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Magnetic tunnel junction based on bilayer
LaI2 as perfect spin filter device

Check for updates

Shubham Tyagi1, Avijeet Ray1, Nirpendra Singh2 & Udo Schwingenschlögl 1

The discovery of van der Waals intrinsic magnets has expanded the possibilities of realizing
spintronics devices. We investigate the transmission, tunneling magnetoresistance ratio, and spin
injection efficiency of bilayer LaI2 using a combination of first-principles calculations and the non-
equilibrium Green’s function method. Multilayer graphene electrodes are employed to build a
magnetic tunnel junction with bilayer LaI2 as ferromagnetic barrier. Themagnetic tunnel junction turns
out to be a perfect spin filter device with an outstanding tunneling magnetoresistance ratio of 653%
under a bias of 0.1 V and a still excellent performance in a wide bias range. In combination with the
obtained high spin injection efficiency this opens up great potential from the application point of view.

Magnetic tunnel junctions (MTJs)1,2 can be utilized in read heads3, sensors4,
and nonvolatile magnetic random-access memories5, for example. A con-
ventional MTJ consists of two ferromagnetic metallic electrodes separated
by a thin insulating barrier6,7. There exist also alternative arrangements,
using ferroelectric insulating barriers8, ferromagnetic insulating barriers9,
and antiferromagnetic metallic electrodes10,11. Experimental and theoretical
studies have appliedAl2O3

12–14 andMgO15–18 as barriers, achieving tunneling
magnetoresistance (TMR) ratios of up to 90% and 180%, respectively.
However, these devices suffer from pinholes, defects, non-uniform thick-
ness, and trapped charges, issues that canbe resolvedbyusing vanderWaals
materials19,20. For example, monolayerMoS2 as barrier with NiFe electrodes
achieves aTMRratio of 9%21, bilayerhexagonal boronnitride as barrierwith
Ni electrodes achieves a TMR ratio of 75%22, and a composite of graphene
and monolayer MoS2 as barrier with Co electrodes achieves a TMR ratio of
1270%23. Composites of graphene and hexagonal boron nitride have been
used as barriers with different electrodes, providing TMR ratios of up
to 149%24.

The emergence of van der Waals intrinsic magnets25–28 has opened up
an exciting avenue beyond the conventionalMTJdesign29,30. CrI3 in bilayer

31

and multilayer32,33 form is one of the most studied van der Waals intrinsic
magnets and is extensively used as spin filter material though it has several
issues. Particularly, a large magnetic field of 0.65 T is required to switch the
interlayer spin alignment between antiparallel (AP) and parallel (P)34.
Bilayer CrCl3 and bilayer CoBr2 as barrier with graphene electrodes achieve
TMR ratios of 35%35 and 2420%36, respectively. A composite of CrBr3 and
hexagonal boron nitride as barrier with Au electrodes achieves a TMR ratio
of 1328%37 and FeCl2 as barrier withMoS2 electrodes achieves a TMR ratio
of 6300%38.

Ferrovalley materials, a class of van der Waals intrinsic magnets,
are used in information processing and storage39. Various studies have

demonstrated a large TMR ratio for MTJs based on ferrovalley mate-
rials. For example, the VSe2/MoS2/VSe2 MTJ achieves a TMR ratio of
846% at a bias of 0.5 V40 and the VSi2N4/MoSi2N4/VSi2N4 MTJ
achieves a TMR ratio of 1000% at a bias of 0.1 V41. Recently, ferrovalley
materials based on rare-earth elements have been discovered42. To
assess their applicability in MTJs, we study in this work the van der
Waals MTJ formed by bilayer LaI2

43 as ferromagnetic barrier sand-
wiched between multilayer graphene as metallic electrodes31,35,44. The
emergence of outstanding TMR ratios in the vicinity of the Fermi
energy results in great potential of ferrovalley materials based on rare-
earth elements in MTJs.

Results
First-principles and quantum transport calculations
Spin-polarized first-principles calculations using density functional theory
within the generalized gradient approximation of Perdew, Burke, and
Ernzerhof for the exchange-correlation functional are performed using the
SIESTA code45. The density matrix is converged to an accuracy of 10−5 and
the structure is optimized until the Hellmann-Feynman forces stay below
0.01 eV/Å. A 700Ry energy cutoff is used for the double-ζpolarized basis set
and theBrillouin zone is sampledonaMonkhorst-Pack 17 × 17 × 1 k-mesh.
Periodic boundary conditions are appliedwith a 15Å vacuum slab to create
a two-dimensional model.

