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Suspended drums made of 2D materials hold potential for sensing applications. However, the
industrialization of these applications is hindered by significant device-to-device variations
presumably caused by non-uniform stress distributions induced by the fabrication process. Here, we
introduce a methodology to determine the stress distribution from their mechanical resonance
frequencies and corresponding mode shapes as measured by a laser Doppler viorometer (LDV). To
avoid limitations posed by the optical resolution of the LDV, we leverage a manufacturing process to
create ultra-large graphene drums with diameters of up to 1000 pm. We solve the inverse problem of a
Féppl-von Karman plate model by an iterative procedure to obtain the stress distribution within the
drums from the experimental data. Our results show that the generally used uniform pre-tension
assumption overestimates the pre-stress value, exceeding the averaged stress obtained by more than
47%. Moreover, it is found that the reconstructed stress distributions are bi-axial, which likely
originates from the transfer process. The introduced methodology allows one to estimate the tension
distribution in drum resonators from their mechanical response and thereby paves the way for linking

the used fabrication processes to the resulting device performance.

The exceptional mechanical properties of suspended two-dimensional (2D)
materials such as graphene make them ideal materials for applications such
as force, mass, and sound sensing'™*. Their unique opto- and electro-
mechanical coupling has enabled studies into phase transitions’, heat
transport™, and even measuring the biological forces of micro-organisms”.
However, the industrial realization of 2D materials is currently hindered by
significant device-to-device variations observed in practice”. Addressing this
variability is crucial for enhancing the reproducibility and reliability of 2D
material-based devices. A key factor contributing to this variability is the
built-in stress arising from the fabrication process’"".

During the transfer of 2D materials onto target substrates, non-
uniform stress distributions inevitably occur'*", resulting in surface defects
like wrinkles in the fabricated drums'*"®. Currently, Raman spectroscopy
and atomic force microscopy (AFM) are the methods of choice for analyzing
the stress distribution in 2D materials'~'"*. Raman spectroscopy monitors
the strain-sensitive position of Raman active phonon modes™. However,
due to its limited spatial and strain resolution, it only provides a relatively

coarse strain measurement, making it less suitable for the quantification of
the initial stress in suspended 2D materials. AFM is a contact-based tech-
nique that is challenging to perform and applies a force to the membrane
during measurement. This force potentially affects the morphology and
distribution of tension in the membrane. Consequently, the development of
new non-contact methods that can determine the stress distribution in 2D
membranes is highly desirable.

Determining the stress distribution in 2D materials has received lim-
ited attention within the literature. A common practice in the field is to
assume a uniform stress distribution throughout the membrane®' . This
assumption is valid when the aspect ratio (thickness to radius ratio) of 2D
material membranes increases, resulting in a bending rigidity-dominated
mechanical response of the membrane. However, given that the primary
advantage of 2D materials is in their high sensitivity for sensing applications,
it is common that the aspect ratio is relatively small*’, such that the mem-
brane energy dominates the mechanical response’*, which makes non-
uniformities in the stress distribution significant”. This deviation can
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significantly alter the mechanical behavior of the membranes, also leading to
inaccuracies in estimating mechanical properties' "~ However, the modes
of vibration of membranes are found to be very sensitive to spatial changes
in the membrane®”, thus providing the opportunity to use them for
characterizing the non-uniform stress distribution.

In this paper, we propose a methodology to quantify the stress dis-
tribution of ultra-thin suspended drums by using nanomechanical reso-
nances and their mode shapes. We use laser Doppler vibrometry (LDV)* to
measure graphene drums, with large diameters from 60 to 1000 um, cap-
turing their dynamics with picometer-amplitude resolution. Subsequently,
we create an analytical model to calculate resonance frequencies and mode
shapes. We then follow a reverse path by using experimental data to predict
both in-plane and out-of-plane displacements, as well as the stress dis-
tribution of the 2D drum. Our results highlight that 2D material drums are
not uniformly tensioned, which challenges the current methodologies for
estimating the built-in stress of these drums'**’. The presented methodology
allows fabrication techniques to be optimized for improving the uniformity
and reproducibility of stress distributions, thus improving the yield and
performance of sensing applications based on suspended 2D material
membranes.

