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Immunotherapy has become a promising treatment for various cancers, including colorectal cancer
(CRC). Despite significant progress, identifying immune cell-specific therapeutic targets remains
challenging, especially for CD4" T cells, whose activation influences both anti-tumor and pro-tumor
immune responses. This study aims to identify potential immunotherapy targets for CRC by exploring
the causal relationships between CD4* T cell activation-associated genes and CRC through
Mendelian randomization (MR) and single-cell RNA sequencing (scRNA-seq). We used transcriptome-
wide MR, summary-based MR (SMR), and colocalization analysis, along with validation through multi-
omics approaches, to identify 28 dynamic CD4* T cell-related genes as therapeutic targets. Notably,
PARP14 and ORMDLS3 emerged as key targets, with strong associations to immune therapy
resistance and CRC. This research highlights the critical role of CD4" T cell activation in CRC
progression and identifies novel potential targets for immunotherapy.

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths
worldwide, with approximately 147,950 new cases and 53,200 deaths
reported annually'”. For patients diagnosed at early stages, surgery remains
the primary treatment option’. However, many patients are diagnosed at
advanced or metastatic stages, with the 5-year survival rate of approximately
14%'. Immunotherapy has emerged as a promising strategy for CRC
treatment in recent years’, with chimeric antigen receptor T-cell (CAR-T)
therapy demonstrating efficacy in certain hematologic malignancies. Yet, its
success in treating solid tumors like CRC is hindered by the immunosup-
pressive tumor microenvironment, primarily due to the inhibitory effects of

the PD-1/PD-L1 checkpoint pathway on T-cell responses’. Overcoming
these limitations to enhance CAR-T therapy in solid tumors remains a
significant challenge’. Recent studies have focused on combining immune-
related gene targeting with CAR-T therapy, showing potential in enhancing
T-cell function. For example, targeting immune molecules such as inter-
feron y (IFN-y), interleukin (IL)-6, and IL-12 has been shown to enhance
T cell migration and infiltration into CRC cells’.

The tumor microenvironment (TME) is composed of various immune
and stromal cells, with much of the current research focusing primarily on
CD8" T due to their well-known cytotoxic effects. However, accumulating
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evidence has highlighted the crucial role of CD4" T cells in the tumor
immune response’. CD4" T cells can differentiate into multiple subsets,
including Th1, Th2, Th9, Th17, regulatory T cells (Treg), and T follicular
helper (TFH) cells'’. Among these, Th2 cells are known to enhance
angiogenesis and suppress immune cell-mediated tumor cytotoxicity'".
Additionally, CD4" T cells can secrete IFN-y, which plays a crucial role in
promoting the anti-tumor activity of CD8" T cells'’. Despite the recognized
importance of T lymphocytes, particularly CD4" T cells, few studies have
systematically explored their potential as immune-mediated targets for CRC
prevention or treatment. Thus, understanding the complex interactions
between CD4" T cells and CRC is crucial for identifying promising
immune-mediated drug targets for CRC prevention and drug development.

Recent studies have revealed the pivotal role of metabolic repro-
gramming in cancer progression'’. During T cell activation, especially in
CD4" T cell differentiation, significant metabolic shifts occur, which
support immune responses. These metabolic changes may contribute to
cellular reprogramming, further influencing tumor growth and survival'.
While the metabolic alterations driven by immune activation have been
recognized as key factors in both cancer progression and immune
responses, metabolism-related immune targets for CD4" T cells remain
underexplored. Understanding how CD4" T cells modulate metabolism
within the TME could offer novel insights into how immune responses
influence tumorigenesis.

Mendelian randomization (MR) is a method that investigates causal
associations between phenotypes based on genetic variations and is
increasingly utilized to prioritize drug targets'>'’. The primary advantage lies
in its ability to minimize confounding factors and reverse causality, com-
pared to conventional epidemiological methods'’. Furthermore, previous
drug development programs have demonstrated that target-disease pairings
identified through MR and colocalization are more likely to result in suc-
cessful therapeutic approvals'’. Genome-wide association study (GWAS)
and expression quantitative trait loci (éQTL) have been used in MR analyses
to identify disease-associated genes'**’. However, most studies rely on whole
blood level data, which lack cell-specific resolution and fail to capture the
cellular context accurately. In contrast, single-cell analysis is a revolutionary
technology that provides high-resolution insights into cellular mechanisms,
enabling a more precise understanding of disease biology'. The integration
of single-cell eQTL with GWAS has proven valuable, particularly in iden-
tifying of drug targets in cancer”. For instance, Liu et al. performed a causal
association analysis between immune cell gene expression and breast can-
cer, identifying the drug target KCNN4 associated with non-classic
monocytes™. Therefore, combining single-cell eQTL with MR not only
enhances the understanding of the genetic mechanisms underlying complex
diseases but also offers valuable insights for drug development and perso-
nalized treatment strategies.

In this study, we integrated dynamic eQTL data with MR, summary-
based Mendelian randomization (SMR), and colocalization analyses to
comprehensively investigate the role of gene expression in different sub-
sets of activated CD4" T cells in CRC susceptibility. Specifically, we uti-
lized dynamic single-cell eQTL data collected at distinct time points
during CD4" T cell activation to estimate causal associations between
immune-related targets and CRC susceptibility. This MR-based causal
inference approach enabled us to unravel the genetic mechanisms linking
immune responses to CRC and identify promising immune-mediated
therapeutic targets for CRC. Spatiotemporal single-cell RNA sequencing
(scRNA-seq) analysis further elucidated immune therapy resistance-
associated targets. Additionally, we explored the potential biological
functions and unintended effects of targeting the genes identified during
CD4" T cell activation in CRC based on mediation analysis, virtual
knockout (KO) experiment, and phenome-wide mendelian randomiza-
tion (PW-MR). By integrating transcriptome-wide Mendelian randomi-
zation and scRNA-seq analysis, our findings deepen the understanding of
immune-related pathways in CRC pathogenesis and identify potential
immune-mediated therapeutic targets, paving the way for innovative
intervention strategies in CRC treatment.

Results

Summary of instrument selection and causal association using
dynamic eQTLs across CD4" T cell activation and non-dynamic
eQTLs from DICE and eQTLGen studies

The study design is summarized in Fig. 1. Gene expression eQTL data were
extracted from Soskic et al., which included 17 types of CD4" T cells at five
different time points of CD4" T cell (0 h, low activity-LA, 16 h, 40 h, 5 days)
using anti-CD3/anti-CD28 human T-Activator Dynabeads from 119 Eur-
opean individuals. Cis-eQTLs were identified using the tensorQTL (v1.0.3)
(ref. 24) R package, which applies linear regression to each SNP-gene pair
within a 500-kb window surrounding the transcription start site (TSS) of
each gene, as described by the authors™. After applying stringent filtering
criteria (p < 5 x 10~%, clumping with * < 0.001, F-statistics >10, and Steiger
direction filtering), a total of 8587 eQTLs from 1440 genes across 46
expression profiles were selected for MR analysis (Supplementary
Tables 1 and 2).