Quantumtransport calculations are performed in the frameworkof the
non-equilibrium Green’s function method implemented in the Tran-
SIESTA code based on the non-equilibrium density matrix46,47. The specific
crystal structures are considered for both the semi-infinite electrodes
(employing a Monkhorst-Pack 8 × 8 × 100 k-mesh) and scattering region
(employing a Monkhorst-Pack 8 × 8 × 1 k-mesh). The spin-dependent
transmission function of electronswith energy E subject to a biasV between
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the electrodes is calculated as48

TσðE;VÞ ¼ Tr �Gσ ðE;VÞ½Σσ
LðE;VÞ � Σσy

L ðE;VÞ�GσyðE;VÞ Σσ
RðE;VÞ�n

�Σσy
R ðE;VÞ

io
;

ð1Þ

where Gσ(E, V) is the retarded Green’s function of the scattering region,
Σσ
L=RðE;VÞ is the self-energy of the left/right (L/R) electrode, and σ = ↑/↓ is

the spin majority/minority channel. Moreover,

Σσ
L=RðE;VÞ ¼ τyL=RG

σ
L=RτL=R; ð2Þ

whereGσ
L=RðE;VÞ is the surface Green’s function of the electrode and τL/R is

the coupling between scattering region and electrode. The spin-dependent

current is given by48

Iσ ðVÞ ¼ 2e
h

Z 1

�1
½f ðE � EF þ eV=2Þ � f ðE � EF � eV=2Þ�TσðE;VÞ dE;

ð3Þ

where f is the Fermi-Dirac distribution function,EF is the Fermi energy, and
e is the elementary charge. The k-resolved transmission function is extracted
using the SISL utility49. The TMR ratio at zero bias is calculated as

X

σ

Tσ
P �

X

σ

Tσ
AP

 !

=
X

σ

Tσ
AP ð4Þ

and the TMR ratio under bias is calculated as
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where IσP=AP is the spin-dependent current.
According to Fig. 1, monolayer LaI2 is found to be intrinsically ferro-

magnetic (magneticmoment of 1μBper formula unit)with a bandgap of 0.1
eV, consistent with Ref. 43. The valence and conduction band edges are
dominated by the spin majority and minority La states, respectively. Figure
2a, b shows a schematic representation of the two-terminal device with
bilayer LaI2 sandwiched betweenmultilayer graphene.Multilayer graphene
is adopted as electrode material, as standard electrode materials suffer from
large lattice mismatch with bilayer LaI2. We find that the multilayer gra-
phene electrodes do not develop spin polarization (C magnetic moments <
0.001 μB). AB-stacked bilayer LaI2 is found to be energetically favorable over
AA-stacked bilayer LaI2 by 88meV per formula unit and therefore is
adopted for the barrier. While without bias applied to the two-terminal
device the P interlayer spin alignment in bilayer LaI2 is energetically
favorable over theAP interlayer spin alignment by 3meV, theAP interlayer
spin alignment quickly becomes favorable under bias (for example, by 38,
14, 4, and 52meV under biases of −0.01, −0.005, 0.005, and 0.01 V,

Fig. 1 | Partial densities of states of monolayer LaI2. Positive/negative values
represent the spin majority/minority channel.

Fig. 2 | Two-terminal device. a Side and b top views of the two-terminal device with
bilayer LaI2 barrier andmultilayer graphene electrodes. Red arrows indicate the spin
alignment (AP configuration) and grey color marks the electrodes. c Differential
charge density in the two-terminal device (without electrodes). Brown, purple, and

green spheres represent the C, I, and La atoms, respectively. Orange and cyan
isosurfaces represent accumulation and depletion of electrons, respectively (iso-
surface value = 0.0002 e/Å3).
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respectively). Therefore, the interlayer spin alignment can be switched
between the AP and P configurations by an external magnetic field, fol-
lowing the working principle of CrCl3

35 and CrI3
31 MTJs. The lattice con-

stant of bilayer LaI2 matches with that of a 0.3% compressed
ffiffiffi
3

p
×

ffiffiffi
3

p
× 1

supercell of graphene. The two-terminal device is periodic in the y direction,
while the transport is in the z direction. The optimized interface distance
between bilayer LaI2 and multilayer graphene is obtained as 3.53Å,
demonstratingweak coupling and indicating that the transport properties of
theMTJ dependmainly on the interface geometry between the constituents.

The differential charge density plot in Fig. 2c reveals a minor charge
redistribution at the interface (black arrows).

We plot the spin-resolved transmission spectra of the AP and P con-
figurations at V = 0 V in Fig. 3a, b, respectively. The results for the AP
configuration do not differ between the two spin channels in contrast to
those for the P configuration. This is due to the fact that in the AP config-
uration the bilayer LaI2 barrier affects the spin majority and minority
electrons equally because of the antiparallel spin alignment of the two LaI2
layers, while in the P configuration they are not affected equally because of

Fig. 3 | Zero bias transmission and TMR. Spin-resolved transmission as a function of energy for the a AP and b P configurations at V = 0 V. c TMR ratio as a function of
energy at V = 0 V. The black dot marks the value at EF.
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the parallel spin alignment of the two LaI2 layers, resulting in spin filtering.
The TMR ratio at EF, see Fig. 3c, is found to be 94%, similar to the values
achieved by the 1T-VSe2/1H-VSe2/1T-VSe2 (484%) and 1T-VSe2/1H-
MoS2/1T-VSe2 (22%) MTJs (both based on ferrovalley materials)40. Inter-
estingly, atEF−0.03 eV themuchhigher spinmajority transmission in theP
configuration as compared to the AP configuration results in a very high
TMR ratio of 350000%.

