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N2GNet tracks gait performance from
subthalamic neural signals in Parkinson’s
disease
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Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson’s
disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor
state. Current algorithms, however, utilize condensed and manually selected neural features which
may result in a less robust andbiased therapy. In this study,weproposeNeural-to-GaitNeural network
(N2GNet), a novel deep learning-based regression model capable of tracking real-time gait
performance from subthalamic nucleus local field potentials (STN LFPs). The LFP data were acquired
when eighteen PWP performed stepping in place, and the ground reaction forces were measured to
track their weight shifts representing gait performance. By exhibiting a stronger correlationwithweight
shifts compared to the higher-correlation beta power from the two leads and outperforming other
evaluatedmodel designs, N2GNet effectively leverages a comprehensive frequency band, not limited
to the beta range, to track gait performance solely from STN LFPs.

Gait has been noted as one of the heavily researched areas for movement
disorders in Parkinson’s disease (PD), as its related symptoms including
impairment, slowness of stepping, or freezing may cause devastating inci-
dents such as falling1–3. One of the possible ways to alleviate these symptoms
is through deep brain stimulation (DBS), an implantable system that deli-
vers electrical stimulation to specific brain regions such as subthalamic
nucleus (STN)4–6. By providing a consistent level of stimulation determined
by the clinicians to people with PD (PWP) throughout their daily activities,
DBS has been adopted in various situations to reducemedication usage and
treat motor symptoms7.

The advancement of DBS allowing sensing capabilities from its
leads has paved the way for the therapy to be a closed-loop system,
where DBS can adjust its parameters automatically based on sensed
neural activity8,9. This recently developed approach is known as adap-
tive DBS, which adjusts the amount of stimulation in real-time with
respect to the motor performance and reduces the exposure of unne-
cessary amounts of stimulation10,11. One of the common neural signals
that adaptive DBS utilize is the local field potential (LFP) recorded from
the STNs that reflect the motor state of PWP. Specifically, neural
oscillatory activity within the beta frequency band (13–36 Hz) has been
known to be associated with movement, including changes in brady-
kinesia and freezing of gait (FOG)12–16, serving as a useful indicator for
adjusting stimulation levels in real-time. Growing evidence has high-
lighted that adaptive DBS using these biomarkers was effective in

alleviatingmotor symptomswhile delivering less stimulation compared
to conventional open-loop DBS17,18.

Various adaptive DBS algorithms have been proposed to speculate
patient’s movement performance from beta-related biomarkers and mod-
ulate stimulation accordingly. For instance, beta power had been used in
single and dual-threshold algorithms, where the stimulation was adjusted
depending on one or two clinically defined beta power thresholds,
respectively19–21. Beta burst durations have also been investigated for their
feasibility todrive the stimulation,with its consideration that prolongedbeta
bursts are more associated with motor disability and gait impairment than
short bursts22,23. Despite these advancements, using beta power or burst
durationswith threshold-based algorithms possess some limitations.Due to
the nature of neural oscillatory patterns being different between individuals
and evenwithin individuals over time, the algorithmsusing these condensed
neural signal features may result in less reliable therapy24–26. In particular,
these algorithms employ low-complexity representation of signals that may
also be affected by other components that do not correlate with real-time
movements, such as cognitive impairment, plastic effects, and severity of
motor symptoms24,27,28. Relying on these low-complexity features that can
potentially be influenced by multiple causes may lead to degraded perfor-
mance of the algorithm. These methods also use handcrafted parameters
identified through visualization to determine which of these compressed
neural features should be considered, which may fail to capture detailed
neural characteristics associated with real-time gait of an individual. Such
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approaches are thus prone to becoming less reliable, more subjective, and
biased therapies due to their low complexity29.

In this paper, we introduce Neural-to-Gait Neural network
(N2GNet), a deep learning-based data-driven approach capable of
predicting gait performance in real-time relying on LFP signals from left
and right STNs. Considering that unsupported gait may raise safety
concerns such as falls, the LFP data was acquired while participants
performed stepping in place (SIP) while being harnessed, and the
ground reaction forces from the left and right legs were measured
through the corresponding force plates to alternatively assess gait
performance30. To have the model learn features automatically from
high-complexity LFP signals, our deep learning architecture was
designed to extract features directly from band-pass filtered LFP signals,
which would be associated with the amount of weight shifts performed
by participants during the SIP task. With the extraction of relative
features that aims to learn relative changes between pairs of oscillatory
components from the LFPs, our model is designed to enhance gait
prediction performance beyond merely utilizing direct oscillatory
characteristics of the signals.

Results
Participant demographics
A brief overview of the dominant symptom for each of the eighteen parti-
cipants is shown in Table 1. Participants were divided into two groups
depending on their dominant symptoms, a tremor dominant (TD) group
and an akinetic rigid (AR) group, resulting in nine participants per group.

The months the visits took place after the initial programming (IP) of
DBS, thedurationof task recordings in seconds, and the rangeofweight shift
data labels from each task are also shown for training, validation, and testing
datasets in Table 1. The IP visits, whichwere held for the initial activation of
theDBS system, took place amonth after the implantation of theDBS leads.
The MDS-UPDRS (Movement Disorder Society-Unified Parkinson’s Dis-
ease Rating Scale) III scores for when participants were off medication and
OFF stimulation, which were evaluated within three months of each visit,
are also available in Supplementary Table 1 for reference.

