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Optimizing skin disease diagnosis: harnessing online
community data with contrastive learning and clustering
techniques
Yue Shen1,6, Huanyu Li2,6, Can Sun3, Hongtao Ji4, Daojun Zhang5, Kun Hu2, Yiqi Tang2, Yu Chen1, Zikun Wei 2✉ and Junwei Lv 2✉

Skin diseases pose significant challenges in China. Internet health forums offer a platform for millions of users to discuss skin
diseases and share images for early intervention, leaving large amount of valuable dermatology images. However, data quality and
annotation challenges limit the potential of these resources for developing diagnostic models. In this study, we proposed a deep-
learning model that utilized unannotated dermatology images from diverse online sources. We adopted a contrastive learning
approach to learn general representations from unlabeled images and fine-tuned the model on coarsely annotated images from
Internet forums. Our model classified 22 common skin diseases. To improve annotation quality, we used a clustering method with a
small set of standardized validation images. We tested the model on images collected by 33 experienced dermatologists from 15
tertiary hospitals and achieved a 45.05% top-1 accuracy, outperforming the published baseline model by 3%. Accuracy increased
with additional validation images, reaching 49.64% with 50 images per category. Our model also demonstrated transferability to
new tasks, such as detecting monkeypox, with a 61.76% top-1 accuracy using only 50 additional images in the training process. We
also tested our model on benchmark datasets to show the generalization ability. Our findings highlight the potential of
unannotated images from online forums for future dermatology applications and demonstrate the effectiveness of our model for
early diagnosis and potential outbreak mitigation.
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INTRODUCTION
Skin diseases pose a significant challenge in China. There are up to
240 million dermatological visits per year, among which 80% are
for skin diseases beyond melanoma. Nevertheless, the uneven
distribution of healthcare resources and a shortage of dermatol-
ogists can lead to misdiagnosis and rising medical costs1. To
improve the prognosis and reduce social costs, accurate and
convenient diagnosis of skin diseases is critical. Artificial intelli-
gence (AI) has shown great potential in dermatology due to the
widespread use of photography in diagnosis2,3. However, most AI
applications focus on benign and malignant lesion diagnosis4,
leaving the potential of AI for a broader range of skin diseases
largely unexplored.
Diagnosing skin diseases with machine learning methods5–7

and its deep learning branch using convolutional neural networks
(CNNs)8–11 based on photographs has received much attention.
While high-quality images are critical for training AI models, the
labor costs associated with collecting these images can be
prohibitively expensive. Fortunately, recent advancements in
self-supervised contrastive learning offer a solution. These
methods enable the pre-training of models using vast amounts
of unlabeled or non-strictly labeled images and have shown
outstanding performance in various tasks12–15. There are prior
works exploring contrastive learning in dermatological diagnosis,
emphasizing its capability to extract consistent representations
and enhance generalizability and diagnostic accuracy16,17. For
instance, FairDisCo18 applied contrastive learning with additional
network branches to enhance fairness across different ethnics. Ref. 19

introduced federated contrastive learning for dermatological
disease diagnosis via on-device learning. Other studies have
indicated that utilizing contrastive learning methods to combine
multi-level features of skin lesion images can enhance the
accuracy of diagnosing skin diseases20,21. However, most of these
models are trained and tested on professional benchmark
datasets. This can pose challenges when applying models trained
on professional images to non-professional ones22,23. Benchmark
datasets are typically captured in controlled medical research
settings and focus on diseases with high medical significance,
such as malignancies. Consequently, there’s a significant gap
between these dataset’s distributions and the prevalence of
common skin diseases in daily life. Also, the diversity in image
capture settings restricts the generalizability of these models in
society. To bridge this gap from the source data, the abundant
unlabeled and coarse-labeled skin image data from online forums
has come to our view. Traditionally, their unscreened and
unannotated nature renders them unsuitable for traditional AI
training, which calls for further exploration.
In this study, we present a deep-learning framework that

leverages vast amounts of unannotated and coarse-labeled
dermatology images from online sources. We employ a three-
stage classification algorithm based on contrastive learning. In the
pre-training stage, the model learns feature representations from
unlabeled images. Our pre-trained model can be fine-tuned to
downstream tasks with better performance compared with
baseline models trained on general dataset. To reduce the effect
of incorrect labels in the fine-tuning using Internet-sourced
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images, we propose a filtering approach using features extracted
with unsupervised model and clustering approaches. This
approach not only reduces training costs but also improves the
model’s generalization ability for online diagnosis scenarios.
Additionally, our method allows for easy fine-tuning on novel
categories with limited standardized images, reducing data
collection time and labor costs. We demonstrate this with an
early warning system for monkeypox. Also, we have tested the
performance of our model on benchmark datasets to show the
generalize ability of our model when facing images from different
ethnicities. In summary, our work reveals a new direction for
dermatology AI research, leveraging unannotated and coarse-
labeled internet-derived image data and contrastive learning to
develop deep learning models for skin disease diagnosis. This
approach has the potential to revolutionize dermatology, offering
a more efficient and cost-effective method for diagnosing a wide
range of skin diseases and ultimately improving patient outcomes.

RESULTS
Evaluation of pre-trained models
To evaluate the performance of our pre-trained model, we fine-
tuned it using the entire coarse-labeled training set of 0.13 million
images. To assess the efficacy of our model, we compared our
results (denoted as ‘Derm’) with those obtained using a published
pre-trained model trained with ImageNet (denoted as ‘ImageNet’).
At the same time, we note that some work has pointed out that
knowledge from ImageNet can speed up convergence, improve
the generalization ability and performance when facing new
problem domains17,24. Therefore, we designed two additional pre-
training experiments to explore the role of ImageNet in under-
standing online dermatology images. The first experiment
involved mixing the images from ImageNet and our dermatology
images for pre-training (denoted as ‘ImageNet+Derm’). The
second experiment pre-trained the model on dermatology images
initialized with self-supervised ImageNet weights (denoted as
‘ImageNet→Derm’). All four pre-trained models were fine-tuned
under the same setting with 0.13 million coarse-labeled images.
The results are presented in Table 1. Our top-1 diagnostic accuracy
on the test set increased from 42.05% to 45.05% when pretrained
sorely on dermatology images, indicating a notable improvement
in performance. These findings suggest that unlabeled skin
disease data available on the Internet, even without standardized
sampling and labeling processes, holds great potential in the field
of skin disease diagnosis. It is noteworthy that simply combining
ImageNet and dermatology image data for pre-training shows

only a marginal increase in top-1 accuracy for dermatology
classification. Initializing with ImageNet model weights brings
greater gains than simply mixing the two datasets. However, it
should also be noted that these pre-training approaches incur a
greater training cost than solely working on the dermatology
dataset or the ImageNet dataset. The increase in training cost
primarily arises from the dataset expansion. We conducted pre-
training for each method using 64 RTX 3090 GPUs. In the
‘ImageNet+Derm’ configuration, the training duration (approxi-
mately 12 h per 100 epochs) almost doubles compared to the
‘Derm’ setup (approximately 5 h and 45min per 100 epochs).
While in this study, we utilized publicly available models trained
on ImageNet, resulting in a comparable computational cost for
‘ImageNet→Derm’ as with the ‘Derm’ setup, it’s crucial not to
overlook the additional time required to acquire model weights
trained on ImageNet if different network architectures were to be
employed. We attribute the modest gains from the ‘ImageNet→-
Derm’ approach to catastrophic forgetting, where the model loses
previously acquired knowledge from ImageNet when exposed to
new, unlabeled data. Additionally, the high prevalence of label
noise within internet-sourced dermatology images likely hinders
the model’s ability to learn accurate representations in fine-tuning
without selective filtering.

