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Suspended drums made of 2D materials hold potential for sensing applications. However, the
industrialization of these applications is hindered by significant device-to-device variations
presumably caused by non-uniform stress distributions induced by the fabrication process. Here, we
introduce a methodology to determine the stress distribution from their mechanical resonance
frequencies and corresponding mode shapes as measured by a laser Doppler vibrometer (LDV). To
avoid limitations posed by the optical resolution of the LDV, we leverage a manufacturing process to
create ultra-large graphene drumswith diameters of up to 1000 μm.We solve the inverse problem of a
Föppl–von Kármán plate model by an iterative procedure to obtain the stress distribution within the
drums from the experimental data. Our results show that the generally used uniform pre-tension
assumption overestimates the pre-stress value, exceeding the averaged stress obtainedbymore than
47%. Moreover, it is found that the reconstructed stress distributions are bi-axial, which likely
originates from the transfer process. The introduced methodology allows one to estimate the tension
distribution in drum resonators from their mechanical response and thereby paves the way for linking
the used fabrication processes to the resulting device performance.

The exceptionalmechanical properties of suspended two-dimensional (2D)
materials such as graphenemake them ideal materials for applications such
as force, mass, and sound sensing1–4. Their unique opto- and electro-
mechanical coupling has enabled studies into phase transitions5, heat
transport6,7, and even measuring the biological forces of micro-organisms8.
However, the industrial realization of 2Dmaterials is currently hindered by
significant device-to-device variations observed in practice9. Addressing this
variability is crucial for enhancing the reproducibility and reliability of 2D
material-based devices. A key factor contributing to this variability is the
built-in stress arising from the fabrication process9–11.

During the transfer of 2D materials onto target substrates, non-
uniform stress distributions inevitably occur12,13, resulting in surface defects
like wrinkles in the fabricated drums14–16. Currently, Raman spectroscopy
andatomic forcemicroscopy (AFM)are themethodsof choice for analyzing
the stress distribution in 2D materials17–19. Raman spectroscopy monitors
the strain-sensitive position of Raman active phonon modes20. However,
due to its limited spatial and strain resolution, it only provides a relatively

coarse strain measurement, making it less suitable for the quantification of
the initial stress in suspended 2D materials. AFM is a contact-based tech-
nique that is challenging to perform and applies a force to the membrane
during measurement. This force potentially affects the morphology and
distribution of tension in themembrane. Consequently, the development of
new non-contact methods that can determine the stress distribution in 2D
membranes is highly desirable.

Determining the stress distribution in 2D materials has received lim-
ited attention within the literature. A common practice in the field is to
assume a uniform stress distribution throughout the membrane21–25. This
assumption is valid when the aspect ratio (thickness to radius ratio) of 2D
material membranes increases, resulting in a bending rigidity-dominated
mechanical response of the membrane. However, given that the primary
advantage of 2Dmaterials is in their high sensitivity for sensing applications,
it is common that the aspect ratio is relatively small26, such that the mem-
brane energy dominates the mechanical response27,28, which makes non-
uniformities in the stress distribution significant29. This deviation can
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significantly alter themechanical behavior of themembranes, also leading to
inaccuracies in estimatingmechanical properties16,30–33.However, themodes
of vibration of membranes are found to be very sensitive to spatial changes
in the membrane29,34, thus providing the opportunity to use them for
characterizing the non-uniform stress distribution.

In this paper, we propose a methodology to quantify the stress dis-
tribution of ultra-thin suspended drums by using nanomechanical reso-
nances and theirmode shapes.We use laser Doppler vibrometry (LDV)35 to
measure graphene drums, with large diameters from 60 to 1000 μm, cap-
turing their dynamics with picometer-amplitude resolution. Subsequently,
we create an analytical model to calculate resonance frequencies and mode
shapes.We then follow a reverse path by using experimental data to predict
both in-plane and out-of-plane displacements, as well as the stress dis-
tribution of the 2D drum. Our results highlight that 2Dmaterial drums are
not uniformly tensioned, which challenges the current methodologies for
estimating the built-in stress of these drums19,20. Thepresentedmethodology
allows fabrication techniques to be optimized for improving the uniformity
and reproducibility of stress distributions, thus improving the yield and
performance of sensing applications based on suspended 2D material
membranes.