N2GNet performance on neural-to-gait translation
TheperformanceofN2GNet,which inputs 5-secondLFPdata topredict the
last 2 seconds of weight shift measure during participants’ repeated steps on
the two forceplates, was investigated for each participant using the three SIP
task datasets acquired across three different visits. Figure 1 shows the spread
of N2GNet’s results for the validation and test sets retrieved from the
midpoint and latest visits, respectively, after training the model with the
training dataset from the earliest visit. The results for TD group participants
showed a mean ± standard deviation of 0.132 ± 0.075 for mean absolute
error (MAE) and 0.041 ± 0.034 for mean squared error (MSE) with vali-
dation datasets, and an average of 0.157 ± 0.083 forMAE and 0.059 ± 0.051
for MSE from test datasets, showing 0.025 and 0.018 increments in the
average MAE and MSE, respectively. AR group participants also had an
increase in error rates from validation to test datasets, with 0.004 average
MAE increments from 0.186 ± 0.088 for validation sets to 0.19 ± 0.093 for
test sets, and with 0.009 increments in average MSE from 0.063 ± 0.042 for
validation sets to 0.072 ± 0.067 for test sets. No significant differences were
observed between the two groups for both MAE and MSE from both vali-
dation (MAE with U = 27.0, unadj− p = 0.258 and MSE with U = 28.0,
unadj− p = 0.297, Mann–Whitney U-test) and test sets (MAE with
U = 31.0, unadj− p = 0.436 and MSE with U = 36.0, unadj− p = 0.73,
Mann–Whitney U-test).

The overall N2GNet performance with all PD participants usingMAE
was 0.174 ± 0.089 for the test datasets, which was 0.015 higher than the
average error rate using validation datasets (0.159 ± 0.086). The average
MSE was 0.065 ± 0.06 in test datasets, which was also greater by 0.013 than
the average MSE from validation datasets, which was 0.052 ± 0.04.

Correlation analysis with N2GNet and with beta power
Kendall tau coefficients were measured to evaluate and compare N2GNet’s
performance and beta power for reflecting weight shifts. The correlation
results using Kendall tau coefficient between beta power measures and
weight shifts, and between predicted values fromN2GNet and weight shifts
are shown in Fig. 2. As demonstrated in Fig. 2a, average beta power mea-
sures over a 2-second interval corresponding to the weight shifts were

Table 1 | Participant demographics and data information

Participants Symptoms Train Validation Test

Visit Mo. Length (s) Value range Visit Mo. Length(s) Value range Visit Mo. Length (s) Value range

1 TD 6 190 (0.0–0.95) 9 193 (0.0–0.9) 12 182 (0.0–1.0)

2 TD 39 193 (0.0–0.99) 42 184 (0.0–1.0) 52 158 (0.0–0.95)

3 TD 12 176 (0.0–1.0) 21 174 (0.0–0.86) 33 172 (0.0–0.64)

4 TD 1 169 (0.01–1.0) 3 206 (0.01–0.98) 6 187 (0.02–0.72)

5 TD 3 179 (0.0–1.0) 16 181 (0.0–0.94) 32 138 (0.0–0.99)

6 TD 1 160 (0.0–0.97) 3 166 (0.0–0.91) 6 174 (0.01–1.0)

7 TD IP 165 (0.0–1.0) 9 108 (0.0–0.83) 27 214 (0.0–0.78)

8 TD 6 203 (0.0–1.0) 21 219 (0.01–0.07) 27 117 (0.01–0.07)

9 TD 30 157 (0.0–0.99) 33 149 (0.0–1.0) 36 158 (0.0–0.98)

10 AR 6 166 (0.0–0.97) 12 171 (0.0–1.0) 33 158 (0.0–0.94)

11 AR 21 147 (0.0–0.88) 27 137 (0.0–1.0) 33 211 (0.0–0.93)

12 AR 12 155 (0.0–0.77) 28 195 (0.0–0.79) 32 183 (0.0–1.0)

13 AR 3 163 (0.0–1.0) 6 176 (0.0–0.98) 12 180 (0.0–0.95)

14 AR 6 166 (0.0–1.0) 9 183 (0.0–0.91) 12 185 (0.0–0.63)

15 AR 34 205 (0.0–1.0) 37 161 (0.0–1.0) 41 154 (0.0–0.96)

16 AR 31 151 (0.0–1.0) 34 161 (0.0–1.0) 38 140 (0.0–0.96)

17 AR 4 140 (0.0–1.0) 6 152 (0.0–0.98) 12 139 (0.0–0.79)

18 AR 3 177 (0.0–0.78) 6 186 (0.0–1.0) 9 194 (0.0–0.97)

The value ranges for labels are reported as (minimum value −maximum value) in each set.
TD tremor dominant, AR akinetic rigid.
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Fig. 1 | Performance of N2GNet’s predictions for TD group, AR group, and for all PD participants. The x-axis indicates the predicted values from our proposed model
and the y-axis indicates the actual values, which are the weight shift values computed from the force plates.

Fig. 2 | Kendall tau correlation analysis. a Example Kendall tau correlation com-
parisons demonstrating the procedures, where the two beta power results acquired
separately from the two LFP signals and the prediction results from the N2GNet was
referred to the weight shifts computed from the force plates to calculate correlation
coefficients. b Comparisons of correlation results from validation and test sets for
TD group, AR group, and for all PD participants. The x-axis, from left to right,
indicates the lower coefficients out of the two beta powers measured from each

participant, the higher coefficients of the two, and the coefficients computed with
N2GNet results. The gray dots indicate correlation coefficients from each partici-
pant, and the dots in red represent the mean value. The boxplots represent first
quartile, median, and third quartile for lower, middle, and upper lines in the boxes,
respectively, whereas the whiskers represent 1.5 times the IQR extending above the
first quartile and below the third quartile.
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computed separately for each lead, and the correlation between each beta
power measures and the weight shifts was compared to the correlation
between N2GNet’s results and weight shifts.