Results

Experimental signs of non-uniform stress distribution

We created 16 suspended graphene devices and measured their resonance
response (see Methods). To extract their resonances, we employ a fitting
procedure based on a linear harmonic oscillator model. The frequency
characteristics of the first mode (f; = 5%) in devices D1-D16, as a function
of the radius R, are depicted in Fig. 1a. The observed dependence on R aligns
with the behavior reported earlier on the fundamental frequencies of cir-
cular drums™. The relationship governing the resonance frequencies is
described by the equation

_ Y M
2nR \/ ph’

where y; represents a constant, 1y denotes the pre-tension applied to the
drum, p signifies the mass density, and h stands for the thickness of the
drum. Theory gives y; = 2.4048, with higher resonance frequencies
corresponding to increased values of y; relative to y;. Since R and h are
known for our samples from optical microscopy and AFM measure-
ments, we can extract ny of the devices using the first resonance
frequency f; by utilizing Eq. (1). We note that the obtained n,, varies
from 2x 107 to 3x 10" N-m™, which is comparable to the range of
values reported in the literature””. The corresponding strain &
extracted from ng = oph = Eheo/(1 — v) is below 0.0013% for all our
devices, which is much lower than the resolution limits of Raman
spectroscopy”.

fi ¢y

In Fig. 1b, we plot the ratio between the second and the first resonance
frequency of 16 fabricated devices. We also show in Fig. 1b the f,/f; obtained
analytically for circular drums (red line). We note that the experimental
values of f,/f; significantly deviate from this red line with a minimum ratio of
1.019 and a maximum ratio of 1.754. To gain insight into these deviations, in
Fig. 1c, we show the experimental mode shapes, as determined by the MSA-
400 vibrometer, for three of the devices. We note clear differences between
the second theoretical mode shape of a circular drum and the experimental
mode shape, which emphasizes the substantial influence of non-uniform
stress on the dynamics of these drums. In addition, we analyze the ratios f3/f;
and f,/f; for a specific subset of our drums (see Supplementary Note 1), in
which we also observe a significant difference between the experimental
findings and the theoretical predictions based on the assumption of uniform
pre-tension.

In addition, it has been theoretically predicted that when a stress dis-
tribution is uniform, it results in the emergence of asymmetric mode shapes
that are defined by # nodal lines rotated by 27/n relative to each other and
possess equal resonance frequencies”. Nevertheless, as the level of stress
non-uniformity increases, these mode shapes undergo substantial changes
resulting in a loss of resemblance between them. Consequently, the non-
uniformity in tension distribution has a substantial effect on the mode-
shapes, and therefore these mode-shapes contain important information on
the stress distribution. In the subsequent section, we introduce a method to
deduce the non-uniform tension distribution based on the experimentally
acquired mode shapes and resonance frequencies.

Theory for quantifying stress distribution
To analyze the effect of stress distributions on the mode-shapes of the
drums, we employ a circular plate model characterized by radius R and
thickness h. This model assumes the material to be homogeneous and
isotropic, having a density p, Young’s modulus E, and Poisson’s ratio v. It is
worth noting that plate and membrane models have demonstrated accuracy
in predicting the mechanical behavior of 2D material membranes™*. To
date, there is no evidence indicating their inapplicability to single- or few-
layer 2D materials. Moreover, we assume the structure to be relatively thin,
i.e., h/R <0.17, such that we can utilize the Féppl-von Karman plate model.
Employing this model enables us to capture the dynamics of drums with a
wide range of thickness-to-radius ratios (aspect ratio). The governing
equations are expressed in cylindrical coordinates (r, 6, z), with r repre-
senting the radial, 0 the azimuthal, and z the transverse coordinate. The
equations governing transverse and in-plane motions, derived through
Hamilton’s principle, are given by:

phiv + DV*w — (N w) = 0, (2a)

phii — N = 0, (2b)