These 8587 eQTLs were used to assess causal association between gene
expression and CRC susceptibility. The analysis, using CRC as the outcome
(78,473 cases and 107,143 controls of European ancestry)™, identified 216
target-CRC pairs involving 52 genes with cell- and time point-specific causal
associations across 32 cell types (prpr < 0.05) (Fig. 2A, B and Supplementary
Table 3). To validate these findings, colocalization and SMR analysis were
conducted, further strengthening the causal association. Specifically, 142
target-CRC pairs demonstrated strong colocalization evidence (PP.H/
(PP.H; + PP.H,) > 0.7) (Supplementary Table 4), and 159 target-CRC pairs
met SMR criteria (pspr <0.05 and pygmpy > 0.05), indicating that the
observed associations were not confounded by LD (Supplementary Table 5).
Integration of these results revealed 115 target-CRC pairs involving 28 genes
passed both colocalization and SMR analysis (Fig. 2C and Supplementary
Table 6), underscoring the robustness and reliability of the identified causal
associations and providing valuable insights into immune-mediated ther-
apeutic targets in CRC.

In the non-dynamic causal association analysis, 104 eQTLs from DICE
and 100 eQTLs from eQTLGen databases were used for MR analysis
(Supplementary Tables 7-10). After applying a false discovery rate (FDR)
threshold of <0.05 to the MR results from DICE, 82 target-CRC pairs
involving 15 genes across 15 cell types were identified as having causal
associations with CRC. Similarly, MR analysis of eQTLs from eQTLGen
identified 11 target-CRC pairs involving 11 genes (Fig. 2C and Supple-
mentary Tables 11 and 12). To ensure the robustness of these findings,
colocalization and SMR analyses were also performed. In DICE, 57 target-
CRC pairs involving 10 genes demonstrated strong colocalization evidence,
and in eQTLGen, 4 target-CRC pairs involving 4 genes also showed similar
results (Fig. 2C and Supplementary Tables 13-18).

Cell type- and time-specific causal effect ofimmune CD4* T cell
gene expression on CRC

Through dynamic and non-dynamic MR analyses, we observed that only 13
of the 28 dynamic CD4" T cell targets were replicated in the non-dynamic
MR analysis (Fig. 2D and Supplementary Table 19). Among these, 10 targets
were replicated in the DICE database, and 4 targets were replicated in the
eQTLGen database. These findings suggest that 15 genes were unique to
CD4" T cell activation, while 24 genes (15 from dynamic CD4" T cell and 9
from DICE database) were identified as immune cell-specific targets. For
instance, TMEM87B and DCTN5 exhibited strong causal associations with
CRC in dynamic CD4" T cells, but also displayed robust causal links in non-
dynamic CD8" T cells (Fig. 2E).

Among the 28 identified genes, 26 demonstrated causal associations
with CRC after T cell activation, while 7 genes exhibited causal associations
in the resting state. Notably, T cell activation revealed 21 additional genes
with new causal associations to CRC compared to the resting state (Fig. 2F).
Interestingly, 2 genes were exclusively associated with CRC in the resting
and low activation states, while others showed time-specific associations
following activation: 5 genes were associated with CRC exclusively at 16 h, 4
genes at 40h, and 6 genes at 5 days post-activation. Some genes
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Fig. 1 | Illustration of the network MR analysis framework. CRC: Colorectal cancer,

DICE: Drug-induced Gene Expression, eQTL: Expression Quantitative Trait Locus,

GSEA: Gene Set Enrichment Analysis, LD: Linkage Disequilibrium, MR: Mendelian Randomization, SMR summary-based Mendelian Randomization.

demonstrated dynamic and time-specific patterns. For example,
NDUFA12 showed causal associations with CRC at all five time points,
peaking at 40 h, which correlated with an increased CRC risk. Additionally,
DCTNG5 displayed associations at three time points, peaking at 40 h, but was

linked to decreased CRC risk (Fig. 2G). These findings underscore the
dynamic nature of gene associations with CRC, highlighting that gene
expression and CRC risk vary throughout T cell activation, with distinct risk
profiles at different immune response stages.

npj Precision Oncology| (2026)10:32


www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-01236-6

Article

A
Mendelian Randomization significance results in Manhattan plot
8_
o o ®
o
® o
6 - M
m
= [
E o
& 4 ° ®
= °
g
2 e o . ° o 8
2]de © . [ ] [ ]
o o - ®
lﬁ JL-‘i‘.i .I'.:i Shasdii W ﬁih ﬁhl
o] bl ﬁ & U l
T T
Chr 1 2 6 7 8 11 12 13 14 15 16 17 18 19202122
B C _ o D
Genes Causally Associated with CRC Identified M unidentified
5 100+ Dynamic CD4" T cells
" Risk fact = 4
'dg 91 " ' P;(S)tecicf:crtsors S 754 115 15
E g . g o7
L 6 H =
g 6 = | 2. 501 ’ 1 :
CR . 1} N £
? 3 5 25 0 W O
0 i
02 00 02 CD4 DICE ¢QTLGen Immune cell Blood
In (OR)
E F G
llﬂ_regfnai"e 1@ I' Resting  Activation | NDUFA12 in memory CD4" T cells on CRC
reg_mem - |
THSTAR - : g 000 F=mm e 0h
TH17 ' I & -0.034 ] ¢ # 16h
TH2 {© ® o205 2 - iy
THI - Beta 8 40 h
T B gg;g I I 2 —0.094 o 5d
Nk - : | I H : : : :
Monocytes - ?3?)25 | LA | N QOQ @Q b)b
M2 A ’
CD8_stim 4@ @ 0050 | d Oh 1 DCTNS in memory CD4" T cells on CRC
CD8_naive {0 @ | Pl | o 0.100
CD4_stim {©® ® o 5 S 0.075 16h
CD4_naive {0 @ : 1 I ﬁ 0.050 1 - 4(6) h
B_cell_naive - | | e
T | T | | 4 6 I ?0 0.025 A ® 5d
og @ o 5 So” 20000 oo oo
OF '\ | I | : ; :
&Q Q@%Q L ‘E)h_ o {? é@ 2

Activation time

Fig. 2 | The MR results of causal effects of dynamic CD4" T cell eQTLs on CRC. A The Manhattan plot displays the associations of genetically regulated gene expression in
CD4" T cells and CRC. The Y-axis represents the —log 10 of the pppg values of the MR estimates. B The volcano plot shows the immune risk and protective targets for CRC.
C The bar chart shows the number of MR results with p-values < 0.05 after Benjamini-Hochberg FDR correction, along with the proportion of results passing colocalization
and SMR test criteria. D The Venn diagram illustrates the immune cell specificity of the identified targets: 24 targets were recognized exclusively in immune cells, and 15
targets identified solely in dynamic CD4" T cells. E Nine dynamic CD4" T cell immune targets were replicated in other immune cells. F The Venn diagram illustrates that the
identified targets exhibit activation-specific and time-specific characteristics, with 21 targets (75%) causally associated with CRC only after activation. G Example genes with
different causal effects at the activation time point are shown. The effect estimates represent odds ratios and 95% confidence intervals for disease risk per unit change in the
related gene expression levels. The error bars indicate 95% confidence intervals.
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Table 1 | Differentially expressed genes of CD4" T cells in GEO
database