The comparisons between the beta power of lower coefficients, the beta
power of higher coefficients, and the coefficientswithN2GNet’s predictions
show that stronger correlations were exhibited with N2GNet’s predictions
than with the beta power from either of the two leads (Fig. 2b). The average
Kendall tau coefficient for the TD group from validation sets usingN2GNet
was 0.45 ± 0.206, which was greater than the average of 0.305 ± 0.147 from
the beta power of higher coefficients.N2GNet also exhibited greaterKendall
correlation on test sets with 0.33 ± 0.195 compared to the higher-coefficient
beta power of 0.229 ± 0.203.As for theARgroup,N2GNet’s predictions had
higher correlation with the weight shift than the beta power in both vali-
dation (0.45 ± 0.148 for N2GNet and 0.364 ± 0.111 for higher-coefficient
beta power) and test sets (0.434 ± 0.134 for N2GNet and 0.323 ± 0.123 for
higher-coefficient beta power).

Overall with PD participants, N2GNet’s predictions were to have
significantly higher correlation with weight shifts compared to the beta
power with higher coefficients from the two leads. The prediction results
from the model exhibited average correlation coefficient of 0.45 ± 0.179 for
validation datasets and 0.382 ± 0.175 for test sets, whereas the beta power
with higher correlation exhibited an average coefficient of 0.335 ± 0.134 and
0.276 ± 0.174 for validation and test datasets, respectively (W = 5.0,
unadj− p = 7.629e-5 for validation sets andW = 20.0,unadj− p = 2.808e-3
for test sets, Wilcoxon signed-rank test). Other possible frequency bands of

interest were also additionally explored for reference and can be seen in
Supplementary Fig. 1.

N2GNet model ablation study
Our N2GNet architecture consists of four different blocks: a feature
extraction block (FExt), a feature squeeze and excitation block (SE), a bi-
directional long short-term memory block (Bi), and a regression block,
where the feature extractionblock includes an element-wisedivisionprocess
(Div). To explore how each block composing our N2GNet affected the
prediction performance, a model ablation study was held by eliminating
possible block combinations fromourN2GNet (details of themodel designs
can be seen in Supplementary Fig. 2). The results with our participant data
and with seven other possible model designs showed that our N2GNet was
able to outperform other models in bothMAE andMSE error rates. As can
be seen fromMAE results in Fig. 3a, N2GNet had a lower average error rate
compared to when bi-directional long short-term memory (LSTM) block
was removed (FExt+SE, validation error: 0.197, test error: 0.231), in the
absence of feature squeeze and excitation block (FExt+Bi, validation error:
0.167, test error: 0.183), and in the absence of considering relative features
(FExt−Div+SE+Bi, validation error: 0.162, test error: 0.198). Similarly for
the average MSE (Fig. 3b), N2GNet had the least error rate on both vali-
dation data and test data compared to the absence of bi-directional LSTM
block (meanvalidation error: 0.079,mean test error: 0.108), in the absenceof
feature squeeze andexcitationblock (meanvalidationerror: 0.055,mean test
error: 0.07), and in the absence of considering relative features (mean

Fig. 3 | Model ablation study results and analysis. The average error rates using
aMAE and bMSE on validation and test sets for eight different model designs
derived from our proposed model framework. c Variation ratio results quantifying
the impact the data of certain frequency bands of interest affected on the output of

the model. Both N2GNet and N2GNet without element-wise division in the feature
extraction block (FExt−Div+SE+Bi) were analyzed to explore the effect of con-
sidering relative oscillatory features in our model. The error bars represent 95%
confidence intervals.

https://doi.org/10.1038/s41746-024-01364-6 Article

npj Digital Medicine |             (2025) 8:7 4

www.nature.com/npjdigitalmed


validation error: 0.055,mean test error: 0.082).Other possible combinations
also exhibited higher error rates than our N2GNet in terms of both MAE
and MSE.

Figure 3c further shows variation ratios with respect to different fre-
quency bands for TD group, AR group, and for all PD participants. The
analysis was held on our proposedN2GNet and also on themodel similar to
N2GNet but without the element-wise division process (FExt−Div+SE
+Bi) in order to see the effect of considering relative oscillatory features in
our model. Results from the model that did not consider relative features
exhibitedhighvariation ratios fromalpha andbeta bands for bothTDgroup
(alpha: 0.265 [95% CI: −0.01 to 0.539], low-beta: 0.25 [95% CI:
0.027–0.473], high-beta: 0.409 [95%CI: 0.147–0.672]) andARgroup (alpha:
0.152 [95% CI: −0.021 to 0.326], low-beta: 0.371 [95% CI: 0.164–0.578],
high-beta: 0.44 [95% CI: 0.271–0.609]) compared to other frequency bands
of interest. Similarly, N2GNet also exhibited high ratios in these bands for
TD group (alpha: 0.199 [95% CI: 0.113–0.286], low-beta: 0.161 [95% CI:
0.079–0.244], high-beta: 0.397 [95%CI: 0.239–0.555]) andARgroup (alpha:
0.224 [95% CI: 0.121–0.327], low-beta: 0.206 [95% CI: 0.072–0.339], high-
beta: 0.246 [95% CI: 0.153–0.339]). Apart from the alpha and beta bands,
N2GNet showed relatively higher ratio on gamma frequency bands (PD
group, low-gamma: 0.089 [95% CI: 0.041–0.138], high-gamma: 0.081 [95%
CI: 0.049–0.114]) compared to the model without relative features (PD
group, low-gamma: 0.047 [95% CI: 0.009–0.085], high-gamma: 0.008 [95%
CI: −0.001 to 0.017]).