Fig. 1 | Comparison of experimental results with a
uniform pre-tension. a The relationship between

the fundamental frequency f; and the drum radius R 160

for devices D1-D16 is observed to exhibit an inverse
trend. Resonance frequency estimation using Eq. (1)
is shown in red, by assuming thickness = 15 nm

and pre-tension 7y =0.02 N m . b The ratio of the
second to the first frequency (f,/f) as a function of R
for all studied devices. The theoretical value of f,/f;
for drums having uniform pre-tension is shown by
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where
N = [Er/(Q = )1 —v)e + vir(e)],

3
=%(Vu+VTu+Vw®VW). 3

In the equations above, u = [u; v], with u and v denoting the radial and
azimuthal displacement fields, while w represents the transverse displace-
ment field. Additionally, Viw,Vw, andVu denote the biharmonic
operator applied to the scalar field w, the vector gradient of the scalar field w,
and the tensor gradient of the vector field u, respectively. N is vector
divergence of the tensor field N. Furthermore, V w ® V w corresponds to
the tensor product between vectors Vw and V w An overdot indicates
differentiation with respect to time, and D = 12(1 5 denotes the bending
rigidity. It is noteworthy that, as per the notation presented here, the strain
tensor € and stress resultant tensor N can be identified as second-order
tensors in a two-dimensional framework.

In practice, fabricated drums may exhibit deformations that deviate
from the conventional assumption of uniform radial deformation, often
associated with uniform pre-tension. Consequently, when these drums
undergo transverse dynamic actuation, their displacement fields comprise
both static and dynamic components. The static deformation originates
from the pre-actuation displacement history, while the dynamic component
represents the displacement induced by the actuation process. To gain a
comprehensive understanding of the mechanical response in such situa-
tions, it becomes essential to incorporate both static and dynamic dis-
placements within the overall displacement field" ™. However, the
substantial difference in magnitude between in-plane and transverse inertia
(proportional to R/h) necessitates the exclusion of dynamic deformation in
the in-plane direction. This is due to the fact that, based on Newton’s second
law, higher inertia leads to lower acceleration and dynamical response.
Thus, in-plane motion is negligible compared to the out-of-plane dynamics
when studying bending vibrations of thin membranes. Therefore, we
assume # = u,, but w = w, + w,, where the subscript s refers to static com-
ponents and the subscript d represents dynamic deformations.

To capture the vibrational response (w,) of these drums, we conduct a
modal analysis using Eq. (2a) centered around the statically deformed
configuration (ug, v, ws). However, since Eq. (2a) involves N and is not
expressed in terms of displacement fields, we initially reformulate the
equation in the context of static and dynamic displacement fields. The
detailed derivation procedure for this can be found in Supplementary Note
2. Next, we assume the dynamic transverse deformation w, to be harmonic
and express it as wy(r, 0, t) = wg(p(r7 6) exp(iwt), where wY represents the
maximum spatial amplitude of the drum at time ¢ =0, ¢(r, ) denotes the
mode shape normalized with respect to maximum displacement, and w is
the corresponding resonance frequency. Next, we make the equations
dimensionless (see Supplementary Note 2) and discretize them over a mesh
with N nodes in the radial direction and M nodes (M should be odd) in the
azimuthal direction (see Supplementary Note 3), which leads to the compact
form of the transverse governing equation

_ _ i -
DyU;; +DyV;; + Z(wai,j> : <DWWi.j) = (“’21 - Dw)q’iJ” 4)
k

where Uj, Vi, and W represent the unknown static deformations at spatial
node (i, j). Add1t1onally, ®;;is the given (or known) normalized mode shape
extracted from the experiments, @ denotes the corresponding non-
dimensional resonance frequency, and I is the identity matrix. Moreover,

the matrices Dy, Dy, Dw, th and st denote linear differential operators
dependent on the mode shapes and discretization weighting coefficients.
Comprehensive details regarding this step can be found in Supplementary
Note 3. After a convergence study, we choose N = 161 and M = 91 to ensure
a good balance between computational speed and accuracy of the results. It
should be mentioned that this selection may change for drums with different
aspect ratios.

