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Formation of environmentally stable hole-doped graphene
films with instantaneous and high-density carrier doping via a

boron-based oxidant

Kaito Kanahashi', Naoki Tanaka?, Yoshiaki Shoji @7, Mina Maruyama®, Il Jeon?, Kenji Kawahara®, Masatou Ishihara®, Masataka
Hasegawa®, Hiromichi Ohta(®’, Hiroki Ago (>, Yutaka Matsuo ("%, Susumu Okada®, Takanori Fukushima @? and Taishi Takenobu'?

Large-area graphene films have substantial potential for use as next-generation electrodes because of their good chemical stability,
high flexibility, excellent carrier mobility, and lightweight structure. However, various issues remain unsolved. In particular, high-
density carrier doping within a short time by a simple method, and air stability of doped graphene films, are highly desirable. Here,
we demonstrate a solution-based high-density (>10"* cm~?2) hole doping approach that promises to push the performance limit of
graphene films. The reaction of graphene films with a tetrakis(pentafluorophenyl)borate salt, containing a two-coordinate boron
cation, achieves doping within an extremely short time (4 s), and the doped graphene films are air stable for at least 31 days. X-ray
photoelectron spectroscopy reveals that the graphene films are covered by the chemically stable anions, resulting in an improved
stability in air. Moreover, the doping reduces the transmittance by only 0.44 + 0.23%. The simplicity of the doping process offers a
viable route to the large-scale production of functional graphene electrodes.
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INTRODUCTION

Large-area graphene films obtained by a chemical vapor deposi-
tion (CVD) growth method are transferable onto any substrate,
including flexible and stretchable materials.'™ These films have
therefore opened a path for the development of large-area
electrical and optical applications, including electrodes for Li-ion
batteries,® supercapacitors,”® and flexible transparent conducting
films,>"" because of their good chemical stability, high flexibility,
excellent carrier mobility, and lightweight structures.'™'” However,
various problems remain to be solved to enable the practical
application of large-area graphene electrodes. The most important
issues to consider when using graphene as an electrode are (i)
enhancing the electrical conductivity by carrier doping, (ii)
improving the long-term stability of the doped graphene films in
ambient air, (iii) ensuring compatibility with a facile solution-based
doping process at room temperature and with a short process
time, and (iv) maintaining a clean film surface after doping to avoid
surface contaminants that may reduce film transparency and
increase contact resistance. To date, numerous accounts of the
chemical doping of graphene have been reported.>'®?° However,
none of them fulfills all four of the aforementioned requirements.

Given these obstacles, we focused on the salt of a two-
coordinate boron cation, Mes,B™ (Mes = 2,4,6-trimethylphenyl
group), with a chemically stable tetrakis(pentafluorophenyl)borate
anion [(CgFs)4B]™ (Fig. 1a).3% We recently investigated the solution-
based hole doping of single-walled carbon nanotubes (CNTs)'

and transition metal dichalcogenide monolayers (WSe, mono-
layers)®? using Mes,B*[(C4Fs)4B]~ and found that efficient hole
doping of CNT films and WSe, monolayers was achieved with this
reagent because of the electron-deficient nature of Mes,B" %33 In
the hole-doped CNTs and WSe, monolayers, [(CsFs)4B]™ anions
compensated for the positive charge generated by the hole
doping. Notably, [(CsFs)4B]™ anions covered the surface of the
doped materials, enhancing their stability in ambient air because
of the anions’ chemically inert, thermally stable, and hydrophobic
nature.3* As a result, a highly air-stable and moisture-stable doped
state of the CNTs was achieved by a solution-based process.
Therefore, Mes,BT[(C4Fs5)4B]™ is expected to function as a
molecular dopant for graphene, potentially satisfying the four
aforementioned requirements.