We additionally conducted analysis with the models trained and
validatedwith the LFP data band-pass filteredwith only the beta band apart
from the original signals whichwere band-pass filtered between 8 to 100Hz
range (Supplementary Fig. 3a, b). When the model was trained and tested
with beta-filtered LFP signals, models that included relative features elicited
an increased MAE and MSE error rates in validation datasets compared to
when original signals were used, resulting in other models to outperform
N2GNetwithvalidationdatasets forMAE(FExt−Div+Bi: 0.167, FExt−Div
+SE+Bi: 0.16, N2GNet: 0.17) and MSE (FExt−Div+Bi: 0.057, FExt−Div
+SE+Bi: 0.054, N2GNet: 0.058). Yet, N2GNet still outperformed other
models on the test sets with its average MAE and MSE of 0.2 and 0.075,
respectively. The variation ratio results in Supplementary Fig. 3c further
show that themodel that excluded relative featureswasmostly influencedby
beta bands, whereasN2GNet still utilized other frequency bands besides the
beta range despite the use of beta band-pass filtered signals for its training
and evaluation.

Discussion
Theobjective of our regressionmodel is to extract neural features that reflect
real-time gait of people with PD, solely relying on STN LFPs that do not
require additional sensors and can be retrieved directly from the two DBS
leads. Our results of mapping neural recordings with the weight shifts
measured during SIP tasks exhibited amean absolute error of 0.174 ± 0.089
and mean squared error of 0.065 ± 0.06 with our proposed N2GNet model
using the dataset with continuous labels ranging from 0 to 1. To provide
justification for each block composing our model, we further performed a
model ablation study employing different deep learning structures thatwere
derived from our proposed architecture. The results demonstrated that our
proposed model, in its full structure, was able to achieve the lowest error
rates in bothMAE andMSE compared to other model designs evaluated in
this study. These error rate results indicate that our N2GNet’s complete
structure not only had the lowest quantitative differences towards weight
shifts but also exhibited less larger-scale errors and outliers. Moreover, the
results from Kendall tau correlation analysis elaborate that our model was
able to effectively utilize LFPs from the two leads, with its predicted out-
comes having greater correlation with the weight shifts from the SIP task
compared to either of the beta power measures from the two leads. Most
importantly, while our variation ratio from the models marked a strong
emphasis around the beta range indicating its importance in predicting gait
as mentioned in previous studies12,15, our additional analysis involving
models trained and evaluated with beta-filtered signals along with these

results further highlights the importance of taking awide range of frequency
bands into account and not limiting to the beta range. By mapping LFP
signals directly into the weight shift values acquired during the SIP task, our
N2GNet provides insights into future adaptive DBS algorithms that utilize
data-driven deep learning methods to predict real-time gait performance,
whichwould be utilized for real-time adjustment of stimulation parameters.

One of the important factors that was considered in designing our
N2GNet architecture was the aperiodic component from neural signals.
Previous studies had addressed that these aperiodic changes can occur due
to age-related cognitive impairments27 and the severity of motor
symptoms28. Furthermore, aperiodic changes could be observed in PWP
throughout 18months of their visits after the implantation of DBS24, which
do not necessarily reflect direct movements of PWP. These aperiodic
activity changes may not only degrade the performance of low-complexity
algorithms that utilize handcrafted thresholds, but may also crucially
influence machine learning approaches with designs that are prone to
overfitting. The use of relative oscillatory features computed through the
element-wise division process, which was held in our feature extraction
block, was thus employed to have the model consider not only the direct
oscillatory characteristics of the signals but also the relative changes inmajor
oscillatory features in relation to other oscillatory components. This matter
is designedwith inspiration fromprevious studies that normalized beta LFP
signals with signals from the gamma band, which are more stabilized and
less prone to artifacts31,32. Throughout our results, we were able to confirm
that the N2GNet benefited from this approach by exhibiting lower error
rates compared to when the division procedure was removed.

In line with the improvement of performance by jointly considering
relative oscillatory features, the use of such characteristics necessitated
further development of an analysis to explore which frequency bands had
greater influence on the model during training. We supposed that simply
utilizing the error rates derived by inputting signals filtered to specific fre-
quencies of interest would be inappropriate, as this approachwould not take
into account shifts in the model’s prediction resulting from the fixed
parameters trained with wider-band original signals. While using more
narrowly filtered signals as input to the model that was trained with wider
signals indicates that the training set and input data were from overlapping
yet still different frequency domains, the possibility of shifts in the dis-
tribution of electrophysiological data may occur33–35, making direct error
rate measurement from these filtered signals unreliable for investigating
their importance. This issue would be more critical for our N2GNet, where
the feature extraction block also utilizes relative changes between pairs of
extracted oscillatory patterns beyond focusing solely on direct oscillatory
features, possibly being more prone to shifts in the outcomes of the feature
extraction block. Thus, inspired by previous literature that investigated the
association of different frequency bands on the classification result by cor-
relating signals with multiple frequency bands with how much they have
affected the model’s output36, we developed and utilized the variation ratio
presented in our study to gain insights into how much these different fre-
quency bands of interest affected our model.

