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Thermal sensors improve wrist-worn position tracking
Jake J. Son 1,2, Jon C. Clucas 1, Curt White1,2, Anirudh Krishnakumar3, Joshua T. Vogelstein4, Michael P. Milham1,5 and Arno Klein2

Wearable devices provide a means of tracking hand position in relation to the head, but have mostly relied on wrist-worn inertial
measurement unit sensors and proximity sensors, which are inadequate for identifying specific locations. This limits their utility for
accurate and precise monitoring of behaviors or providing feedback to guide behaviors. A potential clinical application is
monitoring body-focused repetitive behaviors (BFRBs), recurrent, injurious behaviors directed toward the body, such as nail biting
and hair pulling, which are often misdiagnosed and undertreated. Here, we demonstrate that including thermal sensors achieves
higher accuracy in position tracking when compared against inertial measurement unit and proximity sensor data alone. Our Tingle
device distinguished between behaviors from six locations on the head across 39 adult participants, with high AUROC values (best
was back of the head: median (1.0), median absolute deviation (0.0); worst was on the cheek: median (0.93), median absolute
deviation (0.09)). This study presents preliminary evidence of the advantage of including thermal sensors for position tracking and
the Tingle wearable device’s potential use in a wide variety of settings, including BFRB diagnosis and management.
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INTRODUCTION
Accurate monitoring of hand position with respect to the head
has many potential applications, ranging from extended reality
and computer gaming to monitoring certain clinical conditions.
Body-focused repetitive behaviors (BFRBs) represent a class of
potentially useful clinical applications. BFRBs are associated with a
broad range of mental and neurological illnesses (e.g., excoriation
disorder, trichotillomania, autism, Tourette Syndrome, Parkinson’s
Disease),1,2 where individuals unintentionally cause physical self-
harm through repeated behaviors directed toward the body.
Common BFRBs include hair pulling, skin picking, and nail biting,
and are often misdiagnosed and undertreated.3 These symptoms
affect at least 5% of the population, and as many as 70% of those
with one BRFB will have another co-occurring BRFB.4 Develop-
mental factors such as age and intellectual disabilities may limit a
patient’s awareness of his/her behavior.4 BFRBs can cause
significant distress, impairment and physical health consequences
(e.g., pain, disfigurement, infection) and are associated with a
sense of diminished control over the behavior.5,6 As such, it is
imperative to establish a reliable means to automatically and
objectively identify and monitor BFRBs, especially outside of the
clinic.
To approximate ecological BFRB monitoring, conventional

methods of position tracking rely on proximity- and inertial
measurement unit (IMU) sensor-based measures to identify the
position of part of a person’s body (such as a hand) relative to
another part of the person (such as the head). The Keen device, a
wearable-based tracking method created by HabitAware,7 is one
such attempt to monitor BFRBs. The Pavlok,8 a wrist-worn device
that modifies behavior based on user-induced shocks and
feedback, has also been used for BFRB treatment, though it is
not specifically designed to do so. Neither of these devices have
been the subject of a published peer-reviewed study, so it is

unclear how well-suited they are for BFRB monitoring or
treatment. The reliance of the Pavlok and Keen devices on IMU
sensors may cause difficulty in determining hand position relative
to the head because of the lack of head position reference data. A
two-device approach, most notably the combination of a bracelet
and magnetic necklace,3 has been used to provide an external
reference for head position, producing superior results. However,
sensitivity to body movement and user discomfort has made a
two-device approach impractical.
The Tingle is a wrist-worn position tracking device designed by

the MATTER Lab that passively collects thermal, proximity, and
IMU sensor data. The goal of the present study was to assess the
efficacy of the Tingle in its ability to distinguish between locations
of simulated behaviors, and whether the thermal sensors in the
Tingle yield potentially valuable information that may improve
BFRB detection and monitoring over proximity and IMU sensor
data alone. A long short-term memory (LSTM) neural network was
trained using these data to detect when the user’s hand is near
one of six target locations on the head.

RESULTS
Discriminability
We assessed the degree to which data collected at different
locations on the head can be distinguished from one another by
calculating a “discriminability distance” measure between each
unique pair of target locations on the head (mouth, nose, cheek,
eyebrow, top-head, back-head). Data from the proximity and IMU
sensors were used to calculate this distance (see Methods). We
repeated this analysis with data from all three sensor types, and
the addition of thermal sensor data significantly increased the
median discriminability distance between respective targets, for
every target, as shown in Table 1 (Wilcoxon signed-rank test; p-
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value « 0.05 for all tests with Bonferroni correction). Across 39
participants, the discriminability distance using all three sensors
was greatest between the nose and top of the head (median: 3.32,
median absolute deviation: 0.66) and smallest between the nose
and cheek (median: 1.25, median absolute deviation: 0.84). We
also estimated the null distribution of discriminability distances
using permutation testing to shuffle the target labels for each
unique pair of targets. Wilcoxon signed-rank testing revealed that
the median distance value is significantly greater across all pairs of
targets when using data from all three sensor types than when
using proximity and IMU sensors (Supplementary Tables 1 and 2).