Gene LogFC p value GEO

RPL28 -0.14 3.78E—-94 GSE200997
ORMDL3 0.31 1.91E-09 GSE200997
KCNA3 0.14 2.04E-02 GSE200997
TRIM4 -0.18 8.93E-03 GSE200997
PARP14 1.21 1.96E—-11 GSE231559
NDUFA12 -0.19 1.45E—02 GSE231559

Identification and mechanistic analysis of key genes in CD4* T
cell as therapeutic targets in CRC for immunotherapy

Using three scRNA-seq datasets (GSE231559, GSE200997, and
GSE166555), we identified CD4" T cells and annotated cell subsets (Sup-
plementary Figs. 1-3). Differential expression gene (DEG) analysis was
performed comparing CD4" T cells from CRC patients and non-tumor
controls, applying stringent thresholds (min.pct > 0.1, p<0.05, and |
logFC | >0.25; Supplementary Table 20). After excluding genes with
inconsistent expression directions, two genes were identified as differential
genes in three datasets: ORMDL sphingolipid biosynthesis regulator 3
(ORMDL3), Poly (ADP-ribose) and polymerase family, member 14
(PARP14). Additionally, genes like Ribosomal protein L28 (RPL28), Tri-
partite Motif Containing 4 (TRIM4), NADH: ubiquinone oxidoreductase
subunit A12 (NDUFA12) and potassium voltage-gated channel subfamily
A member 3 (KCNA3) were identified under less stringent thresholds (|
logFC | > 0.1, p < 0.05, Table 1). Importantly, these genes were aligned with
the main MR results. For instance, ORMDLS3, a risk gene identified in the
MR analysis, showed higher expression in CD4" T cells from CRC patients
compared to controls.

Further validation using the TCGA-COADREAD project demon-
strated a significant correlation between five targets (ORMDL3, RPL28,
NDUFA12, PARP14,KCNA3) and the CD4" T cell marker CD4 expression
(Supplementary Fig. 4A), which were consistent with MR analysis. For
instance, ORMDL3 and PARP14 were positively correlated with CD4
expression and associated with an increased risk of CRC. Additionally, both
genes exhibited higher mRNA expression in CRC tissues compared to
normal tissues (Supplementary Fig. 4B, C). Supporting these findings, the
CPTAC database revealed significantly elevated protein expression levels of
ORMDL3 and PARP14 in colon cancer samples (Supplementary Fig. 4D,
E), which aligned with scRNA-seq results. Based on the above results, the
identified targets ORMDL3 and PARP14 were regarded as the key targets.

To investigate the mechanistic roles of key targets in CRC, GSEA was
performed using 50 HALLMARK gene sets. The analysis revealed enrich-
ment in immune-related pathways and cancer signaling networks and the
differential genes associated with ORMDL3 and PARP14 (Supplementary
Table 21). For instance, ORMDL3 was implicated in activating epithelial-
mesenchymal transition (EMT), angiogenesis, inflammatory response, and
TNFA signaling via the NF-«B pathway in rectal adenocarcinoma (READ).
Similarly, PARP14 was associated with EMT, inflammatory response,
interferon-gamma response, and TNFA signaling via NF-kB pathway in
colon adenocarcinoma (COAD) (Supplementary Fig. 4F, G). Additionally,
to further explore the association between the identified targets and immune
therapy resistance, we performed spatiotemporal differential expression
analysis of CD4" T cells based on the analytical pipeline outlined in Fig. 3A.
Specifically, ORMDL3 and KCNA3 exhibited increased expression in the
stable disease (SD) group following immune therapy, while no significant
differences were observed in the complete or partial response (CR/PR)
group (Fig. 3B-F). Interestingly, PARP14 is elevated in the SD group but
decreased in the CR/PR group (Fig. 3C, F and Table 2). Consistent with these
overall findings, subtype analysis further revealed that key CD4" T cell
targets were associated with immune resistance in MSI/MSS-CRC, with
notably higher expression observed in MSI tumors (Fig. S5A-C).

Pre-treatment prognostic analysis revealed that PARP14" CD4 T cells and
ORMDL3" CD4 T cells were associated with poor patient outcomes
(Fig. S6). Compared to clusters with low expression of the three targets,
pathways such as TNF-a signaling via NF-kB, IL2/STAT5 signaling,
mTORCI signaling, hypoxia, and inflammatory response were significantly
enriched in clusters 3, 7, and 9 (Fig. 3G). Additionally, the expression of
immunosuppressive checkpoint genes, such as PDCD1, CTLA4, and LAG3,
was also significantly elevated (Supplementary Fig. 7A). Elevated expression
of ORMDL3, PARP14, and KCNA3 was associated with increased T cell
dysfunction and exhaustion scores, as well as the higher proportion of
predicted no-responders to immunotherapy, whereas NDUFA12 exhibited
the opposite pattern (Figs. 3H and S7B-D). Collectively, these findings
demonstrate that ORMDL3, PARP14, and KCNA3 may represent critical
targets for CRC immunotherapy, particularly in addressing immune
resistance, offering valuable theoretical insights for future personalized
treatment strategies.

Identification of potential therapeutic drugs for CD4* T cell-
associated immune therapy against CRC

To identify therapeutic drug for CRC targeting these immune-related genes,
we classified the identified targets into primary, secondary, and tertiary
levels. Among the identified targets, 28 genes passed the main MR analysis,
colocalization, and SMR analysis were classified tertiary targets. Five genes
were identified as differential genes in CD4" T cells, classified as secondary
targets. Two genes, ORMDL3 and PARP14 were identified as differential
genes in the CD4™ T cell and the TCGA project, classifying as primary
targets (Fig. 4A).

Using the CMap database, we identified 16 compounds with the
potential to reverse TME changes induced by ORMDL3 and PARP14
(Table 3). Molecular docking analysis demonstrated that 15 of these com-
pounds exhibited binding energies below —5 kcal/mol, with 8 drugs
showing binding energies below —7 kcal/mol, indicating strong target-
ligand interactions (Fig. 4B and Table 3). Among the identified compounds,
several demonstrated promising binding affinities and therapeutic potential
for CRC. Literature analysis confirmed that they offer potential therapeutic
benefits through different mechanisms: Seocalcitol, a Vitamin D receptor
agonist with well-documented anti-tumor activity in CRC (Fig. 4C)”’;
Prednisone, a corticosteroid that has shown efficacy in combination with
abiraterone acetate for prostate cancer, highlighting its potential for broader
oncological applications (Fig. 4D)*; AV-608, an insulinotropic receptor
agonist that may enhance anti-CRC effects as an adjunct to chemotherapy
(Fig. 4E)”. Haloperidol, a dopamine receptor antagonist, specifically tar-
geting dopamine receptor D2, identified as a novel therapeutic candidate for
CRC (Fig. 4F)*. Additionally, the safety considerations of approved or
clinically investigated compounds are summarized in Supplementary Table
22. These findings provide a compelling basis for further investigation into
the repurposing or development of these compounds as targeted therapies
against CRC, leveraging their diverse mechanisms of action to counteract
ORMDL3- and PARP14-mediated TME alterations.