In this regard, our analysis highlights the drawbacks of relying mostly
on beta signals for designing adaptive DBS algorithms. The results of
comparing the variation ratios of different frequency bands of interest
showed that N2GNet exhibited a comparatively even distribution of ratios
across different bands and achieved lower error rates than FExt-Div+SE
+Bi, themodel that didnot consider relative features (Fig. 3c). Furthermore,
comparing Fig. 3a, b and Supplementary Fig. 3a, b shows that all ourmodels
showed increased error rates on the test sets when beta-filtered LFPs were
used for training and testing the model, compared to when the original
signals of 8–100Hz band rangeswere used. These results support our claim
that relying solely on the beta bandmayweaken themodel’s performance. It
is also worth noting that the models containing the element-wise division
process had smaller error rate differences between the validation and test
sets compared to themodels without division. Such observations imply that
including relative features through our division process, along with con-
siderations of other frequencybands beyond thebeta band, provided greater
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stability in prediction performance over time, as there existed time gaps
between the acquisition of validation and test data. With the fact that the
only difference between the models in terms of their architectures is the
existence and absence of element-wise divisionwithin the feature extraction
block, the results in our study demonstrates that taking the entire spectrum
of signals into account and considering relative oscillations between dif-
ferent frequency bands may enhance the algorithm’s performance, espe-
cially when the algorithm needs to maintain its performance over an
extended period.

Surprisingly throughout our model ablation study and the variation
ratio analysis fromFig. 3c and Supplementary Fig. 3c, we discovered that the
N2GNet was able to utilize signals outside the band-pass filtered range,
while the othermodelwithout element-wise division exhibited its ratiomost
entirely within the filtered range.We suspect that the cause of such results is
the band-pass filter's inability to completely eliminate signals outside the
desired band ranges37,38. Our N2GNet’s utilization of relative features
through element-wise division tends to consider the ratio between two
different oscillatory features rather than the direct scale, indicating that the
model’s relative feature computation would require additional oscillatory
feature to act as reference for the original oscillatory feature. This may have
led our N2GNet to consider signals outside of filtered band ranges during
model training, even though their scales were greatly reduced through fil-
tering. To that extent, the aforementioned limitation of band-pass filtering
may have also caused minor frequency overlaps between adjacent bands
during our variation ratio analysis, even after filtering, which could have
slightly affected the results.

In addition to the aforementioned phenomenon identified through the
variation ratio analysis, it is also important to stress that our variation ratio
measure serves as an indication of which frequency band signals caused
more variability to the model’s prediction outcomes, which implies that the
model’s architecture can change the results. Exhibiting higher variance in a
specific frequency band does not always signify a stronger theoretical cor-
relationwith gait, as our variation ratios are completely determined from the
perspective of the trained model itself. This should be reminded even
stronger for our N2GNet which utilize relative oscillatory features, as the
model has thepotential to use frequency ranges that are unrelated to gait as a
reference feature. Thus, our variation ratio results have limitations and
should be interpreted carefully along with consideration of the model’s
overall architecture. Rather than as a thorough interpretationalmethod, our
variance analysis should serve as an indication that demonstrated
improvements in prediction performance by taking into account wide fre-
quency ranges.

Our N2GNet exhibited prediction performance without significant
difference between the TD and AR groups in our study, suggesting that the
model may be robust for different subtypes of PD. This may be an inter-
esting result as TD typically elicits less changes in beta than AR during
movement39,40, while both TD and AR can still exhibit gait impairment and
FOG41. Note that one of the factors that caused the average MAE andMSE
from the validation and test datasets to be relatively smaller in the TDgroup
was due to one of the participants exhibiting freezes throughout the entire
task from the visits corresponding to the validation and test datasets (Par-
ticipant 8). The participant did not experiencemajor freezes during the task
in the visit that was used as training data, resulting in low MAE and MSE
results for that particular participant.

Through our study, we aimed to address the potentials of using deep
learning-based methods for predicting real-time gait of PWP solely with
STN LFPs, which can further be extended into adaptive DBS algorithms in
the near future. Contrary to previous algorithms that utilize compressed
features such as beta power or beta burst duration, the ultimate goal of our
work is to have features automatically learned within the model, providing
optimal andpersonalized therapy for each individual patient.Unlike current
parameter determination procedures which involve individuals performing
multiple movement tasks and clinicians repeatedly observing, evaluating
movements, and tuning necessary parameters throughout summarized
information without taking detailed features into account, our N2GNet is

geared towards automatically adjusting the parameters with only a few SIP
recording trials. To also resemble practical usage of our proposedmodel, we
evaluated our model in a way that the training, validation, and test datasets
were determined in a chronological order, with each dataset containing a
single SIP recording session from a visit.

While this is merely a step towards bringing a deep learning-based
method to adaptive DBS, limitations exist when it comes to the practical
usage ofN2GNet in real-life adaptiveDBS systems, and future works can be
conveyed to enhance our algorithm. Our model is trained to translate LFP
signals intoweight shifts that resemble gait, however, theseweight shiftsmay
not always correlate with the ideal amount of stimulation needed for actual
walking. For instance, it is possible that certain PD-related symptoms, such
as shuffling with its light but frequent weight shifts, may rather increase the
amount of weight shifts and result in a decrease of stimulation when the
model is trainedwithweight shifts as labels.Althoughweaimed tofilter such
possibilities by applying a low-pass filter to the force plate data at 2 Hz,
further investigation of whether such a pre-processing method would
effectively eliminate these instances should be conducted. The nature of LFP
signals having aperiodic components serves as another limitation, as our
method of extracting relative oscillatory features still does not make the
model completely independent from the aperiodic neural activity. Evalu-
ating the model with a constrained sample size can be another limitation in
our study, as increasing the sample size with additional data from other
participants in each of the PD subtypes could facilitate a more rigorous
analysis of the used models. Improvements in prediction performance can
further be held and designing lightermodels that reduce computational cost
should also be conveyed in order to embed the algorithm into the DBS
system. Lastly, and most importantly, our current N2GNet architecture
does not consider any possible influences from stimulation. The model
should consider both direct contamination of signals from stimulation and
indirect physiological consequences that could alter oscillatory features in
any way. Further works to enhance the model’s robustness to stimulation
canbe carriedout in advance for thepractical applicationofN2GNet in real-
life DBS systems.

