containing 10 HCC tumor samples (4 early-
stage and 6 advanced-stage). The original data were generated by aligning
sequencing reads to the human reference genomeGRCh38 (hg38) using the
Cell Ranger pipeline.Data analysiswas performedusingR software (version
4.1.3) and the Seurat package (version 4.0.0). Initial data preprocessing
included quality control of cells based on mitochondrial gene content (less

than 20%), blood cell contamination (less than 3%), and total UMI count
(200–40,000) and gene count (200–7000). Normalization was performed
using the NormalizeData function, and highly variable genes were selected
using FindVariableFeatures (top 2000 genes). Cell cycle effects were
regressed out with the parameters vars.to.regress = c (“S.Score”,
“G2M.Score”). Batch effect correction was performed using the Harmony
algorithm. Dimensionality reduction and clustering were conducted using
UMAP (RunUMAP) and Louvain clustering (FindClusters), respectively.
Differential gene expression between clusters was performed using Fin-
dAllMarkers, with thresholds of p-value < 0.05, log2 fold change >0.25, and
expression detected in >10% of cells.

Acquisition of sialylation-related genes
Sialylation-related genes were curated from the Molecular Signatures
Database (MSigDB), as previously described44. The gene set encompasses
key enzymes involved in sialylation metabolism, including sialyl-
transferases, transporters, and neuraminidases. His comprehensive set was
used for downstream analyses, including the calculation of the sialylation
signature score.

Cell annotation and classification
Cell type annotationswere performed using establishedmarkers for various
cell types, as follows: Hepatocytes: EPCAM, KRT18, KRT19, ALB; Fibro-
blasts: DCN, THY1, COL1A1, COL1A2; Endothelial cells: PECAM1,
CLDN5, FLT1, RAMP2; T cells: CD3D, CD3E, CD3G, TRAC; NK cells:
NKG7, GNLY, NCAM1, KLRD1; B cells: CD79A, IGHM, IGHG3,
IGHA2; Plasma cells: JCHAIN; Myeloid cells: LYZ, MARCO, CD68,
FCGR3A; Mast cells: KIT, MS4A2, GATA2. These markers were used
for cell classification, and visualizations were created to ensure
accurate cell type annotations.

CNV analysis of single-cell data
The InferCNV package was used to analyze CNV across the tumor cell
subpopulations45. Fibroblasts and endothelial cellswere selected as reference
cell populations to help detect CNVs in tumor cells. The CNV scores were
calculated using default settings in InferCNV and were visualized on a
heatmap to identify malignant subpopulations exhibiting copy number
alterations.A threshold of 0.3was set forCNVsignificance to call a region as
a gain or loss.

Pseudotime analysis of tumor cell differentiation
Pseudotime analysis was performed using the Monocle2 package (version
2.18.0)46. The DDRTree algorithm was employed for dimensionality
reduction, and the default parameters were used for trajectory analysis. This
method allowed us to map the differentiation trajectories of tumor cells,
providing insights into tumor progression from early to late stages.

Transcription factor analysis in HCC tumor cells
The SCENIC package (version 1.1.2) was used to identify key transcription
factors regulating gene expression in tumor cell subpopulations47. The
analysis utilized the RcisTarget and GRNBoost motif databases for motif
discovery. Transcription factor activity scores for each cell type were com-
puted using the AUCell function in SCENIC. These scores allowed us to
identify differentially active transcription factors across tumor cell
subpopulations.

Cell-cell communication analysis
The CellChat package (version 1.1.2) was used to investigate potential cell-
cell communication within the tumor microenvironment48. A normalized
gene expression matrix was imported into CellChat, and communication
interactions were analyzed using the functions identifyOverExpress-
edGenes, identifyOverExpressedInteractions, and ProjectData. Cell-cell
communication networks were constructed using the aggregateNet func-
tion, and interactionsbetween tumor cells and immuneor stromal cellswere
identified.
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Calculation of sialylation signature scores
Sialylation-related genes were used to calculate a sialylation signature score
for each cell using the ssGSEAmethod implemented in the GSVA package
(version 1.34.0)49. The sialylation signature score was calculated for each
tumor cell, and its correlation with tumor progression and PGAM2
expression was assessed.