In this study, the chemical hole doping of large-area graphene
films produced using a CVD method is experimentally and
theoretically investigated. First, we reacted graphene thin films
with Mes,BT[(CsFs)4B]~ and characterized the resultant-doped
graphene films by four-probe sheet resistance, transmittance, X-ray
photoelectron spectroscopy, thermopower, and Hall effect mea-
surements after rinsing them with an organic solvent. We observe
a high carrier density of approximately 2.57 +0.98x 10"*cm 2 as a
result of the 4-s solution-based doping method, and the
transmittance reduction at 550 nm caused by doping is only
0.44 + 0.23%. The doped state is maintained for at least 31 days in
air without a substantial change in resistance. In addition, we
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a Molecular structure of the salt of the two-coordinate boron cation Mes,BT (Mes = 2,4,6-trimethylphenyl) with tetrakis
. b Optical images of graphene samples on PET (upper) and glass (bottom) substrates with Au/Ni

electrodes. The scale bar corresponds to 1cm. ¢ Schematic of the measurement setup used to test the carrier-doping capability of
Mes,B1[(CsFs)4Bl™ in a Ny-filled glove box. An ODCB solution of Mes,B*[(C¢Fs)4B]~ was dropped onto the surface of a graphene sample. d
Elapsed time dependence of the sheet resistance ratio, R/Ry (Ro is the pristine sheet resistance). The time of 0 s corresponds to the time when

the ODCB solution of Mes>B"[(C¢Fs)4B]~ was dropped

demonstrated the doped graphene films' applicability in organic
photovoltaic cells, in which they were used as the transparent
electrodes. Finally, we performed energy-band calculations of hole-
doped graphene with [(CsF5)4B]™ anions by the density functional
theory (DFT) method and confirmed the high stability of the hole-
doped graphene-[(CsF5)4B]™ complex.

RESULTS
Instantaneous carrier doping inside a nitrogen-filled glove box

We used large-area graphene films produced by the surface wave
plasma CVD method.*** The graphene films were synthesized on Cu
foils (23 cm x 20 cm x 33 pm thick) and transferred onto two types of
substrates: polyethylene terephthalate (PET) (188 um thick) and glass
(1 mm thick). Notably, the resultant graphene films are not single-
layer graphene; the average layer number estimated from Raman
spectroscopy is two (see supplementary S1). As shown in Fig. 1b, we
cut the large-area graphene film into smaller pieces, and Au/Ni
(80nm/3 nm) electrodes were thermally deposited onto the
graphene samples. For the solution-based doping process with
Mes,B*[(CsFs)4B]~, we prepared a saturated o-dichlorobenzene
(ODCB) solution of Mes,B*[(CsFs)4B]~ (30 mg/mL) in a N,-filled glove
box at room temperature because Mes,B™ is immediately hydrolyzed
upon exposure to ambient air>° Then, as shown in Fig. 1c, we
dropped the ODCB solution of Mes,B™[(C¢Fs)4B]~ onto the graphene
samples on a PET substrate and measured their four-probe sheet
resistance  (R) to test the carrier-doping capability of
Mes,B[(C4Fs)4B] . For measurements of R, we applied a constant
voltage of 500 mV and estimated R from the collected currents using
a semiconductor parameter analyzer (Agilent B2902A). Figure 1d
shows the elapsed time dependence of the sheet resistance ratio, R/
Ro (Ro is the resistance of a pristine sample), where the time of 0s
corresponds to the time when the ODCB solution of
Mes,B*[(C¢Fs)4B]~ was dropped onto the graphene samples. The
observed rapid decrease in R/R, is a clear signature of carrier doping
of Mes,B™[(CeFs)4B] ™ into the graphene films; the achieved R/R, of
242% is similar to the previously reported lowest best value
(23.9%)* among solution-based doping methods, indicating the
efficient carrier doping by Mes,B™[(C4Fs)4B] . Moreover, the decrease
in R/Ry was saturated within a short time (~4 s), which is substantially
faster than previously reported hole-doping times (60 min).2* It
should be noted that we performed the same experiments using a
lower density ODCB solution of Mes,B™[(C¢Fs)4B]~ (0.3 mg/mL), and
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the necessary doping time is very similar (see supplementary S2), also
revealing efficient carrier doping by Mes,B*[(C4Fs)4B] . However, the
achieved R/R, by the lower density ODCB solution (35.0%) is slightly
higher than that of saturated ODCB solution (see supplementary S2).
These results suggest the possible resistance controllability of this
doping method.