In this study, we developed a novel deep learning-based model that
relies only on local field potentials from the subthalamic nucleus to predict
real-time gait performance of peoplewith Parkinson’s disease.OurN2GNet
achieved the lowest error rate in prediction by using relative oscillatory
features, which were obtained by simply adding an element-wise division
process that resulted in considering a broader range of signal frequency
bands. Compared to other model designs from our model ablation study,
N2GNet exhibited greater stability in its performance across both validation
and test datasets, which were composed of data acquired considerably after
than those from training datasets. Our study not only shows the potential of
applying deep learning for adaptiveDBS algorithms in keeping track of real-
time gait performance with local field potentials but also emphasizes the
benefits of taking overall frequency ranges, beyond just utilizing beta bands
known to be associated with movement, into account for gait prediction.

Methods
Participants
The data from eighteen participants who were diagnosed with PD,
implanted with bilateral STN DBS leads connected to an implanted
investigative neurostimulator (Activa PC+ S, Medtronic, PLC), and
met the established criteria for dataset formationwere used in our study.
Participants were instructed to perform the experiment in the off-
medication state. This involved stopping long-acting dopamine ago-
nists at least 48 hours, dopamine agonists and controlled release car-
bidopa/levodopa at least 24 hours, and short acting medication at least
12 hours before testing. The study was performed in accordance with
the Declaration of Helsinki. All participants gave written consent prior
to the study. The study was approved by the Food and Drug Admin-
istration with an Investigational Device Exemption (G130186) and by
the Stanford University Institutional Review Board (Approval Number:
25916 and 30880).
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Experimental protocol
Participants were involved in multiple visits after the implantation of DBS,
where the visits for each participant were held at least a month apart. Per
each visit, participantswere asked to be engaged in the SIP task oncewithout
stimulation.

For each SIP task, participants performed a single round of SIP
after DBS had been turned OFF for at least 15 minutes. To prevent any
falls, participants wore safety jackets that were securely harnessed to the
force plate system. In the beginning of the task, participants were first
instructed to stand on two force plates that measure ground reaction
force on each foot and were asked to remain as motionless as possible.
Participants were then given a start cue and were expected to alter-
natively lift their legs at their own pace for approximately 100 seconds,
simulating the movement of walking but remaining within the force
plates (Fig. 4a). Lastly, participants were given a stop cue and were
instructed to stop the movement after. The LFP signals from left and
right STNs were recorded simultaneously with the measures from the
two force plates.

Data acquisition and dataset formation criteria
Ground reaction forces were measured using either Neurocom (Neurocom
Inc., Clackamas, OR, USA) or Bertec (Bertec Corporation, Columbus, OH,
USA) at sampling rates of 100 Hz and 1000Hz, respectively, with their two
force plates. For the ground reaction forcesmeasured at a 1000Hz sampling
rate, thedataweredownsampled into 100Hz tomaintain consistency across
data. The LFP signals were initially sampled with a sampling rate of 422Hz
andwere downsampled to a 211Hz sampling rate to train the deep learning
model with lighter complexity. A pre-processing step was held on the
retrieved force plate data by applying a low-pass filter of 2 Hz, in order to
reduce jerky noises that are less likely to be related to gait. The LFP signals
were also band-pass filtered using a fourth-order infinite impulse response
(IIR) filter with a frequency range of 8–100Hz in order to include a

comprehensive range of frequency bands that may contain information
associated with movement42,43.

As participants were involved in multiple visits performing the SIP
task,we establishedcriteria for the formation of datasets thatwere applied to
each participant. Given that deep learning models require training, valida-
tion, and test datasets for training and evaluating the model, only the data
from participants who completed the task at least three times on separate
occasionswere selected for this study. Specifically, data from the earliest visit
was used as a training set, data from the subsequent visit as a validation set,
anddata fromthe latest visitwasusedasa test set for themodel, resulting in a
use of data from three different visits for each participant (Fig. 4b). This
usage of visits in chronological order was done to limit the amount of data
used for training themodel while reflecting the actual usage scenario, where
themodel would be trained on past datawhile continuously receiving input
of the most recent data for predictions. The datasets from each participant
were formed in a way that their recording contacts remained consistent
across the three visits. For participants who had their implantable pulse
generators re-implanted between their visits, only the data collected before
the re-implantation were included to maintain consistency of signal quality
across datasets.

The LFP data from each visit was visually inspected prior to the data
formation to exclude visits that contained excessive noise or artifacts, which
critically distorted the overall signals across all frequencies. As our model
aimed to function independently without relying on other complex algo-
rithms, no additional methods for removing specific types of artifacts were
applied to the LFP signals after band-pass filtering. Thus, the possibility still
remains that the data may have contained minor artifacts, such as those
associated with cardiac activity or gait44,45.