Effect of filtering coarse-labeled data
We acknowledge the challenge posed by noisy labeling in these
coarse-labeled images during the fine-tuning stage. To address
this, we filtered the training set using a validation set of 20 images
per disease based on feature distance obtained by pre-trained
model. This approach reduced the number of training images
from 0.13 million to approximately 30000, but our model’s top-1
diagnostic accuracy improved from 45.05% to 46.61%, and top-3
accuracy increased from 65.13% to 68.48%, which also surpass the
gains brought by pre-training on models initialized with ImageNet
model weights, indicating the necessity of our filtering methodol-
ogy. These findings indicate that using a larger validation set to
obtain a more comprehensive description of the clusters per
disease may lead to more effective filtering results.
To develop a flexible model adaptable to various diseases,

reducing the amount of labeled data can significantly decrease
training time and costs. However, using too little data may not
effectively capture the feature clusters of a disease. To further
explore this issue, we randomly selected subsets of 20, 30, 40, 50,
60, 70, and 80 images from the 80 validation images collected for
each disease to examine the impact of the size of the validation
set on filtering the coarse-labeled training data and the model’s
performance. To ensure test reproducibility, we conducted three
trials using different random seeds to select subsets of the
validation dataset and fine-tune the model. The final top-k
diagnostic accuracy is presented in Fig. 1a. The average top-1
accuracy after filtering images based on 20, 30, 40, and 50
validation samples over the three trials was 46.61%, 47.77%,
48.32%, and 49.64% respectively, indicating significant improve-
ment compared to the baseline of 42.05%. The ROC curve, as Fig.
1b shows, also indicates an improvement in the performance
when the validation samples increased. By ANOVA, we are unable
to statistically consider the data from the three trials to be
significantly different (p= 0.77), while statistically indicating that
the model performance is significantly higher than the baseline of
42.05% (all p-values much less than 0.01) as shown in Fig. 1c.
Furthermore, performance improved gradually as the number of
validation samples increased, likely due to a more precise
description of each cluster center with a larger validation set.
However, the improvement in subsequent models was relatively
low when the number of validation samples exceeded 50. As
shown in the Fig. 1d, the average top-1 accuracy of filtering
images based on 60,70,80 validation samples were 49.61%,

Table 1. Performance comparison among different pre-training
strategies.

Pre-training Dataset Top-1
Accuracy (%)

Top-3
Accuracy (%)

Top-5
Accuracy (%)

AUC

ImageNet 42.05 64.42 74.36 0.859

Derm 45.05 65.13 74.77 0.872

ImageNet+Derm 45.12 66.29 75.86 0.866

ImageNet→Derm 46.13 67.03 76.69 0.874

Four pre-training strategies were adopted: pretrained purely on ImageNet
dataset, pretrained purely on online dermatology dataset, pretrained on a
mixture of ImageNet and online dermatology dataset, pretrained on online
dermatology dataset initialized with ImageNet weights. We assessed the
performance of these pre-training models on our test set through fine-
tuning using the 0.13 million coarse-labeled images. Despite a marginal
increase, the performance gain from combining the ImageNet dataset in
pre-training is not as significant as our filtering approach, and it
necessitates additional computational resources.
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49.77%, and 49.79% respectively, while the rest of the top-k
accuracy also remained almost the same. We also used our
proposed filtering approach with 50 validation images per disease
on top of the ‘ImageNet->Derm’ pretrained model and achieved
an average top-1 accuracy of 50.44%. Compared with fine-tuning
with the whole coarse-labeled training set (46.13%), our filtering
approach gave a 4.31% increase, which further proved the
effectiveness of our filtering strategy across different pre-training
baselines. We counted the average number of images per
category after filtering with different number of validation images
as Fig. 1e shows. Generally, the number of remaining training sets
did not vary too much, especially when the number of validation

images reached 50 per category. Intuitively, we think that the
estimated cluster centers differ more from the actual cluster
centers when there are fewer validation images, thus causing
greater bias when filtering the training set by Euclidean distance.
Therefore, the estimated center of each cluster tends to be stable
with more validation images.
To illustrate the effectiveness of our filtering method, we used

t-SNE to generate a scatter plot of the cluster distribution of the
remaining training set after filtering with 50 validation images per
category. We also randomly sampled the same number of images
from the original training set to draw a scatter plot for comparison,
as shown in Fig. 2a. While t-SNE may cause some deformation in

Fig. 1 Model performance compared with the published baseline using the filtered training set. a, b show the top-k diagnosis accuracy
and ROC curve of our model. We pre-trained our model using unannotated images collected from the Internet and then fine-tuned it on the
full coarse labeled training set. Our top-1 diagnostic accuracy on the test set increased from 42.05% to 45.05% and the AUC of the ROC curve
increased from 0.859 to 0.872. After filtering potential noisy labels using validation images, the performance improved as the number of
validation images increased. When there were 50 validation images per category, the top-1 accuracy reached 49.64%. c Boxplot showing the
performance of three trials using different subset of validation images. Boxes represent the median costs and interquartile range. Whiskers
extend to the farthest data points. ANOVA analysis showed that our model’s performance was significantly better than the baseline, and that
different validation sets used for filtering did not produce statistically significant differences (p= 0.77). d Top-k diagnosis accuracy
improvement of our model saturates when the number of validation images reaches 50 per category, suggesting that 50 validation images
per category are sufficient for the filtering process. e Number of images after filtering averaged over three trials did not vary too much when
changing the number of validation images, especially when the number of validation images reached 50 per category, indicating the
estimated center of each cluster tends to be stable with more validation images.
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the appearance and distances of clusters, it still allows for a rough
idea of the relative position and coverage of each disease in the
feature space. Our results indicate that the selected training set
after clustering and filtering using features obtained by the pre-
trained model displays clearer boundaries for each cluster, and the
relative location of each cluster corresponds to dermatologists’
knowledge. For example, in the upper right corner of the scatter
plot, two isolated clusters representing androgenic alopecia and
alopecia areata can be observed, which are similar yet distinct
from other diseases. The discernible clustering of diverse skin
conditions indicates that the features employed in our analysis
can capture distinct attributes that are relevant to each disorder.
In Fig. 2b we mapped the average top-1 specificity and sensitivity
of each disease to the scatter plot. All the specificity were over
0.94, but the sensitivities displayed considerable variation.
Generally, diseases with clusters relatively far from the center of
other diseases and with fewer surrounding clusters exhibited
higher sensitivity. For instance, the sensitivity of androgenetic
alopecia, alopecia areata, acne, and melasma were 0.87, 0.82, 0.85,
and 0.77, respectively. These diseases are empirically more typical
and are easier for the physician to diagnose based on the image
alone. Conversely, diseases with clusters closer to the overall
center of other diseases and with more surrounding clusters
demonstrated poorer sensitivity. For example, lupus erythemato-
sus and eczema dermatitis only got 0.04 and 0.20. These diseases
often lack typical lesion characteristics, and the physicians also
require additional information to make accurate diagnoses. We
present the expression levels of certain host features in Fig. 2c to
provide a better understanding of the selected training set. The
spatial distribution of selected features highlights the likelihood
that these characteristics are linked to specific types of skin
diseases and affected areas of the skin. When we randomly