Stability of doped graphene films in ambient air

Next, to investigate the doping capability of Mes,B™[(C¢Fs)4B] ™ in
greater detail, we modified the doping method by introducing an
additional rinsing process to clean the surface of the doped
graphene films in a N,-filled glove box and conducted measure-
ments in ambient air to examine the air stability of the doped
graphene films. Figure 2a shows a schematic of the sample
preparation process in a N,-filled glove box. First, graphene
samples were immersed in a saturated ODCB solution of
Mes,B*[(CFs)4BI~ for 1min, which is longer than the time
required for carrier doping (4s). The graphene samples were
then removed from the ODCB solution and rinsed with dry ODCB
to clean the surface of the samples. Finally, the doped graphene
samples were annealed at 60°C for 10 min on a hotplate to
remove any residual ODCB. These doping, rinsing and annealing
procedures were performed in a Ny-filled glove box at room
temperature since Mes,B™ is unstable in air.>® We characterized
the effect of the rinsing process using atomic force microscopy
(AFM, C3000, Nanosurf) in ambient air. As shown in Fig. 2b, the
topography of graphene films is very similar before and after the
doping process, suggesting the surface of the samples is cleaned
well and the dopant layer is molecularly flat. The sheet resistance
and transmittance of the graphene samples were then measured
in ambient air without any atmospheric regulation.

Figure 2c shows the current (/)-voltage (V) characteristics of
pristine (gray) and doped (red) graphene samples on a glass
substrate (Sample #1). The sheet resistance (R) was measured
using a source meter (Agilent, B2902A) and a nanovoltmeter
(Keysight, 34420A) in ambient air. The R value of the graphene
sample decreases substantially from 837 Q/sq to 207 Q/sq, and
the resulting R/Ry value of 24.7% measured in ambient air is very
similar to that measured inside the glove box (24.2%). Therefore,
these results strongly suggest that the graphene films doped with
Mes,B*[(CFs),B]~ are highly air stable. Seven independently
prepared graphene samples on glass substrates were measured
before and after doping, and the doping effect is highly
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Fig. 2 a Schematic of the doping procedure, which involves rinsing of the doped graphene film by dry ODCB. b AFM images of pristine and
doped graphene films. The root mean square (RMS) values of each film are also displayed. ¢ Current-voltage characteristics of pristine (gray)
and doped (red) graphene samples on a glass substrate (Sample #1). d Optical transmittance spectra of pristine (gray) and doped (red)
graphene samples on a glass substrate (Sample #1). e A summary of the relation between the transmittance decrease (AT) at 550 nm and the
sheet resistance ratio R/Ro. The red circle corresponds to the results of this work. The results from previous reports are also plotted. f Time-
dependent changes in ambient air of the sheet resistance ratio R/R,. The results from previous reports using other dopants (AuCls, HNOs,

RhCls, and TFSA) are also plotted

reproducible (see supplementary S3 (Table S1)). It should be noted
that, in a N,-filled glove box, we also measured the resistances of
the pristine sample, doped sample before rinsing, and doped
sample after rinsing. Importantly, the film resistances of the doped
sample before rinsing and doped sample after rinsing are very
similar, suggesting the strong interaction between the dopant and
graphene film (see supplementary S3).

As the next step, we investigated the effect of carrier doping on
film transparency because, in most transparent electrodes, the film
conductivity and transparency typically follow opposite
trends. 3187202272528 Figyre 2d shows transmission spectra of the
pristine (gray) and doped (red) graphene samples on a glass
substrate (Sample #1); these samples were used for /-V measure-
ments (Fig. 2¢). In Fig. 2d, the doped graphene sample barely
shows a decrease in transmittance (AT). Reproducible results for AT
at 550nm were obtained for five independently prepared
graphene samples on a glass substrate, and the average reduction
in transmittance at 550 nm is 0.44 + 0.23% (see supplementary S3
(Table S1)). To the best of our knowledge, the observed average
AT of 0.44 £ 0.23% at 550 nm is the lowest minimum value among
those reported for graphene films obtained by a solution-based
doping process. 18202225