Figure 4a–d shows for theAP and P configurations, respectively, the k-
resolved transmission at EF for V = 0 V within the region of the hexagonal
Brillouin zonemark as black square in Fig. 4k. In all other regions the values
are negligible, i.e., the transmission is strongly concentrated around the Γ
point. Due to the periodicity in the ab-plane, the components of the wave
vector in this plane are conserved during tunneling. The transmission dis-
tributions reflect the six-fold rotational symmetry of the device. We obtain
for the AP configuration similar spin majority and minority transmission
distributions, which is consistent with Fig. 3a. In contrast, for the P con-
figuration the spin majority and minority transmission distributions differ
strongly. While for the spin majority channel the result is similar to that of
the AP configuration, except for the enhanced magnitude, we find for the
spin minority channel almost no transmission, consistent with Fig. 3b. The
transmission distributions are expected to change significantly at EF −
0.03 eV, as the TMR ratio is very different (pronounced maximum in
Fig. 3c). In contrast to Fig. 4a–d, Fig. 4f–i indeed shows relevant

transmission only for theP configuration and there only in the spinmajority
channel.Due to the fact that this transmission is ~104 times that obtained for
the AP configuration (in both spin channels), the TMR ratio, according to
Eq. (3), reaches unprecedented values. To clarify the role of the electrodes in
the transport, we compare the k-resolved transmissions of bilayer graphene
at EF and EF − 0.03 eV in Fig. 4e, j. The results resemble the shapes of the
transmission distributions of Fig. 4a–d and f–i, respectively, demonstrating
that those are determined by the electrodes.

We plot the spin-resolved transmission spectra of the AP and P con-
figurationsunderbias (V=0.05and0.1V) inFig. 5a–d, respectively.While for
the AP configuration the results are very similar in the spin majority and
minority channels, large differences are observed for the P configuration at
most energies, which demonstrates excellent spin filtering. The TMR ratio
varies under bias, see Fig. 5e, asEF is shifted. The obtained values are excellent
from an application point of view. The TMR ratio of 653% clearly surpasses
the value reported for the common Fe/MgO/Fe MTJ (180%)17 and is more
than 1.5 times that of the 1T-VSe2/1H-MoS2/1T-VSe2MTJ (~400%)40 under
the same bias of 0.1 eV. For the spin injection efficiency, (I↑ − I↓)/(I↑ + I↓),
where I↑ is the spin majority current and I↓ is the spin minority current, we
obtain for the P configuration values of 0.99, 0.99, 0.99, 0.98, 0.98, 0.99, 0.99,
and 0.99 under biases of−0.2,−0.15,−0.1,−0.05, 0.05, 0.01, 0.15, and 0.2V,
respectively (AP configuration: 0.18, 0.08, 0.02, 0.17, 0.01, 0.09, 0.13, and0.18),
confirming excellent spin selectivity. The origin of this property is the much

Fig. 4 | Transmission distribution. Transmission distribution in the Brillouin zone
for the a, b AP and c, d P configurations at EF for V = 0 V (spin-resolved), e bilayer
graphene at EF forV = 0V (non-magnetic), the f, gAP and h, i P configurations at EF

− 0.03 eV for V = 0 V, and j bilayer graphene at EF − 0.03 eV for V = 0 V (non-
magnetic). k Brillouin zone. The black square in the middle is the region for which
the transmission distribution is plotted in displays a–j.
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higher spin majority transmission as compared to the spin minority trans-
mission in thePconfiguration, seeFig. 3b,which translates into amuchhigher
I↑ than I↓. On the other hand, the spin majority and minority transmissions
are similar in the AP configuration, see Fig. 3a, leading to similar currents
under bias.

Discussion
First-principles calculations combined with the non-equilibrium Green’s
function method are used to study the transport properties of the MTJ

formed by bilayer LaI2 as barrier and multilayer graphene as electrodes.
Monolayer LaI2 is intrinsically ferromagnetic with a magnetic moment of
1 μB per formula unit. The TMR ratio of theMTJ is found to show a strong
energy dependence, which can be explained by the obtained spin-resolved
transmission distributions in the Brillouin zone. An outstanding TMR
ratio of 653% is found under a bias of 0.1 V and the performance remains
excellent in a wide bias range. In addition, the spin injection efficiency
turns out to be very high for the P configuration, pointing to excellent
potential of the MTJ as spin filter device. Overall, our results call for

Fig. 5 | Finite bias transmission and TMR. Spin-resolved transmission as a function of energy for the AP configuration at a V = 0.05 V and c V = 0.1 V and for the P
configuration at b V = 0.05 V and d V = 0.1 V. e TMR ratio as a function of bias at EF. The black dot at V = 0 V is identical to that in Fig. 3c.
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prompt experimental exploration ofMTJs based on rare-earth ferrovalley
materials.

Data availability
Thedata are available on reasonable request from the corresponding author.
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