selected several images from both the filtered training set and the
excluded images and mapped them onto the scatter plots, it can
be observed that the retained images generally exhibit typical skin
lesion characteristics of their respective diseases, while the
excluded images tend to be farther from the cluster centers and
are mostly identifiable as label errors. It is important to note,
however, that there are three scenarios in which images may have
been excluded from the training set. Firstly, images containing
more than one skin disease, with the coarse label failing to
become the primary focus. Secondly, atypical skin lesions, such as
alopecia areata on the eyebrows, also have a high chance of being
far away from the typical cluster. And thirdly, skin diseases under
treatment, where recovery or medication will also change the
appearance of lesions. These exclusions could potentially lead to a
decreased recognition capability of our model for atypical skin
lesions, even though they only account for a small proportion of
the collected skin disease images. While it is generally believed
that more labeled data leads to better model performance, our
experiments demonstrate that images with correct knowledge
and distinct features are more likely to help the model learn
diagnostic criteria than a large amount of data with ambiguous or
incorrect labels.

Transfer learning to monkeypox detection
Figure 1d may suggest that for a new disease, 50 cases may be
needed to describe the clusters based on the pre-trained
contrastive model provided. Besides, at the top-10 confidence
level, the diagnosis accuracy already reached 90%. Therefore,
adapting our model to an early warning system for a new disease
may no longer require a large amount of image data specific to
that disease, resulting in a significant improvement in both
training speed and overall cost. We expect the model to identify

Fig. 2 Feature representation of the 22 diseases included in our study. a t-SNE plots of the filtered training set with 50 validation images
per category colored by disease categories, demonstrating the effectiveness of our approach in capturing the distinct features of each disease.
For comparison, a subset of images of the same number is randomly selected from the coarse labeled training set. b Average sensitivity and
specificity for each disease of 3 trials. Specificity of each category are all over 0.94 but sensitivity varied considerably. Generally, sensitivity
would be higher if the cluster was relatively far from the center of other diseases with fewer surrounding clusters. c Expression levels of some
host features. The levels of these characteristics are associated with the types of skin diseases and affected areas of the skin.
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potential risk images from a large number of uploaded data by
internet users and provide early warning signals for emerging
diseases. We demonstrate this in the experiment of monkeypox, a
rare disease primarily affecting dark-skinned individuals. We fine-
tuned our model on 50 monkeypox images added to the selected
coarse labeled training set and tested it on a mixed set of 2146
common skin disease images and 170 monkeypox images
collected from the internet. For images with low diagnostic
confidence, we classified them as ‘others’. In order to ensure
suspected patients receive proper diagnostic evaluation, it is
important to have a low false negative rate in a primary hospital or
internet scenario. Therefore, including a high ratio of monkeypox
images in the warning system while blocking unrelated diseases is
crucial. Relevant results are shown in Fig. 3. We projected the
image features of monkeypox onto the feature representation
map of the previously analyzed 22 skin diseases as Fig. 3a shows.
Due to the limited amount of image data included, the resulting
cluster appears relatively loose. Nevertheless, it is evident that,
apart from a few cases that may be attributed to mislabeled
images or distinct location-specific features (such as skin lesions
near hair), most monkeypox image projections are located near
viral warts and tinea. This observation aligns with our under-
standing of the characteristics associated with monkeypox. The
ROC curve for monkeypox is shown in Fig. 3b, with an AUC of
0.982. We counted the images that were diagnosed as monkeypox
along with the confidence level as Fig. 3c shows. Our experiments
show that when the confidence level is ranked in the top 10,
95.29% of monkeypox images are diagnosed, with suspected
images accounting for only 6.99% of the total images, the
confusion matrix of which is shown in Fig. 3d. The sensitivity was
0.953 and specificity was 0.997. Furthermore, our model detected

61.76% of monkeypox images at top-1 level, which surpasses 15 of
the 22 regular skin diseases. This suggests that the model has
promising performance in identifying rare and emerging diseases
while utilizing a small volume of training data. In addition, we
observed that images classified as ‘others’ in our experiments,
mostly consisted of skin diseases that were not included in the
training process like fungal skin infections. This may be due to the
highly distinctive nature of these skin lesions, which neither
resemble typical monkeypox lesions nor bear similarities to any of
the 22 common skin diseases analyzed.

Development of online diagnosis app
We developed a prototype of an online dermatology diagnosis
system implemented as a WeChat-based app named ‘Huifu’
following the JAMA CLEAR dermatology guidelines25, which could
be used on smartphones, as shown in Fig. 4. We have included a
completed CLEAR Derm checklist in Supplementary Table 1 to
show our adherence to the guidelines. This app enables patients
to receive diagnostic advice from our model by directly taking and
uploading images from their smartphones. After collecting basic
information from patients to build a health record, Huifu
combined a survey and picture-taking of a skin lesion. The
process begins by inquiring about the location of the lesions and
their symmetry. Based on this information, the software guides the
patient through different image collection protocols. We employ a
pre-processing module to assess image clarity, lighting conditions,
and camera distance to ensure that the images meet the
collection standards. Subsequently, our model detects and
segments the skin lesion. If monkeypox does not rank within
the top 10 confidence levels, we proceed to request additional
basic information related to the skin disease from the patient,
such as whether it is accompanied by itching, pain, etc., to provide
a more accurate diagnosis. However, if monkeypox does appear
within the top 10 confidence levels, it will be considered a high-
risk case. In such instances, we will pose specific questions, such as
‘Have you recently been in an area where monkeypox is
prevalent?’ For cases with a high suspicion of monkeypox, a
doctor will be assigned for a possible online consultation.
At current stage, our app has been served as a decision support