Immune infiltration analysis
Immune infiltration levels in high-risk and low-risk tumor groups were
evaluated using three different algorithms: ESTIMATE, CIBERSORT, and
xCell50. The IOBR package (version 1.0.0) was used for immune cell
deconvolution, and the immune infiltration profiles of each group were
visualized using heatmaps and bar plots51. The results were used to explore
the relationship between immune cell composition and tumor progression.

Differential gene expression and pathway enrichment analysis
Differential gene expression between high-risk and low-risk groups was
performed using the limma package (version 3.46.0)52. The threshold for
differential expression was set to |log2FoldChange| > 1.5 and adjusted p-
value < 0.05. Pathway enrichment analysis was performed using the clus-
terProfiler package (version 4.0) for KEGG and GO databases53. Enriched
pathways were visualized using ggplot2 (version 3.3.5).

Genomic variation landscape analysis between risk groups
Thegenomic variation landscapewas comparedbetweenhigh-risk and low-
risk groups using the “maftools”package (version 2.8.0) inR54. This package
was used to examinemutational burden and createmutationwaterfall plots.
The mutational profiles of the two risk groups were compared to identify
significant differences in mutation frequencies.

Development of a prognostic model based on PGAM2 and
sialylation-related genes
A prognostic model was developed using a set of 116 genes, including
PGAM2 and sialylation-related genes, identified through single-factor
Cox analysis55. The model was constructed using the LASSO (least
absolute shrinkage and selection operator) regression combined with
Cox regression (using glmnet package, version 4.1). The accuracy of the
prognostic model was evaluated using the timeROC package, with the
calculation of AUC values for 1-year, 3-year, and 5-year survival
predictions.

Clinical sample collection and preparation
Tumor and adjacent normal tissues were collected from 15 liver metastasis
patients undergoing surgery at Chongqing General Hospital between May
2019 and April 2024. Normal tissues were obtained at least 3 cm from the
tumormargins. Immediately after excision, the sampleswere snap-frozen in
liquid nitrogen and stored at −80 °C to preserve RNA integrity for sub-
sequent analysis. Ethical approval was obtained from the Institutional
Review Board (IRB) of ChongqingGeneral Hospital, and informed consent
was acquired from all participants.

RNA extraction and quantitative real-time PCR (qRT-PCR)
Total RNAwas extracted from tissue and cell samples using TRIzol reagent
(Invitrogen, USA) according to the manufacturer’s protocol. RNA quality
was assessed using a NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific, USA), with only samples having an A260/A280 ratio between 1.8
and 2.0 included. cDNA synthesis was carried out using 1 µg of RNA per
sample with the PrimeScript RTKit (Takara, Japan). AGRN expressionwas
quantified by qRT-PCR using SYBR Premix Ex Taq (Takara, Japan) on the
QuantStudio 5 PCR system (Applied Biosystems, USA). The following
cycling conditions were used: 95 °C for 30 s, followed by 40 cycles of 95 °C
for 5 s and 60 °C for 30 s. Relative gene expression was calculated using the
2−ΔΔCt method, normalized to GAPDH. All experiments were performed in
triplicate.

Cultivation and validation of cell lines
Cell lines used in this study were authenticated via short tandem repeat
(STR) profiling and routinely tested for mycoplasma contamination. Cells
were cultured inDulbecco’sModifiedEagleMedium(DMEM;Gibco,USA)
supplemented with 10% fetal bovine serum (FBS; Gibco, USA) and 1%
penicillin-streptomycin (Gibco,USA) at 37 °C in a5%CO₂ incubator.Upon
reaching ~80% confluence, RNAwas extracted, and AGRN expression was
evaluatedbyqRT-PCRasdescribed for tissue samples.All experimentswere
conducted in triplicate.

