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Autonomous artificial intelligence (AI) for pediatric diabetic retinal disease (DRD) screening has
demonstrated safety, effectiveness, and the potential to enhance health equity and clinician
productivity. We examined the cost-effectiveness of an autonomous AI strategy versus a traditional
eye care provider (ECP) strategy during the initial year of implementation from a health system
perspective. The incremental cost-effectiveness ratio (ICER) was the main outcome measure.
Compared to the ECP strategy, the base-case analysis shows that the AI strategy results in an
additional cost of $242 per patient screened to a cost saving of $140 per patient screened, depending
on health system size and patient volume. Notably, the AI screening strategy breaks even and
demonstrates cost savings when a pediatric endocrine site screens 241 or more patients annually.
Autonomous AI-based screening consistently results in more patients screened with greater cost
savings in most health system scenarios.

Diabetic retinal disease (DRD) is one of the most common complications
of diabetes and the leading cause of blindness inworking-age adults1. Early
screening and diagnosis of DRD can significantly reduce the risk of vision
loss and blindness fromDRD. For this reason, professional societies such
as the American Academy of Ophthalmology (AAO) and the American
Diabetes Association (ADA) recommend regular diabetic eye exams2,3.
Yet adherence remains low due to many reasons, including inequitable
access, cost, burden of an additional visit, and ophthalmic availability for
screening, particularly in rural and low resource settings4. With DRD
screening rates as low as 20% nationwide, health systems and medical
practices are considering alternative methods to increase screening access
and adherence4.

First receiving De Novo authorization by the U.S. Food and Drug
Administration in 2018, autonomous AI systems—defined as machine
learning- based devices capable of making clinical decisions without phy-
sician or human oversight5—have demonstrated efficacy in diagnosing
referable DRD at the point of care (in primary care and endocrine offices),
improvingdiabetic eye examcompletion rates, reducinghealthdisparities in
underserved minority populations6, and increasing clinician productivity7.

Previous analyses have also shown that autonomous AI exams for the
detection of DRD are effective compared to standard eye care provider
(ECP) exams, leading to improved visual outcomes at the population level8.
Additionally, autonomous AI systems have demonstrated greater cost-
savings from the patient perspective and have been shown to be cost saving
in socialized healthcare systems and in a rural primary care network in
Australia when compared to teleretinal screening programs and office-
based screenings9–14. However, no study, to our knowledge, has examined
the cost-effectiveness from the perspective of a health system in the United
States (U.S.).

The introduction of new technologies, including autonomous AI, into
routine health care delivery can be challenging due to changing practice
patterns and the financial and human resources required to integrate new
technologies into clinical practice15,16. Consideration of the financial
expenditures, particularly in terms of the cost of technology integration and
maintenance and total cost of care, as well as screening effectiveness, patient
care benefits, and operational value, even without considering reimburse-
ment, are important in determining whether and how to implement these
systems. We hypothesize that autonomous AI for DRD screening in youth
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will be cost-effective for the health system, compared to the standard eye
care provider (ECP) exams.

Results
Screening cost-effectiveness
Our base-case analysis shows that the expected cost of the AI strategy is
between $19,368 and $133,900, compared to the expected cost of the ECP
strategy, which is between $8927 and $357,072. Thus, excluding insurance
reimbursements, the AI strategy results in additional costs of up to $10,441
and potential cost savings of up to $240,972 depending on the size of the
health system.Regarding effectiveness, theAI strategy consistently results in
more patients being screened, ranging between 43 and 1724 additional
patients screened annually, depending on patient volume (Table 1).

As expected, the ICER varies with the size of the health system. In
general, the ICER decreases as the patient volume per site increases. For
example, in amedium-sized health systemwith an annual patient volumeof
400 patients spread across 2 sites, the ICER is $36 per additional patient
screened but decreases to –$33 (i.e., cost saving) when the annual patient
volume increases to 600 patients across both sites. Figure 1 shows these
ICER values in relation to the benchmark willingness-to-pay threshold of
$413 per DRD case averted (Fig. 1). Ultimately, the AI screening strategy
reaches a break-even point and becomes cost-saving when a single endo-
crine site has 241 or more patients per year eligible for DRD screening,
under base-case assumptions. Beyond this volume, the operational effi-
ciencies gained through AI screening offset the cost of implementation
(Fig. 1).