These results suggest that, during the doping process, the
rinsing with ODCB removes contaminants that adversely affect the
transmittance of the graphene films. To confirm the effect of the
rinsing process on sample transmittance, we also compared
unrinsed doped graphene samples with rinsed doped samples on
a PET substrate (see supplementary S4 (Table S2)). For the
unrinsed doped samples, the transmittances of five independently
prepared samples were measured; the average AT at 550 nm is
6.67 £ 6.55%. However, in sharp contrast to the case of the
unrinsed doped samples, the average AT of the rinsed doped
graphene samples is only 1.04 +0.86% (see supplementary S4
(Table S2)). Therefore, we conclude that the rinsing process
effectively removes surface contaminants and keeps the sample
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surface clean, resulting in high transmittance with a low sheet
resistance. Figure 2e summarizes the AT values at 550 nm and the
sheet resistance ratio R/R, for the doped graphene samples
prepared by solution-based doping methods, as obtained from
both the present study and the literature (see supplementary S5
(Table $3))>'8'92372> The graphene samples doped with
Mes,B*[(C4Fs)4B] ™ are found to possess the highest levels of both
optical transparency and electrical conductivity.

As previously discussed, these results also suggest that the
graphene films doped with Mes,B*[(CFs),B]~ are highly air
stable; therefore, we investigated the long-term air stability of the
doped graphene samples. Figure 2f shows the time-dependent
changes in the R/R, value. If we consider that the carrier mobility
of doped samples is sufficiently similar to that of pristine samples,
then, according to the Drude model, the plot in Fig. 2f correlates
directly with the time-dependent change in carrier density. Figure
2f shows a comparison of the results for the currently doped
graphene sample with those for graphene using previously
reported solution-based hole-doping reagents under ambient
conditions (see supplementary S6 (Table $4)).'%'9232° After
31 days, we observe that the R/Ry value of the graphene sample
doped with Mes,B"[(C¢Fs)4B] ™ increased from 24.7% to only
28.6%. As evidenced by the results shown in Fig. 2,
Mes,B*[(CeFs)4B]~ is a new class of hole-doping reagent that
can fulfill four important requirements of graphene doping: a high
carrier density, the air stability of doped graphene, a facile
solution-based doping process, and negligible transmittance
reduction after doping. Moreover, we successfully fabricated
organic  photovoltaic  cells ~ (OPVs)®?°3%  using  the
Mes,B™[(CeFs)4B] -doped graphene as electrodes; the resultant
devices exhibit an enhanced device performance in terms of the
fill factor (FF) and power conversion efficiency (PCE). As shown in
supplementary S7 (Fig. S4 and Table S5), the FF and PCE values for
an OPV with a pristine double-layer graphene (DLG)-based anode
are 0.48% and 4.34%, respectively, whereas a device with a doped
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Fig.3 XPS.aF 1s,b B 1s, and ¢ C 1s spectra of pristine (gray) and doped (red, Sample #6) graphene samples on a glass substrate. All spectra
were calibrated on the basis of the XPS Au 4f,,, peak at 84.0 eV in the spectra of both pristine and doped graphene samples

DLG shows improved FF (0.52) and PCE (4.73%) values. The
positive effect of doping on the device performance is also
observed for single-layer graphene (SLG)-based OPVs (Fig. S4 and
Table S5).

X-ray photoelectron spectroscopy

We performed X-ray photoelectron spectroscopy (XPS) to confirm
the surface coverage of the doped graphene samples. Because we
used the samples with gold electrodes, the binding energy was
calibrated on the basis of the XPS Au 4f,,, peak at 84.0eV (see
supplementary S8). Figure 3a and b shows XPS F 1s and B 1s
peaks, respectively, of pristine and doped graphene samples on a
glass substrate. Although both the XPS F 1s and XPS B 1s peaks are
clearly observed in the spectra of the doped graphene sample
(Sample #6), the intensities of these peaks are negligible in the
spectra of the pristine sample. Therefore, the surface of the doped
graphene film should be covered by [(CsFs)4B] ™ molecules, and we
can conclude that these spectra provide solid evidence of hole-
carrier doping in the graphene films. Moreover, the positive
charge carriers generated upon hole doping must be compen-
sated by an equivalent amount of highly hydrophobic [(CsF5)4B]™
molecules, which will likely keep components of the ambient
atmosphere (such as O, or H,0) away from the graphene film to
provide an air stability for the doped state of the film. These
results also agree with previous reports on CNTs and WSe,
monolayers3"3?