Procedure for siRNA transfection
Small interfering RNAs (siRNAs) targeting AGRN and control siRNAs
were synthesized by TsingKe Biotechnology and dissolved in nuclease-free
water at a concentrationof 10 µM.HCCcell lines (Hep3BandHuH-6)were
seeded in 6-well plates (2 × 10⁵ cells/well) and incubated overnight. For
transfection, siRNAs (50 nM) were mixed with 5 µL of Lipofectamine 3000
(Invitrogen, USA) inOpti-MEM (Gibco, USA) and incubated for 15min at
room temperature before adding to the cells. After 6 h, the medium was
replaced with fresh DMEM containing 10% FBS. Cells were harvested 48 h
post transfection for RNA extraction and AGRN expression analysis by
qRT-PCR. AGRN expression was reduced by over 70% compared to con-
trols (p < 0.01, Student’s t-test). Each experiment was performed in
triplicate.

Cell proliferation evaluation using CCK-8 assay
Cell proliferation was assessed using the Cell Counting Kit-8 (CCK-8;
Dojindo, Japan). Cells were seeded in 96-well plates (3000 cells/well) and
transfected with siRNAs as described earlier. Proliferation was measured at
24, 48, 72, and 96 h post transfection by adding 10 µL of CCK-8 reagent to
each well and incubating for 2 h at 37 °C. Absorbance at 450 nm was
measured using a Synergy H1microplate reader (BioTek, USA). Data were
presented as fold-change in absorbance relative to baseline (0-h) measure-
ments, with five replicates per condition.

Measurement of cell apoptosis using flow cytometry
Apoptosis was analyzed 48 h post transfection using the Annexin V-FITC/
PI apoptosis detection kit (BD Biosciences, USA). Cells were harvested,
washed twice with PBS, and stained according to the manufacturer’s pro-
tocol. Flow cytometric analysis was conducted on a BD FACSVerse
instrument to quantify early apoptotic (Annexin V+/PI−) and late apop-
totic (Annexin V+/PI+) cells. Data were analyzed using FlowJo software
(version 10.0).

Evaluation of cell migration and invasion
Cellmigrationwas assessed usingTranswell chambers (Corning,USA)with
8 μm pore size membranes. Cells (5 × 10⁴) in serum-free medium were
seeded into theupper chamber,while the lower chambercontainedmedium
with 10% FBS as a chemoattractant. After 24 h of incubation, non-migrated
cells on the upper surface were removed, and migrated cells on the lower
surface were fixed with 4% paraformaldehyde and stained with 0.1% crystal
violet. Cells were counted from five random visual fields per chamber. For
the invasion assay, Transwell membranes were pre-coated with Matrigel
(BD Biosciences, USA) before cell seeding. Migration and invasion assays
were repeated in triplicate.

Statistical analysis
All statistical analyses and visualizations were performed using R (version
4.1.3). Pearson’s correlation coefficient was used to assess correlations
between continuous variables. Chi-square tests were applied to compare
categorical variables, and Wilcoxon rank-sum tests were used for con-
tinuous variables. The survminer package was used to determine the opti-
mal cutoff value for survival analysis. Cox regression and Kaplan–Meier
survival analysis were performed using the survival package (version
3.2-13).
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Data availability
The datasets supporting the findings of this study are available in public
repositories. The bulk RNA-seq data and corresponding clinical informa-
tion for theHCC cohort were sourced from the TCGA-HCCproject via the
UCSC Xena database (https://xenabrowser.net/). The single-cell RNA-seq
data analyzed in this study are available in the GEO database under
accession codeGSE149614. All other data generated or analyzed during this
study are included in this published article and its supplementary infor-
mation files.

Code availability
The code used for data analysis, including single-cell RNA sequencing
processing, cell type identification, and prognostic model construction, is
available upon request from the corresponding author.
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