Results
Experimental signs of non-uniform stress distribution
We created 16 suspended graphene devices and measured their resonance
response (see Methods). To extract their resonances, we employ a fitting
procedure based on a linear harmonic oscillator model. The frequency
characteristics of the first mode ðf 1 ¼ ω1

2πÞ in devices D1–D16, as a function
of the radiusR, are depicted in Fig. 1a. The observed dependence onR aligns
with the behavior reported earlier on the fundamental frequencies of cir-
cular drums36. The relationship governing the resonance frequencies is
described by the equation

f i ¼
γi
2πR

ffiffiffiffiffi
n0
ρh

r
; ð1Þ

where γi represents a constant, n0 denotes the pre-tension applied to the
drum, ρ signifies the mass density, and h stands for the thickness of the
drum. Theory gives γ1 = 2.4048, with higher resonance frequencies
corresponding to increased values of γi relative to γ1. Since R and h are
known for our samples from optical microscopy and AFM measure-
ments, we can extract n0 of the devices using the first resonance
frequency f1 by utilizing Eq. (1). We note that the obtained n0, varies
from 2 × 10−3 to 3 × 10−1 N m−1, which is comparable to the range of
values reported in the literature37,38. The corresponding strain ε0
extracted from n0 = σ0h = Ehε0/(1− ν) is below 0.0013% for all our
devices, which is much lower than the resolution limits of Raman
spectroscopy39.

In Fig. 1b, we plot the ratio between the second and the first resonance
frequency of 16 fabricated devices.We also show in Fig. 1b the f2/f1 obtained
analytically for circular drums (red line). We note that the experimental
values of f2/f1 significantly deviate fromthis red linewith aminimumratioof
1.019 and amaximumratio of 1.754.To gain insight into these deviations, in
Fig. 1c, we show the experimentalmode shapes, as determined by theMSA-
400 vibrometer, for three of the devices. We note clear differences between
the second theoretical mode shape of a circular drum and the experimental
mode shape, which emphasizes the substantial influence of non-uniform
stress on the dynamics of these drums. In addition,we analyze the ratios f3/f1
and f4/f1 for a specific subset of our drums (see Supplementary Note 1), in
which we also observe a significant difference between the experimental
findings and the theoretical predictions based on the assumption of uniform
pre-tension.

In addition, it has been theoretically predicted that when a stress dis-
tribution is uniform, it results in the emergence of asymmetricmode shapes
that are defined by n nodal lines rotated by 2π/n relative to each other and
possess equal resonance frequencies27. Nevertheless, as the level of stress
non-uniformity increases, these mode shapes undergo substantial changes
resulting in a loss of resemblance between them. Consequently, the non-
uniformity in tension distribution has a substantial effect on the mode-
shapes, and therefore thesemode-shapes contain important information on
the stress distribution. In the subsequent section, we introduce a method to
deduce the non-uniform tension distribution based on the experimentally
acquired mode shapes and resonance frequencies.

Theory for quantifying stress distribution
To analyze the effect of stress distributions on the mode-shapes of the
drums, we employ a circular plate model characterized by radius R and
thickness h. This model assumes the material to be homogeneous and
isotropic, having a density ρ, Young’s modulus E, and Poisson’s ratio ν. It is
worth noting that plate andmembranemodels have demonstrated accuracy
in predicting the mechanical behavior of 2D material membranes31,40. To
date, there is no evidence indicating their inapplicability to single- or few-
layer 2Dmaterials. Moreover, we assume the structure to be relatively thin,
i.e., h/R ≤ 0.127, such that we can utilize the Föppl–vonKármán platemodel.
Employing this model enables us to capture the dynamics of drums with a
wide range of thickness-to-radius ratios (aspect ratio). The governing
equations are expressed in cylindrical coordinates (r, θ, z), with r repre-
senting the radial, θ the azimuthal, and z the transverse coordinate. The
equations governing transverse and in-plane motions, derived through
Hamilton’s principle, are given by:

ρh€wþ D∇4w� ðN wÞ ¼ 0; ð2aÞ

ρh€u� N ¼ 0; ð2bÞ

Fig. 1 | Comparison of experimental results with
uniform pre-tension. a The relationship between
the fundamental frequency f1 and the drum radius R
for devices D1–D16 is observed to exhibit an inverse
trend. Resonance frequency estimation using Eq. (1)
is shown in red, by assuming thickness h = 15 nm
and pre-tension n0 = 0.02 Nm−1. b The ratio of the
second to the first frequency (f2/f1) as a function of R
for all studied devices. The theoretical value of f2/f1
for drums having uniform pre-tension is shown by
the red line. c The first and secondmode shapes and
the corresponding frequency ratio of three of the
measured devices and their comparison to theore-
tical estimates based on Eq. (1). All mode shapes are
normalized with respect to the maximum value of
their displacement and the colorbar ranges between
−1 and 1.
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where