Unlike the conventional modal analysis, where predefined static
deformations U j» Vijand W;; are used to deduce resonance frequencies @
and mode shapes @; j, in our approach, we follow a reverse-path, and deduce
these deformations from measured resonance frequencies and mode shapes.
Given the existence of three unknown displacement fields, specifically U;,

Vi and Wj; (3 x M x N unknowns), the extraction of these displacement
fields necessuates aminimum of 3 x M x N equations. This underscores the
significance of having no fewer than three sets of mode shapes
(CD,1 i q)lzﬂ CD ) along with their corresponding non-dimensional fre-
quencies (wl, @,, ;) for estimating the built-in stress, which collectively
provides 3 x M x N equations across the mesh (see Eq. (4)). However, in
practice, an additional mode shape becomes a crucial requirement. The
underlying rationale for this is rooted in the observation that equations
linked to boundary nodes yield a trivial 0 =0 relationship. Consequently,
introducing supplementary equations is necessary to fulfill the requisite
rank of the algebraic equation system. In pursuit of accurately determining
stress distributions from experimental mode shapes and frequencies, it thus
becomes essential to consider at least four mode shapes alongside their
corresponding resonance frequencies.

To validate our numerical methodology and equations, we performed
finite element simulations on a flat circular plate characterized by a pre-
defined non-uniform stress distribution. The computed mode shapes and
resonance frequencies were then employed to reconstruct the stress dis-
tribution using the methodology we have introduced (for detailed discus-
sion, see Supplementary Note 4).

By simultaneously using the governing Eq. (4) for a minimum of four
mode shapes and the respective resonance frequencies, it becomes possible
to determine the static displacement fields and the associated stress dis-
tribution fields. The flowchart presented in Fig. 2 explains the sequential
approach for obtaining stress distributions from experimental mode shapes
and frequencies. The technique commences by fitting a surface to the
experimental mode shapes. This is important as Eq. (4) involves derivative
operators, and any non-smoothness and noise in experimental mode shapes
leads to numerical inaccuracies”. In order to guarantee compliance with
boundary conditions, we utilize the mode shapes of a uniformly-tensioned
plate as the basis for our fitting function (see Supplementary Note 5).

Subsequently, utilizing the smoothed mode shapes, we aim to extract
the static displacement fields. However, due to the nonlinearity of Eq. (4)
with respect to W;; extracting the solution without a suitable initial
approximation poses a challenge. As a possible solution, we assume a
parabolic form for the static transverse displacement, characterized by an
undetermined deﬂectlon amplitude at the center of the drum
( Wi = Wo(l — )) where W, signifies the deflection at the center, and

represents the 7 r coordmate of node (i, ]) By solving Eq. (4) using the
experlmentally acquired mode shapes d) , ©? B (I>3J, and @} j» We can
determine the unknowns U, V;, and W, It is crucial to recogmze that due
to the influence of noise and measurement inaccuracies, achieving 100%
accuracy in solving for displacements is unattainable. Therefore, employing
aleast-squares method becomes necessary. This method enhances accuracy
by incorporating more equations, namely additional mode shapes and
frequencies, into the solution process.

It is imperative to acknowledge that assuming an axisymmetric para-
bolic deflection for the transverse displacement has inherent limitations.
The presence of non-uniform displacements in the studied membranes
might lead to static deformation and the creation of a buckling pattern,
owing to their ultra-thin nature. Due to experimental and numerical inac-
curacies, the displacement fields that are obtained from solving Eq. (4) do
not always meet the requirements of the in-plane Eq. (2b). Therefore, it is
crucial to identify a stable out-of-plane configuration that fulfills Eq. (2a). In
response to potential static transverse asymmetries and to rectify our initial
assumption of parabolic static deformation, we perform a post-buckling
analysis. This analysis utilizes the in-plane displacement fields U;, V;;, and
W;; which are obtained from the experimental mode shapes to update
transverse displacement W;; to W;;. In the context of this post-buckling
analysis, a minor perturbing uniform transverse force is introduced, which
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Fig. 2 | The flowchart for deriving stress dis-
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serves to update the drum’s transverse shape and accounts for its nonlinear
behavior™.