As shown in Fig. 3¢, we collected the XPS C 1s spectra of both
pristine and doped samples. We observe a single XPS C 1s peak at
284.8 eV in the spectrum of the pristine sample, which reasonably
agrees with the previously reported results.>” However, two XPS C
1s peaks are obtained at 285.9 eV and 283.8 eV in the spectrum of
the doped sample. Because the hole-carrier doping leads to a
lowering of the Fermi energy, the lower-energy peak at 283.8 eV is
reasonably assigned as the contribution from the hole-doped
graphene film.2%2* Moreover, the higher-energy peak at 285.9 eV
is assigned as the XPS C 1s peak of [(CsFs)4B] molecules because,
in general, the binding energy of the XPS C 1s peak becomes
larger when carbon forms a chemical bond with a highly
electronegative atom,*®3 such as in the case of the C-F bonds
of [(C¢F5)4B] molecules. From the relative intensity ratio of the XPS
C 1s and B 1s peaks, we obtain a C/B atomic ratio of 61.5:1; these
results correspond to a dopant density of 2.0 x10"*cm2 for
DLG.* It should be noted that we can also estimate the defect
density from the ratio between the D and G peak intensities in
Raman spectra.*! This analysis results in a defect density of 3.85 +
1.07 x 10" cm 2 using the Raman spectra presented in Fig. S1
and indicates that the doping is not controlled by the initial defect
density. If we assume that one hole carrier is compensated by one
[(CsF5)sBI™ molecule, the obtained surface density of the
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[(CeF5)4BI™ molecules corresponds to the doped hole density.
Notably, to the best of our knowledge, a doped hole density
greater than 10" cm™2 is the highest hole density reported for
graphene films obtained by solution-based carrier doping.'#**~>

Thermopower and the Hall effect measurements

Although XPS measurements indicate a high hole-carrier density
greater than 10" cm™2, we also investigated the carrier type and
carrier density of doped samples using different methods. As
shown in Fig. 4a, we measured the thermopower by applying a
temperature gradient between two electrodes on a graphene
sample using two Peltier elements (Laird Technologies
CP1.0-31-05L). These Peltier elements were wired in series with
a DC power supply (KEYSIGHT E3642A), and their temperature
difference was monitored using a temperature controller (Lake-
shore model 335) and alumel-chromel thermocouples (SAKAGU-
CHI EH VOC CORP. TCKT0051). The thermoelectromotive force
was measured using a voltmeter (KEYSIGHT 34420A). As shown in
Fig. 4b, a positive relation between the thermoelectromotive force
and the temperature difference of both pristine and doped
graphene films is observed, indicating a positive thermopower.
Therefore, the carrier type of graphene films doped with
Mes,BT[(C4Fs)4B] ™ is unambiguously determined to be holes.*?

Along with the thermopower measurements, Hall effect
measurements (Fig. 4c, Quantum Design, PPMS) confirm that
the charge carriers generated by doping with Mes,B™[(C4F5)4B]~
are holes, which agrees with the results of the XPS measurements.
These measurements also allow for a quantitative evaluation of
the carrier density. Figure 4d shows the magnetic-field depen-
dences of the Hall resistance (Rya) of both pristine and doped
graphene samples. A positive relation between the magnetic field
and the Hall resistance is observed. This positive relation is clear
evidence of the hole doping of the graphene film.*? On the basis
of this relation, the hole-carrier density is determined to be 2.3 x
10" cm™2, which is virtually identical to that estimated by the XPS
measurements (2.0 x 10" cm™2). Reproducible results for the
doped hole density were obtained with other samples, and the
average hole density is 2.57 +0.98 x 10" cm™?, (see supplemen-
tary S3 (Table S1)). Again, we note that a doped hole density of
more than 10" cm 2 is the largest hole density reported to date
for a doped graphene film obtained by a solution-based doping
process.' 9324