system for clinicians to offer valuable suggestions and enhance
the efficiency of doctors’ work. Since November 2021, we have
been piloting the app with physicians in 18 tertiary hospitals, and
it has assisted 186 doctors in making more informed diagnostic
decisions. Lesion images are taken using smartphones, either by
physicians or under their guidance, whereupon the images are
uploaded for AI analysis. The final diagnostic judgment, however,
rests with the physicians. We monitored backend usage data and
requested feedback from doctors on the consistency of the
model’s results with their own judgment. As shown in Supple-
mentary Fig. 1, backend data was used to illustrate the consistency
rate of top-2 diagnostic suggestions with physicians’ opinions, and
the average using time during our test respectively. Based on our
records up to November 2022, our app has been utilized in 26,676
patient encounters, with 21,288 completing the full diagnostic
process. The average usage time per encounter stood at 107 s.
Notably, the adoption rate of the app’s top-1 diagnosis by doctors
is 63.04%. This is a significant metric for us, indicating that patients
have achieved results at a faster pace than what would typically
require more time from a doctor. It reflects the clinical utility and
acceptance of our AI-driven diagnoses. In addition, the encoura-
ging diagnostic performance, especially for emerging diseases
such as monkeypox, has indicated the potential to collaborate
with public health authorities to assist in internet-based screening
efforts for such conditions.

Fig. 3 Results of downstream tasks with monkeypox
images added. a Scatter of monkeypox images. most monkeypox
image projections are located near viral warts and tinea. b ROC
curve of the fine-tuned model. We fine-tuned the model with the
filtered training set and 50 extra monkeypox images to act as a
warning system for monkeypox, testing on 170 monkeypox images
and 2146 skin disease-related images. c Performance of the
monkeypox warning system at each confidence level. Mp refers to
monkeypox images. Our model detected 61.76% of monkeypox
images at top-1 level. At the top-10 confidence level, 95.29% of
monkeypox images were successfully diagnosed, with highly
suspected images accounting for only 6.99% of the total images.
d Confusion matrix at the top-10 confidence level (Sensitivity=
0.953, Specificity= 0.997).

Y. Shen et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2024)    28 



Performance on benchmark datasets
Similar to the case of monkeypox, our model holds promise for
early malignancy detection, potentially leading to significant

improvements in patient outcomes. However, in Chinese online
forums there are few images related to malignancies (as discussed
in Supplementary Information), potentially due to the relatively

Fig. 4 Screenshots of the app ‘Huifu’. Starting from the first line, patients information is collected to build a personal health record. Then,
images of the lesion area are required to be uploaded. Our model is used to give a diagnosis based on the image uploaded. We use a follow-
up system to further help improve diagnosis accuracy. Finally, the recommended diagnosis is presented.
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low incidence rate and limited awareness among Chinese Internet
users26. Besides, it is also difficult to collect standard validation or
test malignant images from our collaboration hospitals. Therefore,
in this part we consider two benchmark datasets including related
data: Fitzpatrick17k27 and diverse dermatology images (DDI)28

datasets. At the same time, we notice that our model was initially
trained and tested on photos predominantly featuring East Asian
individuals, potentially introducing some bias. These two bench-
mark datasets, gathered from countries beyond China, allow us to
assess our model’s generalization across diverse races and skin
tones.
We began by consolidating specific labels from benchmark

datasets to align with our predefined labels. Given our primary
focus on detecting malignant diseases, particularly melanoma as
the most severe form of skin cancer, we isolated melanoma from
the broader malignancy category, establishing two distinct classes:
malignancies and melanoma. Consequently, we formulated a
classifier encompassing 24 classes. Images that didn’t match these
24 labels were categorized as ‘others’. Supplementary Table 2
contains detailed information on the label merging rules and
dataset sizes. Due to the inadequacy of the DDI dataset to form a
new class for training, we opted to combine the two datasets
together for this experiment. Classes with fewer than 10 images in
each dataset are not considered, as such a small sample size can
significantly skew the testing performance.
Firstly, we fine-tuned our model incorporating 50 images each

from melanoma and malignancies into the filtered coarse labeled
training set. Of these, 10 were sourced from DDI, and 40 from
Fitzpatrick17k. Then we tested it on the remaining images,
detailing the top-1 diagnosis accuracy for the classes in Table 2.
Note that due to the dataset imbalance between the two
benchmarks, our model demonstrated a tendency to perform
better on Fitzpatrick17k. Although achieving a top-1 accuracy of
49.47% on our test set and showcasing a degree of general
diagnostic capability on the benchmark dataset, the overall
performance was underwhelming. The two newly introduced
malignant classes exhibited relatively high diagnostic accuracy
(12.50% and 16.79% on DDI, and 55.26% and 43.22% on
Fitzpatrick17k). We attribute this disparity mainly to our model’s
training on predominantly East Asian images, lacking exposure to
diverse skin tones or races, while benchmark datasets are mainly
non-East Asian images.
To address the knowledge gap within the model, we

augmented the filtered training set with 20 images from each
category, excluding malignancies and melanoma, sourced from
the benchmark dataset. Due to data volume imbalances, we
specifically added images from classes containing more than 50
images to ensure adequate numbers for testing. The diagnosis
accuracy for the remaining benchmark images is detailed in
Table 2. Remarkable enhancements were observed across nearly
all classes. Overall performance on the DDI dataset increased from
19.45% to 33.69%, and on the Fitzpatrick dataset, it surged from
24.95% to 35.57%.
We attach the subgroup performance on both datasets in

Supplementary Tables 3 and 4. On the Fitzpatrick17k dataset, we
noted a gradual improvement in the model’s performance as skin
tones deepened. Initially, the model achieved an overall
performance of 33.13% for Fitzpatrick Scale I and 37.46% for
Fitzpatrick Scale VI. We attributed this outcome to differences in
the proportion and diagnostic accuracy of ‘others’ across varied
skin tones. After excluding this class, the model’s overall
performance elevated to 41.28%, demonstrating consistent
performance across different skin tones (38.85%, 40.60%,
40.80%, 44.03%, 46.70% and 40.86% for Fitzpatrick scale I to VI).
This improved performance across various skin tones suggests
that our pre-trained model has captured key dermatological
features, showcasing robust generalization ability. Additionally, its

adaptability to malignant skin diseases underscores the potential
for enhancing early intervention possibilities.
Specifically, the performance in identifying malignancies

improved even without additional training data. On the Fitzpatrick
dataset, the model’s accuracy in detecting melanoma reached
59.96% (sensitivity=0.59), matching other deep learning studies’
performance on the Fitzpatrick dataset29. The accuracy in
identifying malignancies increased to 48.86%. This lower perfor-
mance in malignancy identification might be because melanoma,
as a specific disease, exhibits more distinct and concentrated
features, while other malignancies present varied appearances.
However, as malignancies is still quite a different class from the
common diseases with our initial 22 classes, the performance is
still outstanding considering the small amount of data needed,
which indicates the potential in the early intervention of
malignancies.
Additionally, we observed a significant decline in diagnosing

acne compared to our test set. Upon image review, we believe this
might be due to substantial morphological differences in acne
across diverse skin tones and ethnicities, creating a gap that
cannot be merely addressed by grouping it as the same ‘acne’ as
present in our dataset. Similar to melanoma, if we extract 50 cases
of acne from benchmark datasets as a new category, our model’s
diagnostic accuracy on these acne images reaches 67.95%.
Unfortunately, due to limitations in the quantity of benchmark
datasets, it is challenging to further increase the number of
images in the training set to explore the model’s diagnostic

Table 2. Performance on the benchmark datasets.