In order to perform the post-buckling analysis, it is recommended to
utilize Eqgs. (2a, b) or alternatively, incorporate the in-plane displacement
fields (U;; and V;)) into a finite element method (FEM) software that is
capable of handling nonlinear structural analysis. This will enable an ana-
lysis of the post-buckling response of the drum and the establishment of its
modified transverse shape W ij- Itis crucial to highlight that as a result of the
non-uniform characteristics of U;; and V;;, the post-buckling analysis
results in an asymmetric transverse shape W, ; ; that deviates from the axi-
symmetric shape W;;.

Since, the experimental displacement field is not known for the drums
and in order to ensure accurate computation of both in-plane and transverse
displacement fields, we conduct modal analysis to extract mode shapes and
resonance frequencies from the static displacements (Uj;, Vij, and W, )
should be noted that Eq. (4) shows a one-to-one mapping between mode
shapes and displacement fields, thus the comparison between the mode
shapes can directly reflect the comparison between the static displacement
fields. In order to quantitatively assess the fidelity of the reconstructed mode
shapes compared to their experimental counterparts, we employ an error
metric denoted by e. This metric e characterizes the average spatial deviation
between the reconstructed and experimental mode shapes and is defined as
follows

1 & fo (9, — gun)zrdrdﬁ 2
e=<) |

<e,, (5)
pr 2" ];) ((pn) rdrd® “

where e, serves as an error threshold. In this equation, ¢, is the nth nor-
malized mode shape obtained from modal analysis, ¢, signifies the nth
normalized experimental mode shape, and N represents the total number of
mode shapes used in the fitting procedure. It is important to note that both
®, and g, are the continuous forms of @7 and ®; j» Tespectively.

If the criterion (5) is satisfied (e < eo) the solution is considered to be
converged. Conversely, if e> e, the post-buckled configuration is re-
calculated with a new perturbation in the transverse direction, leading to the

acquisition of an updated transverse mode shape. This iterative process
continues until the convergence criterion is met.

To determine an appropriate value for ey, we initiate the iterative
process without applying any perturbation force and gradually increase it
step-by-step. The observed trend reveals an initial decrease in the error
metric e as the perturbation force rises until it reaches the minimum value ¢,
at a perturbation force of p,,,. Beyond this point, further increments in the
perturbation force result in an increase in the error. Consequently, the
minimum achievable error for each set of experiments corresponds to e,
which varies among different drums. For instance, device D1 exhibits an
error threshold of e,~0.19. A more detailed and comprehensive
discussion regarding the determination of e, can be found in Supplementary
Note 6.

Once the solution has converged, the numerical displacement field
effectively approximates the experimental displacement field, which enables
us to compute the strain field and subsequently derive the stresses within the
drum’s mid-plane using Supplementary Egs. (2) and (3). For a more
comprehensive overview of the described procedure, including a detailed
flowchart, please consult the Supplementary Note 5.

Fitting procedure

As elaborated in the previous section, the numerical procedure necessitates
an initjal assumption of a parabolic transverse displacement field. However,
this assumption does not universally apply to all manufactured devices.
Some of the manufactured devices exhibit significant complex wrinkling
patterns that deviate noticeably from the parabolic approximation. Con-
sequently, the proposed method is not applicable to drums that deviate from
this assumption.

Among the devices produced for this study, four of them (D1, D2, D6,
and D13) exhibited minimal or negligible wrinkling patterns, making them
well-suited candidates for the proposed solution outlined in this study. For
these four drums, we quantified stress distributions and validated their
accuracy by reconstructing mode shapes using the derived stresses. In Fig. 3,
we provide an illustrative example showcasing both the experimental mode
shapes and the reconstructed mode shapes for device D1, utilizing the first
four distinct mode shapes. It is evident that the obtained stress distribution
was able to accurately reconstruct the experimental mode shapes with a high
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Fig. 3| Reconstruction of stress distributions based on experimental mode shapes
for device D1. a Comparison of experimental mode shapes and resonance fre-
quencies and reconstructed counterparts As described in the main text, the
experimental mode shape and frequencies are utilized to derive displacement fields
and stress distributions. For the purpose of determining the validity of the results, the

=729 KHz
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theoretical mode shapes are reconstructed using the displacement field.

b Displacement fileds and Stress distributions predicted by current method. As can
be seen assumption of uniform stress distribution is not valid for the manufactured
device.

level of accuracy. The results for devices D2, D6, and D13 are presented in
Supplementary Note 7.