Mediation effect of dynamic immune-related targets on CRC
outcomes via plasma metabolites

Given that metabolites are closely linked to T cell function and collectively
mediate anti-tumor immune responses, a mediation analysis was conducted
to explore potential interactions among target genes, CD4" T cells, meta-
bolites, and CRC. In the causal association analysis between plasma meta-
bolites and CRC, the BH method was applied to control for false positives in
multiple hypothesis testing. After excluding results with heterogeneity and
pleiotropy, 13 plasma metabolites were identified as having significant
causal association with CRC (Fig. 5A). MR-Egger analysis confirmed the
absence of pleiotropy, and for results with heterogeneity (p <0.05), a
random-effects model was used to ensure robustness (Supplementary Table
23). Among these, bilirubin degradation product, C17H18N204 (2) and
Indoleacetoylcarnitine demonstrated causal association with the immune
targets ORMDL3 and PARP14, respectively (Fig. 5B). Further investigation
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Fig. 3 | The spatiotemporal differential analysis of CD4" T cells for the identified
targets. A Illustration of the spatiotemporal differential analysis framework. B The
t-SNE visualization of CD4" T cell subclusters identified by scRNA-seq. C-F The
t-SNE and volcano plots of identified targets in the SD group pre- and post-
immunotherapy. Gray dots represent non-differentially expressed genes. SD steady

disease, CR complete response, PR partial response. G Biological functions asso-
ciated with clusters 3, 7, and 9, compared to cell subpopulations with low expression
of ORMDL3, PARP14, and KCNA3. H T-cell dysfunction scores predicted using the
TIDE database for high and low expression groups of identified targets. Statistical
significance is indicated as *p < 0.05, **p < 0.01, ***p < 0.001.
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Table 2 | Differentially expressed genes in pre- and post-
immune treatment based on scRNA-seq analysis of CD4*
T cells

Gene LogFC p value SD or CR/PR
KCNA3 1.10 1.12E-20 SD
ORMDL3 0.47 8.06E—05 SD
PARP14 1.05 2.87E-09 SD
RPL28 0.08 3.82E-17 SD
NDUFA12 0.07 4.98E-03 SD
KCNA3 0.14 8.10E—01 CR/PR
ORMDL3 0.14 9.16E—-02 CR/PR
PARP14 -0.29 9.44E—-20 CR/PR
RPL28 0.04 4.82E-06 CR/PR
NDUFA12 -0.12 1.38E—12 CR/PR

using two-step MR revealed that PARP14 mediated CRC progression via
Indoleacetoylcarnitine during CD4™ T cell activation, with a mediation
proportion of 10.95%, while ORMDL3 mediated CRC progression via
C17H18N204 (2), with a mediation proportion of 5.81% (Fig. 5C, D). These
results suggest that immune targets mediate the progression of colorectal
cancer associated with specific metabolites during CD4" T cell activation,
providing potential targets for immune and metabolic intervention
strategies.

Evaluation of the biological functions, pleiotropic effects, and
potential adverse effects of targeting ORMDL3 and PARP14

To assess the potential biological functional changes induced by targeting
CD4" T cell therapeutic targets, virtual KO experiments in CD4" T cell
revealed that the KO of ORMDL3 and PARP14 perturbed 75 and 14 genes,
respectively (Supplementary Table 24). Functional enrichment analysis
using the Enrichr database indicated that the genes significantly perturbed
by ORMDL3 and PARP14 were involved in pathways closely associated
with CRC progression, including TNF-a signaling via NF-kB, hypoxia,
colorectal cancer, and Wnt/B-catenin signaling pathways (Fig. 6A and
Supplementary Table 25). Notably, TNF-a signaling via NF-kB and hypoxia
were consistently enriched across multiple analyses, including GSEA (Fig.
6B and Supplementary Table 26).

To identify the pleiotropic and potential adverse effects of drugs tar-
geting ORMDL3 and PARP14, we performed PW-MR analysis using
FinnGen database (R11), applying BH correction to control for false dis-
covery rates. After excluding phenotypes directly related to intestinal
tumors, the analysis included 2417 binary phenotypes (Supplementary
Table 27). The results revealed that ORMDL3 was strongly associated with
childhood asthma, while PARP14 was associated with psoriasis (Fig. 6C).
These findings underscore the therapeutic potential of ORMDL3 and
PARP14, highlighting their involvement in critical signaling pathways
associated with immune therapy resistance. Also, these results suggest that
their impact may extend beyond cancer therapy, providing broader impli-
cations for targeting these genes in immune-related diseases.

Discussion

In this study, we aimed to identify immune-related genes causally associated
with CRC using a comprehensive multi-omics approach that integrates MR,
colocalization, SMR, and HEIDI analyses. By examining the causal asso-
ciations between 8587 cis-eQTLs from 17 immune cell types during CD4* T
cell activation and CRC, we aimed to elucidate immune therapy targets
involved in CRC progression. Unlike traditional observational studies, MR
mitigates the interference of reverse causality and confounding factors™*.
The integration of MR with colocalization and SMR analyses further
enhances the accuracy of these inferences by leveraging genetic information,
minimizing the impact of LD, thereby increasing the credibility of our

findings”~°. Importantly, the target-disease associations identified through
this integrated approach have higher translational potential for clinical
approval'®. To the best of our knowledge, this is the first study to explore
immune-related targets for CRC through a multi-omics framework,
incorporating additional scRNA-seq, bulk RNA-seq, immunotherapy pre-
diction, mediation analysis, virtual KO and PW-MR to validate the iden-
tified immune targets. The dynamic genes identified during CD4" T cell
activation offer new insights into CRC prevention strategies and potential
drug targets.

Recent large-scale genetic studies have identified several druggable
protein targets in CRC™*”, but these studies predominantly focused on
whole blood level and lacked immune cell-specific analysis, limiting our
understanding of how immune cell gene expression impacts CRC. Our
study bridges this gap by identifying 28 immune-related genes strongly
associated with CRC risk, of which only four were replicated in whole-blood
tissue. This finding suggests that immune therapeutic targets for CRC may
be distinct from those detectable in whole blood, highlighting the impor-
tance of immune cell-specific analysis. While previous research has focused
on enhancing the anti-tumor effects of CD8* T cells®, recent studies
emphasize the crucial role of CD4" T cells in both promoting and inhibiting
tumor progression'’. For instance, patients with lower CD4" T cell counts
and CD4"/CD8" ratios may respond better to PD-1 inhibitors in mismatch
repair-deficient CRC”. Additionally, TH1-like CD4* tumor-infiltrating
lymphocytes (TILs) have been shown to recruit and enhance the pro-
liferation and cytotoxicity of CD8" TILs". These studies highlight the dual
roles of CD4™ T cells in the tumor microenvironment, yet immune targets
specifically directed at CD4" T cells remain underexplored. Our study
identified 115 target-CRC pairs involving 28 genes in CD4" T cells, with 21
genes exclusively associated with CRC risk following CD4* T cell activation,
providing valuable therapeutic targets for CRC immunotherapy.

Recent advances in single-cell technologies have revealed dynamic
changes in gene expression during tumorigenesis. For instance, NAMPT,
BCL2A1, and TREM1 expression levels decrease in peripheral classical
monocytes during colon adenocarcinoma progression*’. However, obser-
ving gene expression changes alone does not necessarily imply causal effects.
Our study identified dynamic causal associations between CD4" T cell gene
expression and CRC risk during T cell activation. For instance, the inhibi-
tory effect of NDUFA12 on CRCrisk peaked at 40 h, suggesting its potential
as a key protein target in CRC treatment.