DDI Fitzpatrick17k

Top-1 Accuracy (%) w/o 20
images

with 20
images

w/o 20
images

with 20
images

Acne 19.50 28.92

Actinic keratosis 28.21 45.27

Eczema dermatitis 7.56 31.15

Epidermal cyst 8.57 33.33

Folliculitis 31.29 56.52

Lichen planus 21.38 30.57

Lupus
erythematosus

5.01 40.08

Malignancies 16.79 40.15 43.22 48.86

Melanoma 12.50 27.27 55.26 59.96

Pigmented nevus 28.33 39.13 10.34 42.40

Psoriasis 17.56 45.92

Seborrheic
dermatitis

34.36 47.83

Seborrheic keratosis 26.39 39.13 27.54 42.86

Urticaria 18.65 25.43

Viral warts 3.51 18.92

Vitiligo 46.39 53.42

Others 20.54 24.86 24.85 30.95

Total except ‘others’ 18.99 38.07 25.07 41.28

Total 19.45 33.69 24.95 35.57

We added 50 images from melanoma and malignancies into the filtered
training set and created a classifier with 24 classes after label aligning. The
fine-tuned models were tested on the remaining images of the benchmark
datasets. Considering the racial difference between our training set and
the benchmark dataset, the initial performance is not impressive. However,
after we additionally extracted 20 images of each category from the
benchmark datasets and added them into training, a great increase can be
seen.
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potential. However, our results emphasize that by considering the
substantial disparities between the benchmark dataset and our
training data, our model can be easily adapted to new down-
stream tasks with small number of training data.

Bias discussion
Pre-training on images sourced from the Internet can carry and
amplify social biases. In this section, we will provide an initial
analysis of the biases present in our model. We address this issue
from two perspectives: the data distribution in the training set and
the performance across subgroups in the test set.
While naturally diverse, gathering metadata from the online

images used to train the model is often challenging. To handle
this, we conducted random sampling and manual labeling of the
training set to showcase potential biases within our training
dataset. We sampled 500 images from both the filtered and
discarded coarse-labeled training sets, having trained dermatol-
ogists identify gender, age, and lesion area information in the
corresponding images. Since labeling skin tones without profes-
sional training is difficult, we followed27 to compute the Individual
Typology Angle (ITA) with YCbCr masks for skin tone estimation
and derived Fitzpatrick scales. The unannotated data used for pre-
training mirrors the unfiltered coarse-labeled dataset, a blend of
these two subsets. The distribution of the sampled images is
presented in Table 3. Remarkably, in the filtered image set, the
percentage of ‘unknown’ for all subgroups, except for skin tone,
was notably lower compared to the discarded image set. The
proportion of unknown gender decreased from 47.80% to 29.34%,
and unknown age reduced from 63.60% to 35.93%. In the filtered
dataset, female account for the majority of images with explicit
gender information, which may be because women are more
active in seeking advice for skin diseases on online forums. The
dataset predominantly concentrates on lighter skin tones, in line
with the skin color distribution among East Asians. Additionally,
compared to the discarded images, the proportions of the very
light skin tone (I) and the dark skin tone (VI) decreased in the
filtered images, indicating our filtering possibly eliminated images
taken in extreme lighting conditions or through camera filters. The
decrease in images with unknown information or under extreme
lighting conditions partially indicates that our filtering approach
retained images with more diagnostic information, potentially
contributing to our model’s enhanced diagnostic performance.
As we collected patient metadata along with the validation and

test set images from offline hospitals, we showcase subgroup
performance on our test set in Supplementary Table 5. Specifically,
we compared the performance of three models under distinct
settings. Model A: pretrained on ImageNet dataset and finetuned
with whole coarse-labeled set. Model B: pretrained on the
dermatology dataset and finetuned with whole coarse-labeled
set. Model C: pretrained on the dermatology dataset and
finetuned with filtered coarse-labeled set with 50 validation
images.
Notably, Model C outperforms both Model A and Model B. In

subgroup analysis by lesion area, Model C significantly improved
the diagnosis of conditions impacting the upper extremities,
hands, lower extremities, and feet compared to Models A and B,
while the improvement for head/neck and torso conditions was
moderate. Across genders, all three models exhibited slightly
better performance for females. The performance difference
between males and females in the three models is 3.33%,
4.57%, and 3.72%, respectively. This indicates that Model C,
without amplifying gender differences, exhibited an overall
performance increase, emphasizing the filtering strategy’s capa-
city to generalize and provide balanced performance across
genders.
Regarding skin tones, although a small amount of test images

was categorized as Fitzpatrick scale V or VI based on their ITA

scores, our test set comprises typical images of individuals from
the Chinese population. Hence, rather than evaluating darker skin
tone subgroup performance, we’re presenting the model’s
performance facing East Asian skin that looks darker. We observed
that Model C displayed relatively higher accuracy for skin types
commonly found in East Asian populations, where the bias was
most pronounced across all three models. Model C shows good
consistency across Fitzpatrick scales II to V (52.58%, 49.40%, IV
57.98%, and V 51.98%, respectively). However, accuracy for the
lightest (I) and darkest (VI) skin tones is comparatively lower, at
48.66% and 42.62%, respectively. Nonetheless, compared to
Model A, the accuracy for skin classification in types I and VI is
still higher by 6.87% and 4.05%, respectively. This might indicate
that due to the uniqueness of the Chinese internet, the model’s
diagnostic abilities for skin diseases among populations with the
lightest and darkest skin tones are somewhat limited. It’s crucial to
note that the difference in performance across various skin tone
subgroups primarily stems from the inherent characteristics of the
Chinese internet itself rather than from model training. Most
internet users contributing to the dataset are East Asian residing
with minimal immigration diversity in urban areas of China. While
there are ethnic minorities in China with darker or lighter skin
tones, these populations are primarily concentrated in border
regions, resulting in lower representation within the dataset.
Consequently, the dataset tends to represent individuals pre-
dominantly falling within Fitzpatrick skin types II to V, with

Table 3. Meta Information distribution of the coarse-labeled
training set.