N ¼ ½Eh=ð1� ν2Þ� ð1� νÞϵþ ν tr ðϵÞI½ �;
ϵ ¼ 1

2 ∇uþ∇Tuþ∇w� ∇w
� �

:
ð3Þ

In the equations above, u = [u; v], with u and v denoting the radial and
azimuthal displacement fields, while w represents the transverse displace-
ment field. Additionally, ∇4w,∇w, and∇ u denote the biharmonic
operator applied to the scalarfieldw, the vector gradient of the scalarfieldw,
and the tensor gradient of the vector field u, respectively. N is vector
divergence of the tensor field N. Furthermore,∇w⊗∇w corresponds to
the tensor product between vectors∇w and∇w. An overdot indicates
differentiation with respect to time, and D ¼ Eh3

12ð1�ν2Þ denotes the bending
rigidity. It is noteworthy that, as per the notation presented here, the strain
tensor ϵ and stress resultant tensor N can be identified as second-order
tensors in a two-dimensional framework.

In practice, fabricated drums may exhibit deformations that deviate
from the conventional assumption of uniform radial deformation, often
associated with uniform pre-tension. Consequently, when these drums
undergo transverse dynamic actuation, their displacement fields comprise
both static and dynamic components. The static deformation originates
from the pre-actuationdisplacement history,while the dynamic component
represents the displacement induced by the actuation process. To gain a
comprehensive understanding of the mechanical response in such situa-
tions, it becomes essential to incorporate both static and dynamic dis-
placements within the overall displacement field41–43. However, the
substantial difference inmagnitude between in-plane and transverse inertia
(proportional to R/h) necessitates the exclusion of dynamic deformation in
the in-plane direction. This is due to the fact that, basedonNewton’s second
law, higher inertia leads to lower acceleration and dynamical response.
Thus, in-planemotion is negligible compared to the out-of-plane dynamics
when studying bending vibrations of thin membranes. Therefore, we
assume u = us, but w =ws+wd, where the subscript s refers to static com-
ponents and the subscript d represents dynamic deformations.

To capture the vibrational response (wd) of these drums, we conduct a
modal analysis using Eq. (2a) centered around the statically deformed
configuration (us, vs,ws). However, since Eq. (2a) involves N and is not
expressed in terms of displacement fields, we initially reformulate the
equation in the context of static and dynamic displacement fields. The
detailed derivation procedure for this can be found in Supplementary Note
2. Next, we assume the dynamic transverse deformationwd to be harmonic
and express it as wdðr; θ; tÞ ¼ wd

0φðr; θÞ expðiωtÞ, where w0
d represents the

maximum spatial amplitude of the drum at time t = 0, φ(r, θ) denotes the
mode shape normalized with respect to maximum displacement, and ω is
the corresponding resonance frequency. Next, we make the equations
dimensionless (see SupplementaryNote 2) and discretize them over amesh
withN nodes in the radial direction andM nodes (M should be odd) in the
azimuthal direction (see SupplementaryNote3),which leads to the compact
form of the transverse governing equation

DUUi;j þDVVi;j þ
X
k

�Dk
WWi;j

� �
� ��D

k
WWi;j

� �
¼ �ω2I �DW

� �
Φi;j; ð4Þ

whereUi,j,Vi,j, andWi,j represent the unknown static deformations at spatial
node (i, j). Additionally,Φi,j is the given (or known) normalizedmode shape
extracted from the experiments, �ω denotes the corresponding non-
dimensional resonance frequency, and I is the identity matrix. Moreover,

the matricesDU,DV,DW, ��D
k
W, and ��D

k
W denote linear differential operators

dependent on the mode shapes and discretization weighting coefficients.
Comprehensive details regarding this step can be found in Supplementary
Note 3. After a convergence study, we chooseN = 161 andM = 91 to ensure
a good balance between computational speed and accuracy of the results. It
shouldbementioned that this selectionmaychange fordrumswithdifferent
aspect ratios.