Gait quantification through weight shifts
Previous work has demonstrated that abnormalities in gait initiation may
lead toa reduced lateral shift of bodyweight inPWP46. In addition, it has also

Fig. 4 | Experiment protocol for N2GNet. aData acquisition phase where the LFPs
from the two leads weremeasured while participants were to perform SIP on the two
force plates. b An illustration of the experimental diagram regarding the formation
of datasets for model evaluation. A single SIP task was performed during each visit,
and the data from three different visits was assigned to training, validation, and
testing datasets in chronological order. c Procedure for weight shift calculation from

the force plate data. The two force plate data samples from each time point were
merged by selecting the sample with greater value, and samples from one of the force
plates were mirrored symmetrically with respect to the value representing half the
participant’s weight. Changes in the resulting merged samples were then calculated
over a 2-second time window to retrieve the weight shift measure of the corre-
sponding time interval.
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been addressed that the movement amplitude during lateral weight shifts is
smaller preceding unsuccessful steps47, and is correlated with bradykinesia
and postural instability48. In addition to these aforementioned factors, as the
SIP task requires participants to perform repeated lateral weight shifts, we
utilized weight shift measures derived from the force plates to reflect con-
tinuous SIP performance (Fig. 4c).

Prior to measuring weight shifts, the force plate data obtained from
each task was rescaled by dividing each data sample by the participant’s
weight, which was also retrieved from the two force plates when the parti-
cipants remained motionless. This adjustment was done prior to quanti-
fyingweight shifts such that ourmeasurementwould be robust to variations
in the participants’ weight over different visits.

As participants distribute their weight over the two force plates when
both feet are in contact, themeasurements from the force plates are inversely
proportional to each other. However, this correlation may not always hold
true when one of the feet is off contact during the SIP task. Previous work
had demonstrated that there may be cases where changes in force on the
contacted force plate may still occur while participants tend to shift back
towards the other force plate that is not yet in contact30. To take these
patterns into consideration, the ground force samples from the plates were
merged into a single value per time point by selecting the higher sample of
the two, which disregarded samples with lower force measures including
thoseofwhen the feetwasoff contact. Subsequently, samples fromoneof the
force plates were mirrored symmetrically with respect to the value that
signified half the participant's weight. Thus, samples having higher values
would indicate more weight being placed on one force plate, while samples
having lower value would represent more weight being distributed toward

the other force plate. The change in force resulting from this merged out-
come was quantified over a two-second time window to represent the
amount of weight shift during that specific time interval.

Considering that the task performance of each individual participant
varies between visits and the performance also varies among participants,
the data was normalized within each participant bymapping themaximum
weight shift value of the two-second timewindow out of the three visits into
1, with a completely motionless state set as 0.

Deep learning model architecture
The architecture of our model is composed of four main blocks in a
sequential manner: the feature extraction block, the feature squeeze and
excitation block, the bi-directional LSTM block, and the regression block as
shown in Fig. 5a. The model processes the band-pass filtered LFP signals to
generate a single value outcome representing the predicted weight shift that
the participant would have exhibited.
• Feature extraction block: It has been shown that convolutional neural

networks (CNNs) are capable of extracting oscillatory features36,49.
With inspiration from these previous approaches, our feature extrac-
tion block utilized 1-dimensional CNN with batch normalization,
square activation function and average pooling to imitate the power
measure computation from the inputted two band-pass filtered LFP
signals. A 1-dimensional CNNwas used in a depthwisemanner, where
each channel includes features from LFP of a single lead, such that the
LFPs fromthebilateral STNs are learned separately.Given thepresence
of aperiodic changes across datasets spanning extended time intervals,
we implemented an element-wise division approach that utilizeshalf of

Fig. 5 | N2GNet model architecture. a The model takes in 5-second window LFP
signals from the two leads and produces a single outcome representing gait per-
formance. b Example of N2GNet results when continuously inputting LFP signals

retrieved from the two leads. Themodel trained on the epochwithminimum l1 error
rate from the validation dataset was chosen to assess its performance on the test
dataset.
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the same-group features from the CNNs to divide the others. This
division process was evolved with inspiration from previous studies
that considered oscillatory features within specific frequency bands of
interest in relation to more general or stabilized signal features15,28,31,32.
Both the original numerators and resulting divided outcomes, denoted
as original and relative features, were concatenated in a way that both
types of features are considered for further model training.

• Feature squeeze and excitation block: The feature squeeze and excita-
tion block in our model is designed to rescale spectral features,
emphasizing those with greater importance. As it is a widely known
concept that rescaling features using an encoding and decoding
approach such as squeeze and excitation networks or attention mod-
ules effectively highlight informative features50,51, the feature squeeze
and excitation block of our model employs the similar concept. The
outcome fromthe feature extractionblock is processed in away that the
feature dimension is encoded anddecoded back to its original shape for
each length-dimension sample, with ReLU activation function used in
between. Specifically, the oscillatory features are squeezed and excited
for each temporal slice, with encoding anddecoding parameters shared
across temporal samples, resulting in an output of the same size as the
shape before encoding. The resulting feature after further going
through sigmoid activationwasmultiplied element-wise to the original
output of the feature extraction block to rescale the features.

• Bi-directional LSTM block: A three-layer stacked bi-directional LSTM
was employed in our model to consider temporal changes in the LFP
featureswithin the provided timewindow.Recentfindings suggest that
beta burst duration, in extension to elevated beta power, also closely
correlates with motor impairment18,23,31. Our bi-directional LSTM
blockwas thus used to consider temporal oscillatory changes over time.