As level 1 targets, ORMDL3 and PARP14 have been previously
linked to immune-related functions. Using a similar approach, ORMDL3
has been associated with cervical cancer risk”. ORMDL3 regulates early
signaling events in lymphocyte activation, including store-operated cal-
cium entry (SOCE), a process critical for CD4" T cells activation®.
Interestingly, individuals with asthma risk alleles at the 17q12-21 locus
exhibit overexpression of ORMDLS3, potentially raising basal calcium
levels in naive CD4™ T cells*. Moreover, the overexpression of ORMDL3
may drive CD4" T cells differentiation toward a Th2 phenotype, pro-
moting chronic inflammation and immune responses linked to allergic
asthma*. Our results align with these findings, suggesting that ORMDL3
overexpression contributes to CD4" T cell activation and inflammation in
CRC progression. Interestingly, excessive alcohol consumption has been
reported to increase ORMDL3 expression, suggesting that lifestyle factors
may influence its regulation”. PARP14, another key target, has been
implicated in Th2 differentiation, chronic inflammation, and immune
therapy resistance*’. Both ORMDL3 and PARP14 were found to correlate
with increased CRC risk during CD4" T cell activation, and both were
associated with upregulation of NF-kB signaling and inflammatory
response, reinforcing their potential as dynamic immune targets in CRC.
Furthermore, our spatiotemporal analysis of CD4" T cells revealed that
ORMDL3, PARP14, and KCNA3 were associated with immune therapy
resistance. Specifically, ORMDL3, PARP14 and KCNA3 were sig-
nificantly upregulated in patients who experienced SD following immu-
notherapy, and PARP14 was significantly decreased in the CR/PR group.
Similarly, TIDE analysis revealed that high expression of ORMDL3,

npj Precision Oncology | (2026)10:32


www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-01236-6

Article

A
Classification of Identified Targets and Multi-Omics Analysis Results
(Classiﬁcation Targets Main MR Coloc SMR scRNA-seq Bulk RNA-seq Immunotherapy predictio}
ORMDL3}  V v/ v
Level 1
PARP14 v vi Vv v Vv v
RPL28 v v Vv X X X
Level 2 KCNA3 v VvV vV X X v
NoUFALZ - v VvV X X X
Level 3 Other genes v v'<6€ Vv X — —
\_ J
B C
Targets Potential Drugs Action Mechanism of the Drug Protein:ORMDL3
1y ad 1y Ligand:seocalcitol
@ — Glutamate receptor antagonist ) Affinity: -7.7 keal/mol
ﬁlciml —{ Vitamin D receptor agonist ]
ORMDL3
Glucose dependent insulinotropic
ﬁ'“s , _{ receptor agonist ]
Gisone/ —( Glucocorticoid receptor agonist )
Enm ) _( Angiotensin receptor antagonist ]
@ ) —( Tachykinin antagonist )
PARP14
Eedd"l, —[ Dopamine receptor antagonist ]
@G Bile acid )
D E F
Protein: ORMDL3 Protein:P ARP14 Protein: PARP14

Ligand: prednisone
Affinity: -8.8 kcal/mol

Ligand: AV-608
Affinity: -9.9 kcal/mol

Ligand: haloperidol
Affinity: -8.1 kcal/mol

Fig. 4 | Potential therapeutic drugs targeting ORMDL3 and PARP14 in CRC.
A Classification of identified targets and multi-omics analysis. ORMDL3 and
PARP14 were identified as Level 1 targets, having passed all analyses. KCNA3,
RPL28, and NDUFA12, which failed the bulk RNA-seq analysis, were classified as
Level 2 targets. The remaining genes, identified exclusively through MR, Coloc, and
SMR analyses, were designated as Level 3 targets. Check marks indicate successful
completion of the corresponding analysis; Cross marks indicate failure, and

combined symbols denote partial fulfillment of analysis conditions. B Dendrogram
illustrating the top potential therapeutic compounds targeting ORMDL3 and
PARP14 in CRC, along with their mechanisms of action. These target-drug pairs
exhibit strong binding affinities, with binding energies below —7 kcal/mol. C-F The
molecular docking diagrams of example pairs show hydrogen bond interactions. TA:
taurodeoxycholic-acid.
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Table 3 | Drug identification in the CMap database

Gene Cancer Pert_iname Moa FDR_nlog10 Norm_cs Affinity

ORMDL3 COAD CNQX Glutamate receptor antagonist 15.353 —1.868 —7.5 kcal/mol
ORMDL3 COAD seocalcitol Vitamin D receptor agonist 1.651 —1.835 —7.6 kcal/mol
ORMDL3 READ clonazepam GABA receptor agonist 15.353 —1.794 —6.0 kcal/mol
ORMDL3 READ APD-668 Glucose dependent insulinotropic receptor agonist 3.035 —1.781 —7.9 keal/mol
ORMDL3 READ prednisone Glucocorticoid receptor agonist 2.910 -1.779 —8.8 kcal/mol
ORMDL3 READ fomocaine Voltage-gated sodium channel blocker 2.388 —1.766 —6.1 kcal/mol
ORMDL3 READ SCH-28080 ATPase inhibitor 2.206 —1.759 —6.6 kcal/mol
PARP14 COAD irbesartan Angiotensin receptor antagonist 15.353 —1.801 —9.3 kcal/mol
PARP14 COAD tyrphostin-1 EGFR inhibitor 15.353 -1.770 —6.4 kcal/mol
PARP14 COAD AV-608 Tachykinin antagonist 15.353 —1.762 —9.9 kcal/mol
PARP14 COAD isoniazid Cyclooxygenase inhibitor 15.353 —1.743 —5.5 kcal/mol
PARP14 COAD edaravone Nootropic agent 15.353 —1.730 —6.2 kcal/mol
PARP14 READ oseltamivir-carboxylate Neuraminidase inhibitor 15.654 —1.936 —5.8 kcal/mol
PARP14 READ haloperidol Dopamine receptor antagonist 15.654 —1.757 —8.1 kcal/mol
PARP14 READ taurodeoxycholic-acid (TA) Bile acid 15.654 —1.754 —7.9 keal/mol
PARP14 READ carmustine DNA inhibitor 15.654 —1.744 —4.0 kcal/mol
PARP14 READ APD-668 Glucose dependent insulinotropic receptor agonist 15.654 —1.737 —7.0 keal/mol

PARP14, and KCNA3 was associated with high T cell dysfunction scores.
Notably, the upregulation of CD4" T cell targets in the SD group was
positively associated with T cell exhaustion scores and immunosuppres-
sive checkpoint genes. These observations suggest that CD4" T cell targets
may modulate immune checkpoint gene expression during immu-
notherapy, promoting T cell exhaustion and contributing to immu-
notherapy tolerance. This potential mechanism highlights the role of
dynamic CD4" T cell regulation in the development of immunotherapy
resistance and underscores the importance of these targets in strategies
aimed at overcoming treatment failure in CRC.