Moreover, to highlight the fidelity of the proposed method, we present
the extracted displacement field and the corresponding non-uniform stress
distributions in Fig. 3. Note that Raman spectroscopy, which we utilized for
stress measurement, is limited in its ability to detect the non-uniformity of
stress within the drum (see Supplementary Note 8). The predicted stress
distribution obtained through Raman spectroscopy appears to be nearly
constant and uniform, with large uncertainty across the drum surface. This
is due to the fact that the strain values (¢ <0.0013%) are lower than the
resolution limit (0.1%) of Raman spectroscopy’*** (see Methods). In the
Supplementary Note 8, a thorough discussion of the Raman spectroscopy
measurements and the obtained stress distributions for device D1 is pro-
vided. In contrast, the presented methodology is founded upon continuum
mechanics which is not dimension-dependent. As a result, the resolution of
this method is primarily constrained by the measurement device’s capability
to discern mode shapes. Consequently, the method’s efficacy remains
unaffected by the size of the drum or the scale of its strain distributions. This
implies that even for small drums with radii on the order of a few micro-
meters, our methodology can measure strain and stress distributions,
regardless of the magnitude of the strains. Hence, this approach remains
applicable across a range of scales, encompassing relatively small drums.

To compare the extracted stress distributions and the nominal stress
values obtained assuming a uniform tension distribution, we calculated the
spatial averages of normal and shear stresses by

fo o;rdrdf
i~ nR2 '

(6)

where i, j = {r, 6}. To measure the robustness of our findings, we system-
atically adjusted the level of mode shape fitting during the preliminary stage
(see Supplementary Eq. (3)). This variation allowed us to quantitatively
determine the associated standard deviation and obtain valuable insights
into the sensitivity of our stress distribution analysis. To determine the
nominal stress g, under the assumption of a uniform tension distribution,
we employed the first resonance frequencies, considering them as reso-
nances of an ideal theoretical drum subjected to uniform tension (see Eq.
(1)). Notably, the spatial average of shear stress for all four drums was found
to be negligible. However, this was not the case for the values of ¢,, and 7,
which demonstrated appreciable differences. The computed average stress

values, obtained through our analysis and assuming uniform stress dis-
tribution, are both presented in Table 1.

The differences observed between the average values of ¢,, and Gy, in
Table 1 contradict the uniform stress assumption, which posits that
0, = 049 = 0,. Notably, a greater deviation of ¢,, from 7,y indicates a
higher degree of non-uniformity in the stress distribution within the drum.
The observed differences between the average values of ¢,, and 6y raise
doubts about the validity of the uniform stress assumption. Specifically, gy is
at least 47% greater than the mean value of ¢,, for each of the drums. This
finding suggests that spatially averaging the stress distributions will not yield
a uniform stress representation of the overall behavior of the studied drums.
Therefore, accounting for the non-uniformities is essential for proper esti-
mation of the built-in stress in ultra-thin membranes.

Our method’s effectiveness is further evident in Fig. 3, where we
observe the influence of a free edge on the displacement and stresses of the
drum. The microscope image of device D1, as depicted in Fig. 4d, clearly
demonstrates that one side of the drum is clamped, while the other side
remains unclamped and capable of free movement. Surprisingly, this free
edge has influenced the results by exhibiting less radial displacement and,
consequently, lower stresses on the free side. This finding supports the
intuition that a free edge allows the drum to mechanically release stresses
near the edge.

Discussion

The proposed methodology addresses a system of nonlinear equations
(Eq. (4)), under the assumption of a parabolic transverse static dis-
placement field. However, when the drum exhibits initial corrugations
or wrinkles that cannot be adequately characterized by such a parabolic