Neural network
[The same data as above were used in this analysis.] To assess the
ability of the Tingle to differentiate a hand’s position between
target locations on the head, an LSTM neural network9 was trained
to identify data as on-target (on the correct one of the six targets
on the head) or off-target (on one of the remaining five targets, or
off of the body). The LSTM network performed this binary
classification task for each of the six target regions on the head.
This analysis was conducted twice, once without and once with
data from the Tingle’s thermal sensors. Accuracy was evaluated
using the area under receiver operating curve (AUROC) values, an
aggregate measure of specificity and sensitivity,10 as well as
confusion matrices for each binary classification task. Our results
shown in Fig. 1d demonstrate that the addition of thermal sensor
data improves the ability to distinguish between six positions on
the head, and does so with median AUROC values >0.90 for all
target locations (Supplementary Table 3). Confusion matrices were
assessed for class imbalances in prediction accuracy, but none
were identified (Fig. 1e).
A general (participant-independent) classifier with the same

neural network architecture was also trained using the aggregate
data from all participants but one, and then tested on the
remaining participant. This leave-one-out approach was applied to
create and test 39 general classifiers. All generalized classification
accuracy measures were below the median value across
individuals but with median AUROC values >0.80 for all but one
(cheek [0.75]) target location, as shown in Supplementary Table 3.

DISCUSSION
In this study, we tested whether thermal sensor data improved the
Tingle device’s ability to distinguish between a hand’s position at
different locations on the head, for use in detection of a wide
range of behaviors, including clinically relevant BFRBs. This
investigation was a prerequisite for future studies relevant to
distinguishing clinically relevant gestures (BFBRs) from activities of
daily living (non-BFRBs). Adding thermal data collected from the
Tingle wrist-worn device significantly increased the discrimin-
ability distance between targets, and significantly increased the
accuracy of a binary classifier based on an LSTM neural network.
With thermal data, LSTM neural network model performance has a
high degree of accuracy and is comparable across all targets.
Without thermal data, the results are more variable, and some
classifiers failed to predict any data samples as on-target, resulting
in the worst performance AUROC values of 0.5. The general
classifier showed promising accuracy measures, demonstrating its
potential as a pre-trained model for BFRB detection without
individual training.
This study demonstrates that thermal data detected by the

Tingle wrist-worn device can help to accurately distinguish
between hand locations with respect to the wearer’s head in a
controlled setting. This has dramatic consequences for use in
different types of hand movement training, in navigation of virtual
environments, and in monitoring and mitigating repetitive
compulsive behaviors. In an effort to help guide behaviors, the
Tingle can provide haptic feedback (a “tingle”) during detection of
a target location. We envision the use of thermal sensors in
devices like the Tingle helping to train, navigate, and interact in a
wide variety of settings.

METHODS
Data collection
Thirty-nine healthy adult employees of the Child Mind Institute or Child
Mind Medical Practice were recruited on a volunteer basis. This study was
carried out in accordance with the recommendations of the Chesapeake
IRB with written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration of Helsinki.
The protocol was approved by the Chesapeake IRB.
Participants were asked to simulate a series of repetitive behaviors,

rotating their elbow in a circular motion, while their hand was in a fixed
position on one of six target locations on the head. Each of the six
behaviors was performed for approximately 15 s at a single location on the

Table 1. Discriminability distance measures, p-values and effect sizes from paired t-tests for the Tingle with no thermal sensor data and with thermal
sensor data (median ±MAD)

Target pair Discriminability distance: no thermal Discriminability distance: yes thermal p-value Effect size