DISCUSSION

To address why the graphene films doped with Mes,B"[(CsFs)4B]~
are so stable, we performed DFT calculations for the doped
graphene-[(C¢Fs)4B]” complex, which is formed upon doping (see
the Methods section for the computational details). As shown in
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Fig. 5a, we used a complex composed of a neutral [(CgF5)4B]
molecule on 7 x 7 graphene as the initial structure model for DFT
calculations, where the sheet density of [(CsF5)4,B] molecules in
this structural model corresponds to 3.9 x 103 cm 2. After the
structure and energy optimization calculation, we carefully
checked the resulting charge redistribution in this complex (Fig.
5b) and confirmed the transfer of 0.6 electron charge from the 7 x
7 graphene to [(CgFs)4B], resulting in a sheet carrier density of
1.9%x x 10" cm™2 in the doped graphene films. Notably, because
we did not employ the closest packing structure for [(CgFs)4BlI
molecules in the initial geometry, we expected a higher sheet
carrier density for the experimentally doped graphene films.
Figure 5c presents the results of the energy-band calculations.
Importantly, the Fermi energy of the calculated complex is lower
than the Dirac point energy of graphene, indicating electron
transfer from graphene to the neutral [(C¢Fs)4B]. To estimate the
energy gain due to the formation of the complex of hole-doped
graphene and [(C¢Fs)4B]~, we also calculated the total energy
difference between the total energy of the doped 7 x 7 graphene-
[(CF5)4Bl™ complex and the sum of the total energies of each
constituent, i.e, an isolated 7x7 graphene and an isolated
[(CeF5)4Bl. The calculated binding energy of the molecule to
graphene is 573 meV/molecule, which is significantly larger than
the energy of thermal excitation at room temperature (~26 meV).
Consequently, the back electron transfer from [(C¢F5)4B]™ to hole-
doped graphene is very unlikely, and hole-doped graphene films
with Mes,B[(C¢Fs)4B]~ should be stable at room temperature.
Moreover, the large binding energy is ascribed to the Coulomb
interaction between the hole carriers in graphene and the
electron carriers in the molecule caused by the charge transfer
between them, which substantially stabilizes [(C¢Fs)4Bl™ on the
graphene surface, and is therefore advantageous for introducing
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an additional rinsing step after the doping process. Therefore, our
theoretical calculation predicts that Mes,B*[(CFs)4B]~ is a superb
molecular hole dopant for graphene thin films, which is in
reasonable agreement with experimental results such as the sheet
resistivity, transmittance, XPS, thermopower, and the Hall effect
measurements.

In summary, the efficient hole doping of graphene using the
salt of two-coordinate boron cation Mes,B* with counter anion
[(CsF5)4B]~ has been demonstrated in this study. The high hole
density of ~2.5x 10" cm™2 was achieved within the 4-s solution-
based doping method. The improved conduction was maintained
for at least 31 days in air without a substantial change. Moreover,
the transmittance reduction by doping was only 0.4%. Notably,
the highly transparent graphene films with low sheet resistance
were reproducibly obtained by a combination of hole doping with
Mes,B'[(CsFs)4B]~ and additional solvent rinsing with ODCB.
Finally, ~we successfully fabricated OPVs using the
Mes,B*[(CFs)4B] -doped graphene as electrodes, where the
doped graphene electrodes positively affected the OPV
performance.