Unlike the conventional modal analysis, where predefined static
deformationsUi,j, Vi,j, andWi,j are used to deduce resonance frequencies �ω
andmode shapesΦi,j, in our approach,we follow a reverse-path, anddeduce
these deformations frommeasured resonance frequencies andmode shapes.
Given the existence of three unknown displacement fields, specifically Ui,j,
Vi,j, and Wi,j (3 ×M ×N unknowns), the extraction of these displacement
fields necessitates aminimumof 3 ×M ×N equations. This underscores the
significance of having no fewer than three sets of mode shapes
ðΦ1

i;j;Φ
2
i;j;Φ

3
i;jÞ, along with their corresponding non-dimensional fre-

quencies ð�ω1; �ω2; �ω3Þ for estimating the built-in stress, which collectively
provides 3 ×M ×N equations across the mesh (see Eq. (4)). However, in
practice, an additional mode shape becomes a crucial requirement. The
underlying rationale for this is rooted in the observation that equations
linked to boundary nodes yield a trivial 0 = 0 relationship. Consequently,
introducing supplementary equations is necessary to fulfill the requisite
rank of the algebraic equation system. In pursuit of accurately determining
stress distributions from experimental mode shapes and frequencies, it thus
becomes essential to consider at least four mode shapes alongside their
corresponding resonance frequencies.

To validate our numerical methodology and equations, we performed
finite element simulations on a flat circular plate characterized by a pre-
defined non-uniform stress distribution. The computed mode shapes and
resonance frequencies were then employed to reconstruct the stress dis-
tribution using the methodology we have introduced (for detailed discus-
sion, see Supplementary Note 4).

By simultaneously using the governing Eq. (4) for a minimum of four
mode shapes and the respective resonance frequencies, it becomes possible
to determine the static displacement fields and the associated stress dis-
tribution fields. The flowchart presented in Fig. 2 explains the sequential
approach for obtaining stress distributions from experimental mode shapes
and frequencies. The technique commences by fitting a surface to the
experimental mode shapes. This is important as Eq. (4) involves derivative
operators, and anynon-smoothness andnoise in experimentalmode shapes
leads to numerical inaccuracies30. In order to guarantee compliance with
boundary conditions, we utilize the mode shapes of a uniformly-tensioned
plate as the basis for our fitting function (see Supplementary Note 5).

Subsequently, utilizing the smoothed mode shapes, we aim to extract
the static displacement fields. However, due to the nonlinearity of Eq. (4)
with respect to Wi,j, extracting the solution without a suitable initial
approximation poses a challenge. As a possible solution, we assume a
parabolic form for the static transverse displacement, characterized by an
undetermined deflection amplitude at the center of the drum
(Wi;j ¼ W0ð1� �R2

i;jÞ), whereW0 signifies the deflection at the center, and
�Ri;j represents the �r-coordinate of node (i, j). By solving Eq. (4) using the
experimentally acquired mode shapes Φ1

i;j, Φ
2
i;j, Φ

3
i;j, and Φ4

i;j, we can
determine the unknownsUi,j,Vi,j, andW0. It is crucial to recognize that due
to the influence of noise and measurement inaccuracies, achieving 100%
accuracy in solving for displacements is unattainable. Therefore, employing
a least-squaresmethod becomes necessary. Thismethod enhances accuracy
by incorporating more equations, namely additional mode shapes and
frequencies, into the solution process.

It is imperative to acknowledge that assuming an axisymmetric para-
bolic deflection for the transverse displacement has inherent limitations.
The presence of non-uniform displacements in the studied membranes
might lead to static deformation and the creation of a buckling pattern,
owing to their ultra-thin nature. Due to experimental and numerical inac-
curacies, the displacement fields that are obtained from solving Eq. (4) do
not always meet the requirements of the in-plane Eq. (2b). Therefore, it is
crucial to identify a stable out-of-plane configuration that fulfills Eq. (2a). In
response to potential static transverse asymmetries and to rectify our initial
assumption of parabolic static deformation, we perform a post-buckling
analysis. This analysis utilizes the in-plane displacement fields Ui,j, Vi,j, and
Wi,j, which are obtained from the experimental mode shapes to update
transverse displacement Wi,j to �Wi;j. In the context of this post-buckling
analysis, a minor perturbing uniform transverse force is introduced, which
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serves to update the drum’s transverse shape and accounts for its nonlinear
behavior44.

In order to perform the post-buckling analysis, it is recommended to
utilize Eqs. (2a, b) or alternatively, incorporate the in-plane displacement
fields (Ui,j and Vi,j) into a finite element method (FEM) software that is
capable of handling nonlinear structural analysis. This will enable an ana-
lysis of the post-buckling response of the drum and the establishment of its
modified transverse shape �Wi;j. It is crucial to highlight that as a result of the
non-uniform characteristics of Ui,j and Vi,j, the post-buckling analysis
results in an asymmetric transverse shape �Wi;j that deviates from the axi-
symmetric shapeWi,j.