Mouth–Nose 2.11 ± 1.08 3.06 ± 1.04 1.29e−13 0.90

Mouth–Cheek 2.30 ± 0.44 3.07 ± 0.94 4.91e−12 1.07

Mouth–Eyebrow 1.67 ± 1.08 2.61 ± 0.75 3.05e−11 0.97

Mouth–Top-head 2.32 ± 0.66 2.94 ± 0.48 3.03e−12 0.76

Mouth–Back-head 2.59 ± 0.57 3.31 ± 0.47 4.35e−12 1.26

Nose–Cheek 0.49 ± 0.46 1.25 ± 0.84 3.06e−09 0.82

Nose–Eyebrow 0.85 ± 0.90 2.17 ± 0.84 1.00e−11 1.22

Nose–Top-head 2.19 ± 0.91 3.27 ± 0.91 5.52e−13 1.06

Nose–Back-head 2.12 ± 1.12 3.32 ± 0.66 9.07e−09 1.18

Cheek–Eyebrow 0.77 ± 0.81 2.23 ± 1.32 5.50e−12 1.13

Cheek–Top-head 2.18 ± 0.67 3.22 ± 0.96 6.01e−15 1.00

Cheek–Back-head 1.63 ± 1.12 3.01 ± 0.72 2.83e−11 1.09

Eyebrow–Top-head 1.91 ± 1.01 2.71 ± 0.91 4.09e−09 0.65

Eyebrow–Back-head 2.33 ± 0.78 3.01 ± 0.77 1.30e−11 0.78

Top-head–Back-head 2.11 ± 0.90 2.88 ± 0.50 1.13e−13 1.00
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same side of the head as the dominant hand (the hand wearing the
device). Data were collected during each behavior with a sampling rate for
this study ranging from 5 to 7 Hz, which is dynamically adjusted to
minimize power consumption. Rotating the elbow provided different
orientation information, simulating different approaches to each target
location. A web interface designed for data collection (CW) was used by
two researchers (JJS and JCC) throughout the experiment. The researchers
independently pressed a button on the interface to indicate that the
participant’s hand was near the correct location on the head. Data were
marked as on-target when both researchers pressed the button during a
simulated behavior. Data from off the body were also collected to
incorporate information about environmental conditions into the LSTM
network.

Sensors
The Tingle (designed and fabricated by CW) includes a (Kionix KX126)
accelerometer,11 a (STMicroelectronics VL6180X Time-of-Flight Ranging
Sensor) proximity sensor,12 and four (Melexis MLX90615) thermopiles.13

Data analysis
We de-identified participant data by labeling each participant with a
unique index, and z-scaled all data prior to analysis. To determine the
discriminability between pairs of target locations on the head, we
calculated the median values from the proximity and IMU sensors for a
given target location, and computed the Euclidean distance between the
pair of vectors of median values corresponding to each pair of target
locations. For instance, we isolated data collected near the nose and near
the cheek. A vector representing the nose contained the median of the
proximity sensor values and median of the IMU sensor values, and a vector
representing the cheek contained corresponding median values from the
same two sensors in the new location. The resulting pair of vectors was
used to calculate the Euclidean distance; this calculation was repeated for
each unique pair of target locations on the head. We then constructed a
sampling distribution of the distance measure for each of the target pairs
by randomly shuffling the target labels (e.g., nose and cheek) 1,000 times

and calculating the Euclidean distance between vectors derived from the
proximity and IMU sensors. The median Euclidean distance derived from
the permutation test was used to provide a baseline measure of the
discriminability distance. We conducted a Wilcoxon signed-rank test across
each of the target pairs using the median values from the sampling
distribution and the original distance values (without shuffled labels). We
repeated both analyses after including thermal data, by extending the
vectors to include median values from the four thermal sensors. To directly
compare the discriminability distance between measurements without and
with thermal sensor data, we conducted a Wilcoxon signed-rank test
across each of the target pairs. Effect sizes were determined by calculating
the median difference between data without and with thermal informa-
tion, then dividing by the median absolute deviation. A three-layer LSTM
neural network was trained in Python using the Keras neural network
library. The inputs of the LSTM network consist of the z-centered data from
the sensors and do not include any additional features. The first two layers
consisted of 50 nodes each and the second included a dropout rate of 0.20
to reduce the risk of overfitting. The third layer consisted of a single node
using a sigmoid activation function for binary classification. We created
training and testing sets with a test size of 25% of the data available. We
computed AUROC values and confusion matrices as measures of accuracy
at the participant and group level for each of the six target locations on the
head.

Code Availability
The web applications used to collect data are online at matter.childmind.
org/tingle/tingle-min and matter.childmind.org/tingle/tingle-min2, and the
code for these sites and analyses are available at github.com/
ChildMindInstitute/tingle-pilot-study.

DATA AVAILABILITY
The datasets analyzed during the current study will be made publicly available at
matter.childmind.org/tingle.

Fig. 1 a Thermal map of the head showing temperature differences. Written consent was obtained for the publication was of this
photograph. b A prototype of the Tingle device, which uses an array of four 1-pixel sensors with different fields of view, a proximity sensor,
and two IMU sensors. c Sample datastream in the Tingle application interface as the user approaches the mouth and hovers around various
parts of the head. The top four signals are temperature readings from the four thermopiles, followed by the two IMU sensors, then the
proximity sensor in blue. d LSTM network-based AUROC value distribution for the Tingle per target location on the head. e Confusion matrices
for each location on the head with median values of classifier accuracy across participants
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