Images
discarded

Images
filtered

Gender Female 25.80% 44.51%

Male 26.40% 26.15%

Unknown 47.80% 29.34%

Age Infants 1.40% 1.20%

Adult 29.20% 48.50%

Prime 4.60% 12.18%

The elder 1.20% 2.20%

Unknown 63.60% 35.93%

Lesion area Head/Neck 55.60% 62.08%

Torso 10.20% 9.38%

Upper extremity 5.00% 5.79%

Hands 8.40% 5.19%

Lower extremity 9.40% 5.59%

Feet 5.20% 7.39%

Unknown 6.20% 4.59%

Skin tone I 71.00% 66.47%

II 9.60% 12.97%

III 9.20% 10.78%

IV 3.60% 4.79%

V 3.40% 3.59%

VI 3.20% 1.40%

We sampled 500 images from both the filtered and discarded coarse-
labeled training sets and annotated gender, age, and lesion area
information. Skin tone was estimated by ITA scores. Other labels were
obtained by human annotation. Apart from the skin tone, for all other
subgroups, the percentage of ‘unknown’ in the filtered image set was
significantly lower. The proportions of the very light skin tone (I) and the
dark skin tone (VI) in the filtered images have decreased, which may imply
a decrease in images taken under extreme lighting conditions. These
results indicate the effectiveness of our filtering strategy.
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significantly fewer representations of skin types I or VI. Our
experiments on benchmark datasets further confirm this.

DISCUSSION
In conclusion, our study has revealed the value of unlabeled data
on the internet for learning dermatological diagnoses using
contrastive learning to pre-train a model. Although the improve-
ment in diagnostic performance for 22 common skin diseases
after fine-tuning was only 3% compared with the baseline model
pre-trained on ImageNet, this should not be interpreted as a lack
of value in the data from the Internet. The main reason for the
limited improvement is that there are many labeling errors in the
coarse annotations of data used during fine-tuning, which can
greatly affect the model’s performance if not addressed properly.
Therefore, we have established a training framework that uses the
validation images as calibration to clean the coarse-labeled
training set and maximize the value of the Internet data, resulting
in a further significant improvement in the diagnostic perfor-
mance of the model by a maximum of 4.6%, while reducing the
computational costs required. It should be noticed that, although
integrating ImageNet with unlabeled skin images offers a slight
improvement in the pre-training stage, our filtering strategy can
offer more performance gains, and emphasizes the necessity of a
filtering approach when dealing with noisy datasets from the
Internet. We demonstrate the ability of our model to transfer to
downstream tasks with emerging diseases through the experi-
ment of monkeypox. We also tested our pre-trained model on
benchmark datasets to supplement missing out-of-distribution
results in our test set and to verify our model’s generalization
across malignant diseases and skin tones of different ethnicities.
Our model can also distinguish malignancies with small amount of
training data added. Due to utilizing data from the Chinese
Internet, our model was trained predominantly on images of Asian
individuals. While its initial performance on benchmark datasets
primarily featuring other ethnicities may not be impressive, with
the addition of a small number of images for guidance, it
demonstrates excellent generalization on these new datasets as
well. These results suggest that our framework has the potential
for widespread use in the diagnosis of other skin diseases,
particularly those for which labeled data is scarce.
Based on the prevalence of skin diseases and the pressure on

medical resources, developing an effective AI-assisted diagnosis
system for dermatological diseases can have significant value.
Such a system can provide primary dermatologists and general
practitioners with diagnostic expertise that is equivalent to that of
top dermatologists, thereby bridging the gap between primary
and advanced dermatology. A cross-sectional study30 has
demonstrated that most dermatologists are willing to adopt AI
tools to enhance time efficiency, diagnostic accuracy, and patient
management. Additionally, for ordinary patients, online forums
provide a platform to discuss their health concerns, including skin
diseases. Using appropriate AI tools based on images allows
patients to detect and treat potential diseases early. Timely
diagnosis and treatment of rare and infectious skin diseases have
significant clinical value, as they can encourage dermatologists to
initiate appropriate treatment plans, improve patient experiences,
reduce the risk of long-term sequelae, and reduce the incidence
and mortality rates associated with severe skin adverse reactions
or invasive skin cancer. At the macro level, it will contribute to the
optimal utilization of medical resources, including targeted
treatment and appropriate referrals to specialist physicians. This
can alleviate the pressure on the healthcare system and minimize
the waste of medical resources. Additionally, AI diagnostic
information can be more directly and systematically integrated
into other systems, providing information for public health
interventions, policymaking, and resource allocation.

However, online skin disease diagnosis will face complex skin
disease classification tasks with multiple disease subtypes and
complex pathogenesis. Traditional supervised methods require a
large amount of annotated data and may even involve human
evaluation in the training process31, which is not feasible in the
Internet context. Meanwhile, contrastive learning offers a potent
tool for the automated diagnosis of skin diseases. Past uses of
contrastive learning in the field of dermatology primarily involve
structured and high-quality but limited-scale benchmark datasets.
These datasets, geared for medical research, often concentrate on
diseases with higher medical value and acquire images under
stringent uniform capture requirements. Despite significant
progress achieved by previous models in these specialized
domains, the challenge arises for daily use to capture images
that meet these stringent requirements and use these mod-
els19–21. For example, capturing images akin to the ISIC dataset
using mobile devices can be quite challenging. Furthermore, these
specialized datasets limit the types of diseases these models can
cover, while skin diseases in daily life often exhibit a ‘long-tail’
distribution, demanding higher levels of coverage and general-
ization from models32,33.
Unlike the work in ref. 34 that improved the loss function to

enhance the learning capability of contrastive learning for out-of-
distribution (OOD) data representations, our work focuses on the
effective utilization of web data right from the data source. These
data sources often possess quality issues, making the research
quite challenging. However, the inherent diversity of the internet
data aligns better with regular people’s everyday scenarios,
broadening the scope of our downstream tasks to support a
more diverse set of common diseases than traditional contrastive
learning. Through our filtering approach, our model achieved a
significant improvement in diagnostic accuracy, demonstrating its
effectiveness. Furthermore, experiments on benchmark datasets
indicated the remarkable generalization ability of our model,
swiftly adapting to and handling unknown data. In practical
application, our research covers not only common skin diseases
but also emerging ones, as showcased by our successful
application of the model for early detection of monkeypox.
Merely by incorporating an additional 50 images of monkeypox
into the training process, our model attained an impressive
61.76% top-1 accuracy, showcasing its outstanding adaptability to
emerging and evolving health challenges.
Considering that physicians have limited opportunities to