Since, the experimental displacement field is not known for the drums
and inorder to ensure accurate computationof both in-plane and transverse
displacement fields, we conduct modal analysis to extract mode shapes and
resonance frequencies from the static displacements (Ui,j, Vi,j, and �Wi;j). It
should be noted that Eq. (4) shows a one-to-one mapping between mode
shapes and displacement fields, thus the comparison between the mode
shapes can directly reflect the comparison between the static displacement
fields. In order to quantitatively assess the fidelity of the reconstructedmode
shapes compared to their experimental counterparts, we employ an error
metric denoted by e. Thismetric e characterizes the average spatial deviation
between the reconstructed and experimental mode shapes and is defined as
follows

e ¼ 1
�N

X�N
n¼1

R 2π
0

R 1
0 �φn � φn

� �2
rdrdθR 2π

0

R 1
0 φn

� �2
rdrdθ

" #1=2

≤ e0; ð5Þ

where e0 serves as an error threshold. In this equation, �φn is the nth nor-
malized mode shape obtained from modal analysis, φn signifies the nth
normalized experimentalmode shape, and �N represents the total number of
mode shapes used in the fitting procedure. It is important to note that both
�φn and φn are the continuous forms of Φn

i;j and �Φ
n
i;j, respectively.

If the criterion (5) is satisfied (e ≤ e0), the solution is considered to be
converged. Conversely, if e > e0, the post-buckled configuration is re-
calculatedwith a newperturbation in the transverse direction, leading to the

acquisition of an updated transverse mode shape. This iterative process
continues until the convergence criterion is met.

To determine an appropriate value for e0, we initiate the iterative
process without applying any perturbation force and gradually increase it
step-by-step. The observed trend reveals an initial decrease in the error
metric e as the perturbation force rises until it reaches theminimumvalue e0
at a perturbation force of δpm. Beyond this point, further increments in the
perturbation force result in an increase in the error. Consequently, the
minimum achievable error for each set of experiments corresponds to e0,
which varies among different drums. For instance, device D1 exhibits an
error threshold of e0≃ 0.19. A more detailed and comprehensive
discussion regarding thedeterminationof e0 can be found in Supplementary
Note 6.

Once the solution has converged, the numerical displacement field
effectively approximates the experimental displacementfield, which enables
us to compute the strainfield and subsequently derive the stresseswithin the
drum’s mid-plane using Supplementary Eqs. (2) and (3). For a more
comprehensive overview of the described procedure, including a detailed
flowchart, please consult the Supplementary Note 5.

Fitting procedure
As elaborated in the previous section, the numerical procedure necessitates
an initial assumption of a parabolic transverse displacement field. However,
this assumption does not universally apply to all manufactured devices.
Some of the manufactured devices exhibit significant complex wrinkling
patterns that deviate noticeably from the parabolic approximation. Con-
sequently, the proposedmethod is not applicable todrums that deviate from
this assumption.

Among the devices produced for this study, four of them (D1, D2, D6,
and D13) exhibited minimal or negligible wrinkling patterns, making them
well-suited candidates for the proposed solution outlined in this study. For
these four drums, we quantified stress distributions and validated their
accuracy by reconstructingmode shapes using the derived stresses. In Fig. 3,
we provide an illustrative example showcasing both the experimental mode
shapes and the reconstructed mode shapes for device D1, utilizing the first
four distinct mode shapes. It is evident that the obtained stress distribution
was able to accurately reconstruct the experimentalmode shapeswith ahigh

Fig. 2 | The flowchart for deriving stress dis-
tributions from experimental mode shapes and
resonance frequencies. Assuming a parabolic
deformation in the transverse direction, the experi-
mental mode shapes are first employed to extract
initial displacement fields. Then a modal analysis is
performed. If the extracted mode shapes do not
match the experimental ones sufficiently (e > e0), the
perturbation force is tuned, and using a post-
buckling analysis, the transverse shape is modified.
After that, using in-plane displacement fields and
the updated transverse displacement, we again
obtain theoretical mode shapes and resonance fre-
quencies. If the mode shapes do not satisfy the cri-
terion (5), we recalculate the transverse shape by
adjusting the perturbation force to the post-buckling
step. From there, we return to the modal analysis.
When the convergence criterion ismet, the obtained
displacement fields are used to calculate stress dis-
tributions. Here, i = 1, 2,…,N, and j = 1, 2,…,M
denotes the node number in radial, and azimuthal
directions. Here, colorbars forΦ1

i;j ,Φ
2
i;j ,Φ

4
i;j , �Φ

1
i;j , �Φ

2
i;j ,

and �Φ
4
i;j range from 0 to 1, while those for Φ3

i;j and
�Φ
3
i;j range from −1 to 1. The colorbar for Ui,j spans

0.25–1.75 nm, for Vi,j from −0.2 to 0.2 nm, and for
Wi,j and �Wi;j from 0 to 300 nm. Additionally, σrr, σrθ,
and σθθ range from 0 to 10MPa.
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level of accuracy. The results for devices D2, D6, and D13 are presented in
Supplementary Note 7.