• Regression block: The outcome after the bi-directional LSTM block
was subsequently merged to finalize the regression model. By using a
groupwise convolutional layer, features from the forward and
backward LSTMs were first separately extracted. These features were
then merged by sequentially going through convolutional and dense
layers, and through ReLU activation function to complete our
regression model that inputs 5-second LFP signals to output a single
value weight shift prediction.
Note that our N2GNet did not utilize bias for the layers used in the

model except for the layers in the feature squeeze and excitation block.

Model training
The overall algorithmwas implemented with Python and the deep learning
model was designed using Pytorch. The NVIDIA GeForce RTX 4090 GPU
was used to train the model, and the adaptive moment algorithm (ADAM)
optimization was used with a learning rate of 1e-5. The l1 loss function was
used to measure errors between predicted results and actual labels, and a
batch size of 16 was used for the model training process. The model was
trained with amaximum epoch iteration set to 2000, and the early stopping
was held whenever the model did not improve their validation loss for 100
epochs. The trained model from the epoch with the least l1 error rates
computed using the validation dataset was selected to evaluate with the
testing dataset (Fig. 5b).

The model for our experiment takes the most recent 5-second LFP
signals of a particular time point, derived directly from the band-pass filter,
as an input topredict theweight shift over the last 2 seconds.Thedatasets for
training, validation, and testing are formed in away that they include the last
5-second LFP signals and a single label representing the last 2 seconds of
weight shift at every 0.1 second stride within each task duration. Themodel
was also trained and evaluated in a subject-dependent manner, where the
model was trained, validated and tested separately on each participant.

Evaluation and analysis
The length of data varied across tasks and the weight shifts performed by
participants, which were rescaled within the range of 0 and 1 and used as
dataset labels, were not uniformly distributed within each task. Taking into

account such factors, both mean absolute error (MAE) and mean squared
error (MSE),which are two commonly used evaluationmetrics for assessing
regression performance in machine learning models29, were computed on
both validation and test datasets. This was done in order to provide more
comprehensive insights into theperformance of themodels evaluated in this
study, and also with consideration that both validation and test sets were
obtained from visits that occurred considerably later than the visits from
which the training data were collected. We also conducted correlation
analysis using Kendall tau coefficient52, a non-parametric statistic to mea-
sure the association between the two variables, to quantify correlations
between the model’s predicted results and the weight shifts. Correlations of
each 2-second average beta power computed from the LFPs of the two leads
with respect to the weight shifts were also quantified and compared with
those between N2GNet’s predictions and the weight shifts to explore the
benefits of using N2GNet over beta power.

A model ablation study, a commonly used analysis method for deep
learning to investigate how each block composing the final model con-
tributed to its performance53,54, was conducted with our N2GNet. A total of
seven othermodels derived fromourN2GNet were thus designed, assessed,
and compared. The models were named as FExt-Div, FExt-Div+SE, FExt-
Div+Bi, FExt-Div+SE+Bi, FExt, FExt+SE, and FExt+Bi, depending on
which parts of the original N2GNet model were used or neglected.

To explore which frequency band signals had more impact on the
trained model, we measured the variation ratio of the model’s output
concerning different frequency band ranges. Specifically, the following
procedure was conducted on each participant’s model to investigate which
frequency bands had more influence over other bands:
• The LFP data from the training set was band-pass filtered with each

frequency band of interest, and were inputted to the model.
• The model’s outcomes prior to the last ReLU activation from the

regression blockwere retrieved for each frequency bandof interest, and
the variance of these outcomes from the same frequency band of
interest were measured. Thus, a single measure was produced per a
single frequency band of interest, representing the variance of its cor-
responding outputs.

• Variance measures from different frequency bands in a single parti-
cipant were normalized as a variation ratio, such that the sum of all
frequency bands equaled 1 for the participant.

With the models used in our study producing a single value per input,
the variation ratio derived from the resulting values provides insights into
which frequency band signals were more influential in producing the final
outcome.

The variation ratios in our study were measured using six different
frequency bands: delta and theta (≤8Hz), alpha (8–13Hz, inclusive), low-
beta (13–20Hz, inclusive), high-beta (20–36Hz, inclusive), low-gamma
(36–70Hz, inclusive) and high-gamma (≥70Hz).

Statistical analysis
For statistical comparisons involving two groups with independent vari-
ables, we utilized theMann–WhitneyU-test.We also utilized theWilcoxon
signed-rank test for statistical comparisons that involved paired samples. A
Kendall tau correlation coefficient analysis was used to quantify the asso-
ciation between two data measures. These statistical tests were performed
considering that thenumber of participants is relatively small (n = 9 for both
TD and AR groups, and a total of 18 PD participants), and the non-
parametric tests do not assume normal distribution of the data. Despite the
multiple comparisons, we reported measures with p-values above a
threshold of 0.05 as not significant for Mann-Whitney U tests, taking a
conservative approach to conclude that there was no significance in the
comparisons between the two groups. A threshold of 0.025 (0.05/2) was
considered significant for p-values from the Wilcoxon signed-rank tests
considering a Bonferroni correction for the two tests conducted: one from
the comparisonwith validation sets and the other from the comparisonwith
test sets.
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Data availability
Thedatasets used for the current study are not publicly available, butmay be
available to qualified researchers from the corresponding author upon
reasonable request.

Code availability
The architectures of ourN2GNetmodel and the other evaluatedmodels are
described in detail in the Methods section and figures. The codes for the
study are not publicly available, butmay be available to qualified researchers
from the corresponding author upon reasonable request.
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