Immunotherapy has emerged as a promising strategy in CRC treat-
ment, with a growing body of research focused on identifying actionable
targets and developing corresponding therapeutic agents”’. However, the
clinical application potential of these targets remains insufficiently char-
acterized. In this study, we employed mediation analysis, virtual KO
experiments, and PW-MR analysis to elucidate the biological functions and
potential side effects of targeting the identified genes, thereby evaluating
their therapeutic potential and clinical utility in CRC.

In drug discovery efforts, we identified seocalcitol (a vitamin D
receptor agonist) and irbesartan (a renin-angiotensin system inhibitor) as
promising candidates for targeting ORMDL3 and PARP14. Seocalcitol has
demonstrated growth-inhibitory potential in hepatocellular carcinoma and
CRC by modulating the WNT/p-catenin pathway"**’, while irbesartan may
inhibit tumor recurrence by blocking the AP-1 transcriptional complex™.
Both drugs were found to reverse tumor-promoting microenvironments
induced by ORMDL3 and PARP14, highlighting their translational
potential in CRC therapy.

Emerging evidence highlights the pivotal role of metabolic repro-
gramming in shaping the tumor immune microenvironments. Tumor-
associated macrophages, for instance, inhibit CD8" T cell responses by
altering arginine metabolism', while Glutl-dependent metabolic repro-
gramming supports effector CD4" T cell activation and effector survival™.
Our study revealed that metabolites such as indoleacetoylcarnitine and
bilirubin degradation products mediate the associations between PARP14,
ORMDL3, and CRC. Notably, these metabolites, derived from tryptophan
and bilirubin pathways, play dual roles in cancer progression. For example,
tryptophan metabolites like trans-3-indoleacrylic acid promote CRC via the
AHR-ALDHI1A3 axis”. Although bilirubin has antioxidant properties,
elevated serum bilirubin levels have been linked to an increased risk of
CRC™. Interestingly, a recent study by Seong-Keun Yoo et al. incorporated

bilirubin into a comprehensive metabolite panel and applied this panel to
immunotherapy response prediction models, which provides a com-
plementary perspective on the associations we observed between bilirubin
degradation products, ORMDL3, and immune therapy tolerance™.

NF-«B signaling plays a central role in tumor immune evasion by
fostering the accumulation of immunosuppressive cells and promoting
immune-suppressive factor secretion, leading to resistance to
immunotherapy™”’. Persistent NF-kB activation impairs immune cell
function and reduces anti-tumor efficacy during immunotherapy. In our
virtual KO study, the NF-«B signaling pathway emerged as one of the most
significantly enriched gene sets, suggesting its potential role in mediating the
resistance to tumor immunotherapy induced by ORMDL3 and PARP14.

Furthermore, PW-MR analysis revealed significant associations
between ORMDL3 and PARP14 and increased risks of asthma and
psoriasis, indicating their potential as targets for therapeutic intervention
or drug repositioning. Future development of drugs targeting ORMDL3
or PARP14 in CRC may also provide therapeutic opportunities for these
immune-related diseases. This cross-disease relevance underscores the
translational potential of ORMDL3 and PARP14 and provides a rationale
for further investigation into their broader clinical applications. Notably,
our PW-MR analyses did not reveal significant adverse effects, suggesting
that interventions targeting ORMDL3 and PARP14 may have a favorable
safety profile.

This study has several strengths. First, we analyzed gene expression
profiles at different stages of CD4" T cell activation, revealing immune
cell-specific targets for CRC therapy. Second, the integration of multi-
omics approaches, including MR, colocalization, SMR, and scRNA-seq,
enhanced the robustness of our findings. Third, the use of the CMap drug
database facilitated the identification of potential therapeutic agents tar-
geting the immune-related genes identified in our study. Finally, media-
tion analysis, virtual KO experiments, and PW-MR provided valuable
insights into the therapeutic potential and clinical applicability of tumor
immunotherapy targets. However, this study has several limitations. The
study population was predominantly European, and the lack of immune
eQTL data from other populations may introduce biases. Additionally,
due to the absence of dynamic data for non-CD4" T cells, the functional
roles of the key targets identified within non-CD4 T cell populations
remain unclear. Moreover, the relatively small sample size of dynamic
immune eQTL data may limit statistical power. Future studies should
address these limitations by incorporating diverse populations, larger
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Fig. 5 | Causal interactions between immune targets ORMDL3, PARP14,
metabolites, and CRC. A Causal association between plasma metabolites and CRC
(FDR < 0.05). B Causal associations between primary targets ORMDL3 and PARP14
and plasma metabolites (p < 0.05). C Indoleacetoylcarnitine was identified as
mediating 10.95% of the causal relationship between PARP14 and CRC. D The
bilirubin degradation product, C17H18N204 (2), was identified as mediating 5.81%
of the causal association between ORMDL3 (memory CD4" T cell) and CRC.
GCST90200052: 1-(1-enyl-palmitoyl)-2-arachidonoyl-gpc (p-16:0/20:4),
GCST90200685: 1-stearoyl-2-arachidonoyl-gpc (18:0/20:4), GCST90200692: 1-

5.81% of the ORMDL3 effect on CRC is mediated by
Bilirubin degradation product, C17H18N204 (2)

palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6), GCST90199899: 1-(1-enyl-palmi-
toyl)-GPC (p-16:0), GCST90199788: 1-arachidonoyl-gpc (20:4n6), GCST90200219:
Cholic acid glucuronide, GCST90199791: 1-arachidonoyl-GPE (20:4n6),
GCST90200041: 1-palmitoyl-2-stearoyl-gpc (16:0/18:0), GCST90200203: Indolea-
cetoylcarnitine, GCST90200702: Bilirubin degradation product, C17H18N204 (2),
GCST90199754: 7-methylxanthine, GCST90200375: Gamma-glutamylglutamate,
GCST90199854: 5alpha-pregnan-3beta,20alpha-diol monosulfate (2). Statistical
significance is indicated as *p < 0.05.

sample sizes, and experimental validation of dynamic targets across
multiple immune cell types.

In conclusion, this study identified 28 putative causal genes
associated with CRC, with 24 of these uniquely discovered through
immune cell-specific eQTL analyses. Among them, ORMDL3 and
PARP14 emerged as primary therapeutic targets for CRC immu-
notherapy, both linked to immune therapy resistance. Additionally,
PARP14 was implicated in mediating CRC risk via the metabolite
indoleacetoylcarnitine, while ORMDL3 was associated with CRC
progression through the bilirubin degradation product, C17H18N204
(2). By conducting cell-type and time-specific causal analyses, along
with scRNA-seq analysis, this study provides deeper insights into the
dynamic nature of immune gene expression in CRC. In summary,
ORMDL3, PARP14, RPL28, KCNA3, and NDUFA12 are highlighted
as promising targets for immune-modulating therapeutics, offering
novel insights for the strategies against CRC.