Moreover, to highlight the fidelity of the proposedmethod, we present
the extracted displacement field and the corresponding non-uniform stress
distributions in Fig. 3. Note that Raman spectroscopy, which we utilized for
stress measurement, is limited in its ability to detect the non-uniformity of
stress within the drum (see Supplementary Note 8). The predicted stress
distribution obtained through Raman spectroscopy appears to be nearly
constant and uniform, with large uncertainty across the drum surface. This
is due to the fact that the strain values (ε < 0.0013%) are lower than the
resolution limit (0.1%) of Raman spectroscopy20,39,45 (see Methods). In the
Supplementary Note 8, a thorough discussion of the Raman spectroscopy
measurements and the obtained stress distributions for device D1 is pro-
vided. In contrast, the presented methodology is founded upon continuum
mechanics which is not dimension-dependent. As a result, the resolution of
thismethod is primarily constrained by themeasurement device’s capability
to discern mode shapes. Consequently, the method’s efficacy remains
unaffected by the size of the drumor the scale of its strain distributions. This
implies that even for small drums with radii on the order of a few micro-
meters, our methodology can measure strain and stress distributions,
regardless of the magnitude of the strains. Hence, this approach remains
applicable across a range of scales, encompassing relatively small drums.

To compare the extracted stress distributions and the nominal stress
values obtained assuming a uniform tension distribution, we calculated the
spatial averages of normal and shear stresses by

~σ ij ¼
R 2π
0

R R
0 σ ijrdrdθ

πR2 ; ð6Þ

where i, j = {r, θ}. To measure the robustness of our findings, we system-
atically adjusted the level of mode shape fitting during the preliminary stage
(see Supplementary Eq. (3)). This variation allowed us to quantitatively
determine the associated standard deviation and obtain valuable insights
into the sensitivity of our stress distribution analysis. To determine the
nominal stress σ0 under the assumption of a uniform tension distribution,
we employed the first resonance frequencies, considering them as reso-
nances of an ideal theoretical drum subjected to uniform tension (see Eq.
(1)). Notably, the spatial average of shear stress for all four drumswas found
to be negligible. However, this was not the case for the values of ~σrr and ~σθθ ,
which demonstrated appreciable differences. The computed average stress

values, obtained through our analysis and assuming uniform stress dis-
tribution, are both presented in Table 1.

The differences observed between the average values of ~σrr and ~σθθ in
Table 1 contradict the uniform stress assumption, which posits that
~σrr ¼ ~σθθ ¼ σ0. Notably, a greater deviation of ~σrr from ~σθθ indicates a
higher degree of non-uniformity in the stress distribution within the drum.
The observed differences between the average values of ~σrr and ~σθθ raise
doubts about the validity of the uniform stress assumption. Specifically, σ0 is
at least 47% greater than the mean value of ~σrr for each of the drums. This
finding suggests that spatially averaging the stress distributionswill not yield
a uniform stress representation of the overall behavior of the studied drums.
Therefore, accounting for the non-uniformities is essential for proper esti-
mation of the built-in stress in ultra-thin membranes.

Our method’s effectiveness is further evident in Fig. 3, where we
observe the influence of a free edge on the displacement and stresses of the
drum. The microscope image of device D1, as depicted in Fig. 4d, clearly
demonstrates that one side of the drum is clamped, while the other side
remains unclamped and capable of free movement. Surprisingly, this free
edge has influenced the results by exhibiting less radial displacement and,
consequently, lower stresses on the free side. This finding supports the
intuition that a free edge allows the drum to mechanically release stresses
near the edge.