diagnose based solely on image information, it would be unfair
to directly compare the performance in this scenario. However, it
is possible to assess the value of our work by comparing the
results with similar studies. A previous study3 reported diagnostic
accuracy rates of dermatologists, primary care physicians (PCPs),
and nurse practitioners (NPs) as 63%, 44%, and 40%, respectively.
The performance of our model is approximately comparable to
that of PCPs. It is worth noting that the dermatology images
sourced from the Internet encompass not only common skin
diseases. While our target diseases share a substantial similarity
with the aforementioned study, they also include less commonly
seen diseases such as systemic lupus erythematosus, lichen
planus, and blue nevus, with diagnosis accuracies below 40%.
These diseases are more challenging to diagnose or resemble
malignant skin diseases, often receiving more attention and
discussion on the internet. If we solely consider skin diseases
included in the aforementioned study, our average diagnosis
accuracy reaches 52.57%. On one hand, the existence of images
depicting rare or atypical skin diseases underscores the value of
internet skin image data. On the other hand, it signifies the
potential for monitoring rare or emerging epidemic skin diseases
on the internet. Although the experiments indicate that due to
data biases, our model exhibits higher performance among East
Asian populations, given the severe shortage of dermatologists
and PCPs in China, our ‘Huifu’ software holds substantial value.
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Our app aligns with the current shift towards patient-centered
diagnostic approaches. Smartphone cameras evidently provide a
convenient and swift means of dermatological consultation for a
larger number of patients. This work showcases the potential of
online health forums as valuable resources for medical research
and the development of AI-driven diagnostic tools, paving the
way for more inclusive and accurate healthcare solutions.
AI-assisted diagnosis of skin diseases has immense potential for

further advancement, especially with recent breakthroughs in
multimodal language models like ChatGPT35. These models
possess the capability to process both image and text information,
enabling quick access to accurate information about skin diseases
for patients and healthcare providers, along with personalized
responses to users’ inquiries and descriptions. Furthermore, the
integration of text-based patient symptoms with image-based
skin lesions, gathered from internet forums and other user data
sources, can further enhance diagnostic accuracy. However, it is
important to note that dermatological conditions often encom-
pass numerous atypical cases. Relying solely on images for a
preliminary diagnosis and then mechanically asking questions to
differentiate them from common diagnoses would be time-
consuming and may not yield accurate results. Building upon our
work, it may be possible to improve the efficiency of consultations
by employing a common language model that can better target
differential diagnoses sharing typical lesion features. This
approach could optimize the efficiency of consultations. For skin
lesions located far away from clusters of other diseases, the
reliability of the diagnosis would increase, requiring only a few
follow-up questions, thereby further optimizing efficiency. With
the advent of Internet hospitals, these models can even identify
similarities between patients with similar symptoms or conditions.
Thus, incorporating internet data can lead to more effective and
efficient development of skin disease diagnostic models. As AI
technologies continue to advance, we can expect even more
exciting possibilities for AI-assisted diagnosis of skin diseases in
the future.

METHODS
The overview of our framework is shown in Fig. 5.

Data description
Significant progress has been made in the past few years based on
large-scale annotated image datasets in object classification. The
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)36 has
emerged as a central testbed for object classification research and
has showcased landmark achievements in machine learning. For
our experiment, we referred to the number of images used in the
pre-training and fine-tuning of popular unsupervised learning
methods trained on ImageNet and collected data from various
sources on the Internet. The Medical Ethics Committee of the
Third Affiliated Hospital of CQMU provided ethical review and
approval for this study. Collaborating doctors obtained additional
written informed consent using EC-approved forms from patients
during the collection of validation and test images for the study.
Our data collection process through the ‘Huifu’ app adhered to the
user and content security solutions provided by the WeChat Mini
Program, ensuring in-app informed consent was secured via a
checkbox when gathering backend data.
The training images are collected from search engines, public

forums, online doctor consultation platforms, dermatologists’
personal channels and other publicly available resources in China.
We conducted searches based on specific keywords, allowing for a
maximum of 3000 images up to date per search. This collection
process was completed by the middle of 2021. Initially, we
collected over 3 million images related to skin disease. To balance

categories, we removed some samples from keyword subsets with
sufficient image representation.
In the pre-process stage, to clean the data, we go through

several screenings. We first apply a skin segmentation module
using a U-Net37 to filter images without enough skin. We follow
the experiment in ref. 38 and set the threshold as 0.75. We also
drop images that are too small (less then 224 × 224), have extreme
aspect ratio (over 3:1) or of low-quality as in ref. 39. At last, we use
center-crop and resize all the images into 512 × 512 to create the
training set of 1.18 million dermatosis-related skin images without
annotations.
Note that annotation is unnecessary in the unsupervised pre-

training phase of the model. However, labels are indispensable for
fine-tuning it as a classifier. The skin disease images were
annotated using two methods. Firstly, skin diseases or related
terminologies were used as coarse labels for the images in self-
organized communities and forums related to skin diseases in
China. Secondly, skin disease images were directly searched on
search engines, and databases with coarse labels created on the
web were incorporated. To standardize and merge certain coarse
labels, we relied on physician experience and dataset character-
istics. We adopted industry-standard specifications such as
CDISC40 and ICD1041 to transform large sections of unstructured
text into standardized data through natural language processing
techniques. For example, ‘whelks’, ‘pimples’, and ‘comedo’ were
combined into the general category ‘acne’. We also merged labels
that contained skin diseases that could not be reliably distin-
guished without consultation, such as ‘viral warts’ and those that
contained only partial images that did not allow for identification
of the lesion site, such as ‘tinea manuum’ and ‘tinea pedis’ into the
broader category of ‘tinea’. Finally, we selected the 22 most
representative skin diseases of the highest proportion, each with
at least 800 images, for model construction, as listed in Table 4.
The details of selecting these 22 diseases can be seen in
Supplementary Information. In total, we collected 0.13 million
dermatology-related skin images with coarse label information for
fine-tuning.
To test the performance of our model, extra image dataset

consisting of high-quality skin lesion images was obtained under
standardized conditions and filtered to ensure quality to be used
as validation and test set. Our validation and test set were
gathered through collaboration with doctors in offline hospitals.
Physicians physically examined the patients, assessed skin lesions,
conducted interviews, and performed essential pathological tests
to ascertain diagnostic results. After that, physicians captured the
images using a smartphone in natural light or simulated natural
light without any shadows and maintained a focal length of 1
while focusing on the center of the lesion. We disabled the
camera’s beauty, whitening, smoothing, and filtering features
during this process. For facial lesions, frontal and lateral images
were captured at a 45° angle, while for symmetrical lesions on the
extremities, two images of the affected area were combined.
Asymmetrical lesions on the extremities required a complete
image of the affected area. All images were required to ensure
that the lesion covered 80% of the image area, and 20–30% of the
surrounding skin was captured. In addition to this, physicians
included essential meta-data (gender and lesion area) while
photographing the skin lesions. The diagnosis for each case was
determined by a dermatologist with at least 15 years of clinical
experience in dermatology, and the dataset was reviewed by two
dermatologists before inclusion. The dataset was created by 33
mid-to senior-level dermatologists. We prospectively collected 80
and 150 cases of each of the 22 most prevalent dermatological
diseases respectively from 15 tertiary hospitals to serve as the
validation and test set in the following experiments.
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Unsupervised encoder
We employed the formulation of swapping assignments between
multiple Views (SwAV) presented in ref. 15 to learn the feature
representations of skin diseases in an unsupervised manner using
the online clustering method. SwAV encodes two different
augmented views of the same image into features zt and zs

respectively. Then a set of trainable code vectors qt and qs are
computed by matching these features to a set of K prototypes
c1; � � � ; cKf g. The similarity between these representations is
formulated as a swapped prediction problem between positive
pairs, whereby feature vectors from one view are forced to match
the cluster’s code from the other view. The loss function is