Methods

Genetic instrument selection for dynamic expressions of genes
in CD4" T cells

The summarized dynamic CD4" T cell, immune cell, and blood cis-eQTL
data were derived from the study by Soskic et al.”*, the Database of Immune
Cell Expression (DICE)*, and the eQTLGen Consortium (eQTLGen)>.
The data sources and sample information were summarized in Table 4. A
total of 46 gene expression profiles from 17 types of CD4" T cells were
identified across five distinct activation states in T cell activation: resting
state, low activation, 16-h activation, 40-h activation, and 5-day activation.
The CD4" T cell types included in the analysis were CD4 Naive, TN, TN
cycling, TN HSP, TN interferon (IFN), TN nuclear factor kB (NF-kB), TN2,
CD4 Memory, heat shock protein (HSP), nTreg, T ER-stress, central
memory T cell (TCM), effector memory T cell (TEM), TEM human leu-
kocyte antigen (HLA) positive, effector memory cells re-expressing
CD45RA (TEMRA), TM cycling, and TM ER-stress. To perform the MR
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Fig. 6 | Causal associations between ORMDL3, PARP14 and phenotypes across
multiple categories in the FinnGen database. A Functional annotation of the top
20 significantly perturbed genes following the virtual KO of ORMDL3 and PARP14.
B GSEA analysis of the top 10 of perturbed genes following virtual KO. C The bubble
plot illustrates the causal associations between the targets and phenotypes from

multiple categories in the FinnGen database (European individuals) (Top10), with a
significance level set at FDR < 0.05. Colored points represent FDR < 0.05, while gray
points indicate FDR > 0.05. The full list of associations is shown in Supplementary
Table S26.
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Table 4 | Summary data utilized in Mendelian randomization
analysis

Exposure/outcome Source Sample size
Dynamic CD4" T cell Soskic et al. 119

No dynamic immune cell DICE database 91

No dynamic whole blood eQTLGen database 31,684
Plasma metabolites Chen et al. 8299
Colorectal cancer Fernandez-Rozadilla et al. 185,616

analysis, the following processing steps were applied to the summary cis-
eQTL data: (1) The full summary data were filtered using a p value threshold
of < 5x 107%, ensuring the instrumental variables were strongly associated
with exposures®; (2) To mitigate the effect of linkage disequilibrium (LD),
the instrumental variables were clumped (r*<0.001); (3) Instrumental
variables with an F-statistic less than 10 were excluded; (4) Instrumental
variables within the MHC region (chr6: 25.5-34MB) were excluded.
Additionally, Steiger filtering was applied to test the directionality of the
eQTL-CRC associations, ensuring that the eQTL influences the outcome
through its effect on the exposure®.

Genetic instrument selection for expressions of genes from non-
dynamic eQTL datasets

To explore whether the dynamic immune-related targets were also causal
associations with CRC in non-dynamic MR analysis, we analyzed immune
targets identified through main MR, SMR, and colocalization analyses. The
DICE database includes eQTL for gene expression from naive B cells,
classical monocytes, non-classical monocytes, CD56dim CD16" NK cells,
CD4" T cells (memory TREG, naive, activated naive, naive TREG, TFH,
THI, TH2, TH17, TH1/TH17), and CD8" T cells (naive, activated naive),
while eQTLGen includes cis-eQTL from whole blood. The same criteria
were applied to filter the non-dynamic eQTLs [p<5x 10~% clumping
(¥ <0.001), F > 10, and Steiger test]. The results passing colocalization and
SMR analyses were retained for further investigation.

Genetic instrument selection for plasma metabolites

The plasma metabolite data used in this study were derived from individuals
of European ancestry, encompassing both individual plasma metabolites and
metabolite ratios”. To identify genetic instruments for MR, we selected
metabolite quantitative trait loci (mQTL) using stringent criteria consistent
with dynamic MR analysis. Specifically, we applied a threshold of p < 5 x 107®
for the association of genetic variants with plasma metabolites, and employed
a clumping window of 10,000 kb with an r* < 0.001 to ensure the indepen-
dence of selected variants. Detailed information regarding the data sources,
sample size, and other relevant study parameters can be found in Table 4.

Outcome selection

The CRC GWAS meta-analysis summary statistics, published by Soskic
et al,, include data from 185,616 individuals of European ancestry, com-
prising 78,473 cases and 107,143 controls, which is the largest CRC GWAS
dataset for European populations to date”® (Table 4). The data used in this
study were obtained from publicly available databases, and ethical approval
granted by the ethics committee in the original publications. This study
adheres to the principles outlined in the Declaration of Helsinki.

Dynamic single-cell eQTL MR analysis (main analysis)

In the dynamic MR analysis, the causal association between cis-eQTL from
CD4" T cells and CRC was assessed by Wald ratio and inverse variance
weighted (IVW) methods. Benjamini-Hochberg (BH) false discovery rate
(FDR) correction with p-values < 0.05 was applied to select MR results as
candidate gene-disease pairs for further investigation. All analyses were
conducted using R software (v.4.3.3) with the TwoSampleMR pack-
age (v.0.6.6).

Colocalization and SMR analyses of candidate MR signals

To assess whether the main MR results were influenced by LD and
confounding factors, we further analyzed the identified targets using
colocalization and SMR methods. Colocalization analysis was used to
assess the probability that the two traits (exposure and outcome) share
the same causal variants, using default parameters. In colocalization
analysis, five hypotheses were considered (Hy, H;, H,, Hj, Hy), each
representing different scenarios regarding the relationship between the
two traits: (1) Hy (No colocalization): no shared causal variant; (2) H;
(colocalization of two distinct variants): the two traits are associated with
different variants at a specific locus; (3) H, (one shared causal variant):
the two traits are associated with single variant; (4) H; (colocalization of
two causal variants): two variants in the same region contribute to the
traits; (5) Hy (strong colocalization): a single causal variant drives both
traits. In this analysis, PP.H; and PP.H, were used to assess the prob-
ability of shared causal variants, with PP.H,/(PP.H;+ PP.Hy) > 0.7
indicating strong colocalization®.

The SMR method was used to investigate associations between gene
expression levels and complex traits using summary-level data from GWAS
and eQTLs". The SMR and HEIDI methods were employed whether the
effect size of an SNP on the phenotype was mediated by gene expression. In
this analysis, genes with pgyr <0.05 and pygp; > 0.05 were considered
prioritized targets. The same parameters were applied for non-dynamic MR
(FDR <0.05), colocalization [PP.H,/(PP.H;+ PP.H,)>0.7], and SMR
[Psmr < 0.05 & pgipy > 0.05)] analysis.

CD4" T cell differential gene expression analysis

To investigate whether the identified immune targets were differentially
expressed in CD4"™ T cells in CRC tissues, we collected single-cell RNA
sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO)
(https://www.ncbinlm.nih.gov/geo/), including datasets GSE231559,
GSE200997, and GSE166555. scRNA-seq data were normalized using the
‘NormalizeData” function in Seurat (version 4.1.2). Highly variable genes
were identified with ‘FindVariableFeatures’ function, and data were scaled
using ‘ScaleData’ function. Principal Component Analysis (PCA) was
performed for dimensionality reduction. To correct for batch effects, the
Harmony algorithm (RunHarmony) was applied for data integration.
Clustering was performed using ‘FindNeighbors’ and ‘FindClusters” func-
tions (resolution =0.5). CD3D(+) CD3E(+) clusters were identified as
T cells, and CD4(+) clusters were considered as CD4" T cells. Differentially
expressed genes (DEGs) between CD4" T cells from tumor and non-tumor
tissues were identified using ‘FindMarkers’. Genes were considered differ-
entially expressed if they met the following criteria: (1) min.pct >0.1; (2)
P <0.05; (3) average log,fold change (FC) > 0.25.