Table 1 | Spatial average value of non-uniform stress
distribution in comparison with nominal stress value
assuming uniform stress distribution in the drums

npj 2D Materials and Applications | (2024)8:45

Device G, (MPa) Gg9 (MPa) dp (MPa)
D1 3.76 £0.25 2.80+0.29 7.05
D2 0.65+0.06 0.53+0.08 1.36
D6 0.54 £0.09 0.33+0.07 0.94
D13 1.03+0.21 0.49+0.10 1.52
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Fig. 4 | Fabrication and vibration measurement of graphene drums. a Fabrication
process of SiO,/Si substrate with etched holes. b Growth and exfoliation of large-

scale CVD graphene flake. ¢ Wet transfer method to suspend CVD graphene on the
substrate. d Schematic of measurement setup comprising an MSA400 polytec laser
doppler vibrometer (LDV) for detection and read-out. The sample is placed in the
vacuum chamber and driven by a piezo shaker. The inset: optical image of device D1;

purple region, Si/SiO, substrate; blue region, supported graphene; transparent
region, suspended graphene. e The first four resonances of device D1; the damped
linear harmonic oscillator fit is shown by the red line. Here, colorbars for first,
second, and fourth mode shapes range from 0 to 1, while that for third ranges from
—1tol.

displacement field, the system of equations becomes challenging to
solve. In such scenarios, the equations need to be solved by providing a
suitable initial guess for the transverse displacement field W;;. To esti-
mate the static transverse displacement field of the drum in the presence
of these non-parabolic deformations, corrugations should be experi-
mentally probed. Several techniques are available for measuring these
out-of-plane deformations**"” and can aid with quantifying the tension
distribution.

Notably, microscopic images of the drums (see Supplementary Fig. 1)
do not always reveal signs of transverse bulges or wrinkles, despite their
presence. Although the transverse displacement is relatively small compared
to the drum’s radius (W,/R < 0.001), neglecting it in the modal analysis can
lead to inaccurate mode shape estimations and, ultimately, even to failure in
reconstructing the experimental mode shapes. Moreover, even minor static
transverse asymmetries can affect the expected mode shapes***, empha-
sizing the need for an accurate solution to capture these deviations. This
emphasizes the importance of the transverse displacement field when
reconstructing the stress distribution.

Owing to inherent experimental uncertainties and noise, there exists a
lower bound on the threshold e,. For device D1, the estimated experimental
noise on each mode shape is 3%, 4%, 18%, and 20%, respectively, leading to a
lower average bound for ey of 11%. To enhance the precision of measuring
eo, employing measurement devices with higher spatial resolution and lower
noise levels is recommended.

The comprehensive study of drums yielded valuable insights into their
stress distributions. These drums experience uniaxial or biaxial loading with
different loadings along the two axes, suggesting non-uniform biaxial ten-
sion induced in the manufacturing process. This understanding is crucial for

optimizing manufacturing processes to achieve uniform stress distribution
and flatness in the drums.

The proposed method is specifically tailored for thin drums, taking into
account both stretching and bending energies to derive the governing
equations and ensure numerical stability. As a result, two distinct
mechanisms govern the mode shapes and resonance frequencies. In cases
where stretching dominates the deformation of the drum, the pre-stresses
play a significant role in influencing its vibrational behavior. This scenario is
particularly relevant for drums with a height-to-radius ratio 4#/R < 0.001.
Conversely, as bending deformation becomes more prevalent in over-
stretching, the vibrational behavior of the drum is primarily governed by
bending energies, with pre-stresses having a marginal role. In such instances,
the accuracy of the proposed method may be compromised, as the mode
shapes are predominantly influenced by bending effects rather than stress
distributions. However, it is important to mention that when the aspect ratio
is large, the mechanics of the drums are mostly influenced by the bending
mechanism, while the effect of stress distribution becomes insignificant.
Nevertheless, the maximum ratio of thickness to radius (h/R) observed in
the drums manufactured in our study is roughly 0.00023 (see Supplemen-
tary Table 1), which confirms that the drums analyzed in our work are
membranes with negligible bending rigidity. Therefore, the established
model proves suitable for addressing the problem.

Despite this limitation, in practical applications, the first scenario
(h/R < 0.001) is often encountered, rendering the proposed method suitable
and reliable for analyzing the vibrational behavior of drums. It is worth
noting that as h/R increases, the bending deformations become more
energy-costly, resulting in drums with fewer corrugations and wrinkles.
Unfortunately, this also leads to reduced sensitivity to transverse loadings

npj 2D Materials and Applications | (2024)8:45
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and masses. Hence, the choice of h/R becomes critical in designing circular
drums to achieve the desired vibrational characteristics and performance for
specific applications.