Discussion
The proposed methodology addresses a system of nonlinear equations
(Eq. (4)), under the assumption of a parabolic transverse static dis-
placement field. However, when the drum exhibits initial corrugations
or wrinkles that cannot be adequately characterized by such a parabolic

Table 1 | Spatial average value of non-uniform stress
distribution in comparison with nominal stress value
assuming uniform stress distribution in the drums

Device ~σrr (MPa) ~σθθ (MPa) σ0 (MPa)

D1 3.76 ± 0.25 2.80 ± 0.29 7.05

D2 0.65 ± 0.06 0.53 ± 0.08 1.36

D6 0.54 ± 0.09 0.33 ± 0.07 0.94

D13 1.03 ± 0.21 0.49 ± 0.10 1.52

Fig. 3 |Reconstruction of stress distributions based on experimentalmode shapes
for device D1. a Comparison of experimental mode shapes and resonance fre-
quencies and reconstructed counterparts As described in the main text, the
experimental mode shape and frequencies are utilized to derive displacement fields
and stress distributions. For the purpose of determining the validity of the results, the

theoretical mode shapes are reconstructed using the displacement field.
b Displacement fileds and Stress distributions predicted by current method. As can
be seen assumption of uniform stress distribution is not valid for the manufactured
device.
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displacement field, the system of equations becomes challenging to
solve. In such scenarios, the equations need to be solved by providing a
suitable initial guess for the transverse displacement field Wi,j. To esti-
mate the static transverse displacement field of the drum in the presence
of these non-parabolic deformations, corrugations should be experi-
mentally probed. Several techniques are available for measuring these
out-of-plane deformations46,47 and can aid with quantifying the tension
distribution.

Notably, microscopic images of the drums (see Supplementary Fig. 1)
do not always reveal signs of transverse bulges or wrinkles, despite their
presence.Although the transverse displacement is relatively small compared
to the drum’s radius (W0/R ≤ 0.001), neglecting it in the modal analysis can
lead to inaccuratemode shape estimations and, ultimately, even to failure in
reconstructing the experimental mode shapes. Moreover, evenminor static
transverse asymmetries can affect the expected mode shapes44,48, empha-
sizing the need for an accurate solution to capture these deviations. This
emphasizes the importance of the transverse displacement field when
reconstructing the stress distribution.

Owing to inherent experimental uncertainties and noise, there exists a
lower bound on the threshold e0. For device D1, the estimated experimental
noise on eachmode shape is 3%, 4%, 18%, and20%, respectively, leading to a
lower average bound for e0 of 11%. To enhance the precision of measuring
e0, employingmeasurement deviceswith higher spatial resolution and lower
noise levels is recommended.

The comprehensive study of drums yielded valuable insights into their
stress distributions. These drums experience uniaxial or biaxial loadingwith
different loadings along the two axes, suggesting non-uniform biaxial ten-
sion induced in themanufacturingprocess.This understanding is crucial for

optimizing manufacturing processes to achieve uniform stress distribution
and flatness in the drums.

Theproposedmethod is specifically tailored for thindrums, taking into
account both stretching and bending energies to derive the governing
equations and ensure numerical stability. As a result, two distinct
mechanisms govern the mode shapes and resonance frequencies. In cases
where stretching dominates the deformation of the drum, the pre-stresses
play a significant role in influencing its vibrational behavior. This scenario is
particularly relevant for drums with a height-to-radius ratio h/R ≤ 0.001.
Conversely, as bending deformation becomes more prevalent in over-
stretching, the vibrational behavior of the drum is primarily governed by
bendingenergies,withpre-stresseshavingamarginal role. In such instances,
the accuracy of the proposed method may be compromised, as the mode
shapes are predominantly influenced by bending effects rather than stress
distributions.However, it is important tomention thatwhen the aspect ratio
is large, the mechanics of the drums are mostly influenced by the bending
mechanism, while the effect of stress distribution becomes insignificant.
Nevertheless, the maximum ratio of thickness to radius (h/R) observed in
the drums manufactured in our study is roughly 0.00023 (see Supplemen-
tary Table 1), which confirms that the drums analyzed in our work are
membranes with negligible bending rigidity. Therefore, the established
model proves suitable for addressing the problem.

Despite this limitation, in practical applications, the first scenario
(h/R ≤ 0.001) is often encountered, rendering the proposedmethod suitable
and reliable for analyzing the vibrational behavior of drums. It is worth
noting that as h/R increases, the bending deformations become more
energy-costly, resulting in drums with fewer corrugations and wrinkles.
Unfortunately, this also leads to reduced sensitivity to transverse loadings

Fig. 4 | Fabrication and vibrationmeasurement of graphene drums. a Fabrication
process of SiO2/Si substrate with etched holes. b Growth and exfoliation of large-
scale CVD graphene flake. cWet transfer method to suspend CVD graphene on the
substrate. d Schematic of measurement setup comprising an MSA400 polytec laser
doppler vibrometer (LDV) for detection and read-out. The sample is placed in the
vacuum chamber and driven by a piezo shaker. The inset: optical image of device D1;

purple region, Si/SiO2 substrate; blue region, supported graphene; transparent
region, suspended graphene. e The first four resonances of device D1; the damped
linear harmonic oscillator fit is shown by the red line. Here, colorbars for first,
second, and fourth mode shapes range from 0 to 1, while that for third ranges from
−1 to 1.
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and masses. Hence, the choice of h/R becomes critical in designing circular
drums to achieve thedesired vibrational characteristics andperformance for
specific applications.