Gene expression and gene set enrichment analysis (GSEA) in
tumor tissue

We used UCSC Xena, a platform that aggregates bulk RNA-seq data from
multiple cancer databases, to retrieve the CRC cohort from The Cancer
Genome Atlas (TCGA) and the Genotype-Tissue Expression project
(GTEXx), which includes 514 colon adenocarcinoma (COAD) samples and
177 rectal adenocarcinoma (READ) samples. The universal analysis and
visualization of cancer data (UALCAN) database provided protein
expression analysis using data from the Clinical Proteomic Tumor Analysis
Consortium (CPTAC)”. Additionally, the Gene Expression Profiling
Interactive Analysis 2 (GEPIA2) and Tumor Immune Estimation Resource
(Timer) database were used to explore gene expression corrections and
CD4" T cell marker.

In order to further elucidate the mechanisms underlying immune
targets in cancer, we performed enrichment analysis using the HALLMARK
gene sets with the clusterProfiler (v.4.12.2) and enrichplot (v.1.24.2)
packages. The HALLMARK gene sets include 50 gene sets derived from
diverse biological processes, signaling pathways, and cellular functions that
are characteristic of human cancers. These gene sets represent key biological
themes such as apoptosis, cell cycle regulation, immune response, and
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metabolic processes, which are known to play significant roles in tumor-
igenesis, cancer progression, and metastasis.

Spatiotemporal single-cell sequencing analysis related to
immune therapy

To further investigate whether the identified targets are associated with
immune therapy resistance, we integrated the most recently published
spatiotemporal transcriptomic scRNA-seq data, which included 975,275
high-quality cells from 22 individuals®. The study collected 169 matched
samples of blood, tumor tissue, and normal tissue pre- and post-immune
therapy, for scRNA-seq analysis. Following immune therapy assessment,
the 22 individuals were classified into three groups: non-responders with
‘steady disease’ (SD, N=3), and responders categorized as ‘complete
response’ (CR, N=12) or ‘partial response’ (PR, N =7). Using the same
analytical pipeline, we performed a secondary analysis on tumor tissue
samples from these 22 individuals, conducting differential analysis of CD4"
T cells between SD and CR/PR samples before and after treatment. Based on
the method by Zhang et al., CD4" T cells with high gene expression were
mapped onto bulk RNA-seq data”. To explore subtype-dependent
expression profiles and immunotherapy-related dynamics of CD4" T cell
targets in MSI- and MSS-CRC, we performed parallel analyses using bulk
and single-cell datasets. Furthermore, based on the Tumor Immune Dys-
function and Exclusion (TIDE) and GEPIA2 databases, we systematically
evaluated T cell dysfunction and exhaustion scores in the TCGA-COAD
cohort across different levels of target gene expression, and additionally
assessed the associations between key CD4" T cell targets and immuno-
suppressive checkpoint genes in the scRNA-seq cohorts.

Identification of therapeutic targets related to CD4" T cells

The Connectivity MAP (CMap) database is a valuable tool for drug
repurposing, disease mechanism research, and immune-related studies. By
analyzing the relationship between drugs and diseases at the gene expression
level, CMap aids in identifying new drug candidates, recognizing potential
targets, and understanding the mechanisms of drug action®. In this study,
the CMap database was used to assess the therapeutic potential of the
recognized immune targets and identify associated candidate drugs. Addi-
tionally, we employed molecular docking techniques to explore the binding
affinity between the drugs and the targets.

Mediation analysis

For immune targets that have a causal association with both CRC and
plasma metabolites, we performed a mediation analysis to quantify the
effects of the identified immune targets on CRC through metabolites. The
mediation proportion was calculated by evaluating both the total effect and
indirect effects. The total effect represents the overall impact of the exposure
on the outcome, while the indirect effect was estimated using the delta
method”.

Virtual knockout experiment of identified targets

To investigate the impact of target gene perturbation, we performed virtual
knockout (KO) experiments using the R package scTenifoldKnk™, a
machine learning workflow based on scRNA-seq data. This approach
allowed us to identify genes perturbed by the virtual KO of target genes.
Differentially significant genes (adjusted p < 0.05) were subjected to func-
tional enrichment analysis, while the entire set of genes was analyzed using
GSEA to evaluate potential biological functional changes associated with the
virtual KO of the targets in CRC.

Phenome-wide Mendelian randomization of identified targets

Phenome-wide Mendelian randomization (PW-MR) is a comprehensive
approach that investigates the association between genetic variants and a
wide range of phenotypic traits. In this study, we downloaded the binary
outcome data from FinnGen R117". After excluding the intestinal tumor
outcomes, the remaining 2417 binary variables were used for PW-MR
analysis. This approach enables the identification of potential drug adverse

effects, evaluation of pleiotropy, and facilitates the discovery of therapeutic
targets, offering insights into the multifaceted effects of drugs.

Ethical statement

A portion of the data used in this study was obtained from publicly available
sources. The authors of the original GWAS and GEO datasets had obtained
all necessary ethical approvals, and all participants provided informed
consent. These approvals were granted based on adherence to the ethical
principles outlined in the Declaration of Helsinki.

Data availability

The data used in this study were obtained from publicly available databases.
The GWAS summary data for immune cells eQTL are available at Zendo
(https://zenodo.org/records/6006796) and DICE (https://dice-database.
org/downloads#info_anchor) database”*. The GWAS summary data for
whole blood eQTL can be accessed at https://eqtlgen.org/”. The GWAS
summary data for CRC are available at the GWAS catalog (https://www.ebi.
ac.uk/gwas/studies/ GCST90255675)°. The GWAS summary data for
plasma metabolites mQTL are available at the GWAS catalog (https://www.
ebi.ac.uk/gwas/studies/ GCST90199621-GCST90201020)”. The summary
data utilized in PW-MR analysis were sourced from the FinnGen database
(https://www.finngen.fi/en/access_results)”'. The single-cell RNA-seq data
for human colon tumor tissue and adjacent normal tissues can be accessed at
GEO, via GSE231559, GSE200997, and GSE16655 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE231559, GSE200997, and GSE166555).
The bulk RNA-seq data for human colon and rectum tumor tissue and
adjacent normal tissues are available at the UCSC Xena (https:/
xenabrowser.net/datapages/). The scRNA-seq data used for immunother-
apy analysis can be accessed at GEO: GSE236581. The T cell dysfunction
assessment scores were derived from the TIDE database (http://tide.dfci.
harvard.edu/login/). Potential drug candidates were identified using the
CMap database (https://clue.io/). The scRNA-seq data used in the virtual
KO experiments were sourced from the GEO database at GSE231559
and GSE200997 (https://www.ncbinlm.nih.gov/geo/query/acc.cgi?acc=
GSE231559, GSE200997). The bulk RNA-seq data of MSI- and MSS-
subtype colorectal cancer can be accessed from the GEO dataset
GSE271172. The Enrichr database was used for the enrichment analysis
of significantly disturbed genes (https://maayanlab.cloud/Enrichr/).
Kaplan-Meier survival analyses were performed using the Kaplan-Meier
plotter database (https://kmplot.com/analysis).
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