It is important to ensure that the method proposed is applicable to
thinner devices or membranes of smaller dimensions. Here, we should
highlight that our approach is based on continuum mechanics and thus size-
independent. Yet, to affirm the applicability of our method to thinner and
smaller graphene membranes, we utilized the experimental data of * for a
graphene drum (h = 10 nm, d = 5 um), and reconstructed the non-uniform
tension successfully (see Supplementary Note 9).

It is also noteworthy that the methodology proposed herein is not
limited solely to graphene membranes but is applicable to a broader range of
thin films and 2D material membranes. In our analysis, we adopted a linear
isotropic material model to predict material behavior. However, if other 2D
material membranes exhibit discrepancies in material behavior, such as
anisotropy™, these can be incorporated into the proposed method through
constitutive law (Supplementary Eq. (3)). This allows for the extension of the
formulation to accommodate studying of various types of 2D material
membranes.

In conclusion, we presented a methodology for quantitative determi-
nation of the tension distribution in ultra-thin 2D material drums based on
experimental mode shapes and resonance frequencies. By utilizing a circular
plate model, we derived governing equations that capture the static and
dynamic deformation of the drums. The proposed approach successfully
accounts for both stretching and bending energies, providing an effective
solution for analyzing the vibrational behavior of circular drums.

The validation of the method through finite element simulations on
known stress distributions demonstrates its accuracy and reliability. We
applied the methodology to four fabricated drums and gained valuable
insights into their stress distributions. The findings revealed the presence of
non-uniform biaxial tension induced during the manufacturing process.
Understanding these stress distributions is critical for optimizing the fab-
rication processes to achieve uniform stress distribution and flatness in
the drums.

Additionally, we discussed the limitations related to the assumption of
a parabolic transverse static displacement field and the need for an appro-
priate initial guess for the transverse displacement field in cases where initial
corrugations or wrinkles are present. The insights gained from this study can
aid in achieving better performance and reliability in 2D drum fabrication
and contribute to accurate and robust mechanical characterization of ultra-
thin materials.

Methods

Fabrication method

The fabrication procedure of the devices is illustrated in Fig. 4a—c. As Fig. 4a
shows, we first prepare a Si (100) target substrate containing holes made
using deep reactive ion etching with diameters ranging from 60 to 1000 pm.
Next, we deposit multi-layer graphene using chemical vapor deposition
(CVD) on a thin-film Mo catalyst, as shown in Fig. 4b. The final stage of the
fabrication procedure is the transfer of CVD-grown graphene from the
growth substrate to the target substrate using a wet transfer process, as
depicted in Fig. 4c.

The fabrication process resulted in the production of a set of 16 unique
devices, denoted as D1-D16, which were spread among different chips. For
a comprehensive description of the fabrication method, please refer to
Supplementary Note 10. The drums had a range of radii (R) from 61 to
1032 pm. We measured the thickness (1) of the CVD graphene on all chips
using atomic force microscopy (AFM) and found that / ranges from 7 to
13.8 nm (see Supplementary Note 11).

Measurement methodology

To probe the nanomechanical vibrations of the devices, we use a piezo
shaker to drive the drums into resonance and a Polytec MSA400 laser
Doppler vibrometry (LDV) system to measure their velocity in the out-of-
plane direction (see Fig. 4d). The LDV actuates the piezo shaker at a specific

frequency f while simultaneously recording the position-dependent dis-
placement zof the device using a 632 nm He-Ne laser with a spot diameter
of ~5 um. All measurements are conducted at room temperature inside a
vacuum chamber at 10 mbar. It should be noted that even though mea-
surements are performed at room temperature, local heating from the laser
can alter membrane properties and stress fields, especially in the nonlinear
regime. To circumvent this problem, we performed our measurements at
very low laser powers and ensured that the motion was probed in the linear
regime of operation (see refs. 50,51). Figure 4e displays the measured first
four resonances of device D1.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The data that support the findings of this study are available on reasonable
request from the corresponding authors.
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