METHODS

Synthesis of CVD-grown graphene films and solution-based
doping with Mes,B™*[(CeFs)4B]~

Polycrystalline Cu foils (23 cm x 20 cm x 33-pum thick) were treated with an
Ar/H, plasma at 5Pa for 20 min to clean their surfaces before the CVD
process. After cleaning, we performed CVD (CVD conditions: 3 Pa, CH4/Ar/
H, =30/20/10 standard cubic centimeters per minute, and 4.5 kW for each
microwave generator). The synthesized graphene films were transferred
onto two types of substrate, PET (188 um thick) and glass (1 mm thick).
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Fig. 5 a The initial geometry of a neutral [(CsF5)4B] molecule adsorbed onto 7 x 7 graphene as the structure model for DFT calculations. b
Isosurfaces of the charge-redistributed [(CsF5)4B]™—7 % 7 graphene complex. Yellow and blue isosurfaces correspond to the electron-rich and
hole-rich areas, respectively. ¢ Calculated energy-band structure of the [(CgF5)4B]™—7 X 7 graphene complex. The vertical axis shows the

relative energy from the Fermi level

The following process was performed inside a N,-filled glove box with
<1 ppm oxygen and moisture at room temperature. A saturated ODCB
solution of Mes,B™[(CeFs)4B]~ (30 mg/mL) was prepared for doping.'??
The graphene samples were immersed in the ODCB solution of
Mes,B™[(CeF5)4B]~ for 1 min. The graphene samples were then taken from
the ODCB solution and rinsed with dry ODCB for ~10 s to clean the surface
of the samples. Finally, the doped graphene samples were annealed at
60 °C for 10 min on a hotplate to remove any residual ODCB.

Sample characterization

Raman spectra were obtained using a Raman spectrophotometer (JASCO,
NRS-5000) with a 532-nm laser excitation. For the test of the carrier-doping
capability of Mes,B"[(C4Fs)4B] ™ inside a N,-filled glove box, the four-probe
sheet resistances of graphene samples were measured at a constant
voltage of 500 mV using a semiconductor parameter analyzer (Agilent,
B2902A). In ambient air, the four-probe sheet resistances of graphene
samples were collected without any atmospheric regulation. Graphene
samples were wired in series with a source meter (Agilent, B2902A). We
applied a current ranging from —10 to 10 WA, and the voltage drops in
each sample were monitored with a nanovoltmeter (Keysight, 34420 A).
The optical transmission spectra of graphene samples were collected using
a UV-Vis-NIR spectrophotometer (Agilent, Cary 5000). XPS was performed
under vacuum using Mg Ka radiation (JEOL, JPS-9010TR). The thermo-
power was measured in a Ny-filled glove box using a previously reported
measurement setup.**** We placed a graphene sample on two Peltier
elements (Laird Technologies, CP1.0-31-05L) wired in series with a DC
power supply (Keysight, E3642A) to induce a temperature difference. In
addition, two alumel-chromel thermocouples (SAKAGUCHI EH VOC CORP.,
TCKT0051) were placed on the surface of the sample. The temperature
difference and thermoelectromotive force were obtained using a
voltmeter (Keysight, 34420A) and temperature controller (Lakeshore,
model 335), respectively. The Hall effect measurements were performed
in a physical properties measurement system (Quantum Design, PPMS).
The temperature was controlled at 300K, and constant currents (/,) of 1
and 10 pA were applied for pristine and doped graphene samples,
respectively. Ry, was calculated as the equation of Rya = Vhan/lx. The
magpnetic field was slowly swept perpendicular to both the sample and the
current direction between —1 and 1T.

Computational details of energy-band calculations

Theoretical calculations were performed using the DFT method*® with the
generalized gradient approximation (GGA-PBE)*® and van der Waals (vdW)
corrections (vdW-DF2-C09)*” implemented in the STATE package.*®
Vanderbilt ultrasoft pseudopotentials were also used to describe
electron-ion interactions.”® Valence and deficit charge densities were
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expanded in terms of the plane-wave basis set with cutoff energies of 25
and 225Ry, respectively. As an initial geometry, a neutral [(C4Fs)4B]
molecule was placed on 7 x 7 lateral supercell of single-layer graphene. To
exclude the unphysical dipole interaction due to the charge transfer
between graphene and (C¢Fs),4B, we imposed an open boundary condition
normal to the graphene layer with a vacuum spacing of 0.5 nm using the
effective screening medium method.>® For the Brillouin zone integration, I-
point sampling was used.

DATA AVAILABILITY

All data related to the manuscript is available on request from the corresponding
author.
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