It is important to ensure that the method proposed is applicable to
thinner devices or membranes of smaller dimensions. Here, we should
highlight that our approach is basedoncontinuummechanics and thus size-
independent. Yet, to affirm the applicability of our method to thinner and
smaller graphene membranes, we utilized the experimental data of 34 for a
graphene drum (h = 10 nm, d = 5 μm), and reconstructed the non-uniform
tension successfully (see Supplementary Note 9).

It is also noteworthy that the methodology proposed herein is not
limited solely to graphenemembranes but is applicable to a broader range of
thin films and 2Dmaterial membranes. In our analysis, we adopted a linear
isotropic material model to predict material behavior. However, if other 2D
material membranes exhibit discrepancies in material behavior, such as
anisotropy49, these can be incorporated into the proposed method through
constitutive law (SupplementaryEq. (3)). This allows for the extensionof the
formulation to accommodate studying of various types of 2D material
membranes.

In conclusion, we presented a methodology for quantitative determi-
nation of the tension distribution in ultra-thin 2Dmaterial drums based on
experimentalmode shapes and resonance frequencies. Byutilizing a circular
plate model, we derived governing equations that capture the static and
dynamic deformation of the drums. The proposed approach successfully
accounts for both stretching and bending energies, providing an effective
solution for analyzing the vibrational behavior of circular drums.

The validation of the method through finite element simulations on
known stress distributions demonstrates its accuracy and reliability. We
applied the methodology to four fabricated drums and gained valuable
insights into their stress distributions. The findings revealed the presence of
non-uniform biaxial tension induced during the manufacturing process.
Understanding these stress distributions is critical for optimizing the fab-
rication processes to achieve uniform stress distribution and flatness in
the drums.

Additionally, we discussed the limitations related to the assumption of
a parabolic transverse static displacement field and the need for an appro-
priate initial guess for the transverse displacementfield in cases where initial
corrugationsorwrinkles are present.The insights gained fromthis study can
aid in achieving better performance and reliability in 2D drum fabrication
and contribute to accurate and robust mechanical characterization of ultra-
thin materials.

Methods
Fabrication method
The fabrication procedure of the devices is illustrated in Fig. 4a–c. As Fig. 4a
shows, we first prepare a Si (100) target substrate containing holes made
using deep reactive ion etching with diameters ranging from 60 to 1000 μm.
Next, we deposit multi-layer graphene using chemical vapor deposition
(CVD) on a thin-filmMo catalyst, as shown in Fig. 4b. The final stage of the
fabrication procedure is the transfer of CVD-grown graphene from the
growth substrate to the target substrate using a wet transfer process, as
depicted in Fig. 4c.

The fabrication process resulted in the production of a set of 16 unique
devices, denoted as D1–D16, which were spread among different chips. For
a comprehensive description of the fabrication method, please refer to
Supplementary Note 10. The drums had a range of radii (R) from 61 to
1032 μm.Wemeasured the thickness (h) of the CVD graphene on all chips
using atomic force microscopy (AFM) and found that h ranges from 7 to
13.8 nm (see Supplementary Note 11).

Measurement methodology
To probe the nanomechanical vibrations of the devices, we use a piezo
shaker to drive the drums into resonance and a Polytec MSA400 laser
Doppler vibrometry (LDV) system to measure their velocity in the out-of-
plane direction (see Fig. 4d). The LDV actuates the piezo shaker at a specific

frequency f while simultaneously recording the position-dependent dis-
placement zf of the device using a 632 nmHe–Ne laser with a spot diameter
of ~5 μm. All measurements are conducted at room temperature inside a
vacuum chamber at 10−4 mbar. It should be noted that even though mea-
surements are performed at room temperature, local heating from the laser
can alter membrane properties and stress fields, especially in the nonlinear
regime. To circumvent this problem, we performed our measurements at
very low laser powers and ensured that the motion was probed in the linear
regime of operation (see refs. 50,51). Figure 4e displays the measured first
four resonances of device D1.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The data that support the findings of this study are available on reasonable
request from the corresponding authors.
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