Fig. 5 Overview of the proposed approach. Our approach is designed for online dermatological diagnosis scenarios and makes full use of
the image data from the Internet. Starting from the top, firstly, images were collected from various Internet resources. Several screenings were
implemented to pre-process the collected images. Besides 1.18 million images without annotations, 0.13 million images with coarse labels
were obtained by matching keywords from topics and merged based on published standards. Secondly, a model was pre-trained on the
unlabeled images using contrastive learning approaches, and it acted as a feature extractor later. Thirdly, features were extracted from both
the coarse-labeled training set and the validation set. Clustering and filtering were performed to discard potential incorrect labels. Finally, the
filtered training set was used to fine-tune the model, and a self-adaptive threshold was adopted to handle out-of-distribution images. The
approach also allows a small number of images from new categories to be added for transfer to new downstream tasks, and it shows good
generalization ability.
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expressed with Eq. (1),

L zt; zsð Þ ¼ l zt; qsð Þ þ l zs; qtð Þ (1)

where

l zt; qsð Þ ¼ �
X

k

qs
kð Þ log pt

kð Þ; pt
kð Þ ¼ exp 1

τ zt
Tck

� �
P

k0 exp
1
τ zt

Tck0
� � (2)

Notably, unlike other instance-based methods, SwAV does not
employ negative pairs explicitly. Instead, the representation is
prevented from collapsing through the batch-wise online code
computations.

Data cleansing based on distance
We train SwAV on images scraped from the Internet without
annotation and use the model as a feature extractor for those
images with coarse labels, which were subsequently used in the fine-
tuning stage. The labels and the features of original training dataset
are denoted as Ytrain,i and Ztrain;i 2 R1 ´ d i ¼ 1; 2; � � � ;Ntrainð Þ, with d
dimensions for Ntrain samples. For the total M classes, we use a small
subset of clean annotated data from doctor diagnosis as the
validation set with Nval images for each class, the labels of which are
denoted as Yval;i and use the pre-trained model to extract features
Zval;i 2 R1 ´ d i ¼ 1; 2; � � � ;NvalMð Þ of them. These validation images
have obvious inter-class distinctions can be served as a calibration
for those images with label noise. Based on the assumption that
each cluster for different diseases is a convex packet42, our strategy is
to estimate the center of each cluster for every class based on the
validation images.

Cval;i ¼ 1
Nval

XNval

j
Zval;j for Yval;j ¼ i; i ¼ 1; 2; � � � ;M (3)

We calculate the Euclidean distance between the image in the
training set and the center of the M clusters.

ri;j ¼ jjZtrain;i � Cval;j jj2; i ¼ 1; 2; � � � ;Ntrain; j ¼ 1; 2; � � � ;M (4)

We discard the training images whose closest cluster does not
match its coarse label. That is, we only retain images that meet
Eq. (5).

argmin ri;�
� � ¼ Ytrain; ii ¼ 1; 2; � � � ;Ntrain (5)

For dimension reduction, a principal component analysis is
implemented. We project the feature representation of both the

training set Ztrain and the validation set Zval to the vector space
expanded by the first 100 principal components of the
validation set.

Transfer learning to downstream task with self-adaptive
threshold
Collecting data and obtaining annotations from experienced
physicians for rare diseases is a challenging task. In order to
demonstrate the efficacy of our approach in handling rare
diseases with small sample sizes, we gathered a dataset of 220
monkeypox images from various public websites on the
internet. Out of these, 50 cases from literature case reports
and the European CTC official website were selected as the
training set, while the remaining 170 were used as the test set.
To account for variations in ethnicity and skin color, we also
collected 2146 skin images from English websites using relevant
keywords such as Dermatosis, Skin diseases, Rash, Ringworm,
Dermatitis, etc. These images were also included in the test set.
Note that the recent monkeypox outbreak were first reported in
2022, which ensured these images will not be included in our
pre-training dataset or coarse-labeled dataset. Also, manual
screening ensured that the training and test sets of monkeypox
images had no data overlap. The diverse skin disease images
used were deliberately sourced from the Internet that dated
after 2022. As a result, we expect no data leakage in this transfer
learning experiment.
Since class categories or diagnoses that are not included in the

algorithm’s training data are common in the online scenario, we
needed to deal with images that belonged to out-of-distribution
(OOD) classes. To address this, we employed a self-adaptive
threshold to allocate images with low classification confidence to
the ‘other’ class. After fine-tuning, we extracted the feature of the
training set and calculated the distance among cluster centers of
different classes.

Ri;j ¼ jjCtrain;i � Ctrain;jjj2; i ¼ 1; 2; � � � ;M; j ¼ 1; 2; � � � ;M (6)

Taking the idea that the more distant the clusters, the easier it is
to distinguish them, our approach considered the distance
between the nearest and farthest clusters, with the threshold set

Table 4. Data distribution for the coarse-labeled training set used in fine-tuning.

Disease Name Number of Images Disease Name Number of Images

Acne 36942 (27.71%) Lupus erythematosus 2515 (1.89%)

Actinic keratosis 822 (0.61%) Melasma 5256 (3.94%)

Alopecia areata 1728 (1.30%) Palmoplantar pustulosis 5970 (4.48%)

Androgenetic alopecia 1068 (0.80%) Pigmented nevus 2149 (1.61%)

Blue nevus 1008 (0.75%) Psoriasis 6483 (4.86%)

Cutaneous amyloidosis 6793 (5.10%) Seborrheic dermatitis 16380 (12.19%)

Eczema dermatitis 11448 (8.59%) Seborrheic keratosis 3437 (2.58%)

Epidermal cyst 4550 (3.41%) Tinea 2116 (1.59%)

Folliculitis 900 (0.67%) Urticaria 3868 (2.90%)

Herpes zoster 999 (0.75%) Viral warts 4866 (3.65%)

Lichen planus 8672 (6.50%) Vitiligo 5327 (4.00%)

Total 133297(100%)

Despite 1.18 million dermatosis-related skin images without annotations used in the pre-training, we collected 0.13 million coarse-labeled images based on
keywords and topics from the Internet. We relied on physician experience to standardize the labels referring to CDISC and ICD10.
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as (7) to distinguish them effectively43.

T ¼ min Ri;j
� �

min Ri;j
� �þmax Ri;j

� � (7)

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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