Deterministic sensitivity analyses reveal that ICERs forDRD screening
are influenced by AI cost parameters, primarily the cost of AI maintenance
that encompass troubleshooting, software updates, and technical support
(Supplementary Figs. 2 and 3). At a WTP threshold of $413, the AI
screening strategy is preferred to the ECP strategy when the annual cost of
AI maintenance remains below certain thresholds that depend on the scale
of the health system. For a single site with 100 patients, the AI strategy is
cost-effective as long as the AI support cost remains below $17,360. How-
ever, the threshold increases to $92,838 for a single site with 400 patients,
and the AI strategy begins to dominate across all cost parameters when the
annual patient volume per site reaches 600 patients (Supplementary
Table 2).

After running 10,000 simulations for the probabilistic sensitivity ana-
lysis (PSA), the AI strategy was found to be cost-effective (i.e., generating an
ICER<WTPof $413per patient) for a small health systemof 100patients in
47% of iterations. Since an iteration represents a specific health system
configuration, this percentage translates to “47% of health system config-
urations.” At this patient volume, the probability of cost-effectiveness
reaches 95% only at a willingness-to-pay threshold of at least $5000.
Nevertheless, the likelihood of cost-effectiveness increases with the size of
the health system. For a medium-sized health system (600 patients across
2 sites), the probability rises to 86% for our base-caseWTPof $413, and for a
large health system (4000 patients across 3 sites), it reaches 98% (Supple-
mentary Table 1).

Cost effectiveness of adherence to follow up eye exams
For patients who successfully completed their diabetic eye exams and
screened positive through either strategy (ECP or AI) or whose images were
insufficient for interpretation by AI, we evaluated the cost-effectiveness of
adherence to follow-up with an ECP within and outside the health system.
Again, excluding reimbursement, the base-case analysis shows that the cost
difference of follow-up between the AI and ECP screening strategies can
range from+$3047 to+$12,342 for a small health system,−$26,459 to+
$13,770 for amedium-sized health system, and−$262,560 to+$16,615 for
a large health system, dependingonwhether the patient follows upwithinor
outside the health system. Regardless of referral route, AI is expected to
increase follow-up rates by 11.72 times over ECP (Supplementary Table 3).

Paralleling the trends observed for the cost-effectiveness of screening,
ICERs for follow-upadherence tend todecrease as the size of ahealth system

increases (i.e., more cost effective and cost savings). For small health sys-
tems, the additional cost per patient who follows up with an ECP after an
initial screening using theAI strategy ranges from$309 to $1106 forwithin-
system follow-up and$137 to $934per patient for outside-system follow-up.
Inmedium-sized health systems, each additional adherent patient results in
maximum cost of $309 to savings of $223 forwithin-system follow-up, and
cost of $137 to savings of $395 for outside system follow-up. Finally, large
health systems can see cost of $149 to savings of $370 for each additional
patient follow-up internally, and savings ranging from $23 to $588 per
patient follow-up externally (Table 2).

A PSA of the follow-upmodel indicates that AI is cost-effective in 14%
to 95% of cases, depending on the scenario. As with the DRD screening
model, the likelihood that theAI strategy ismore cost-effective than theECP
strategy for ensuring follow-up adherence increases with the size of the
health system (Supplementary Table 4). Therefore, there is a higher level of
confidence that AI is more cost-effective in larger health systems.

For follow-up adherence, ICERvalues are sensitive to a number of cost
parameters, especially when patients follow up with an ECP within versus
outside the health system (Tables 3 and 4). For instance, AI proves to be
comparatively cost-effective for a small health systemwith an annual patient
volume of 200 if the per site AI start-up cost is less than $21,608, integration
cost is less $5322, or support cost is less than $12,322. For this sized health
system,AI is also cost-effective if theECPexamcost exceeds $144.However,
for the same patient volume referred outside the health system, fewer
parameters drive the ICER over theWTP threshold. Moreover, AI remains
cost-effective over a broader range of parameter values when considering
external referrals compared to internal referrals. This indicates that the
thresholds for external referrals aremore favorable towardAIbeing the cost-
effective option. Additionally, as the scale of the health system increases, AI
demonstrates greater resilience to changes in parameter values for larger
health systems.

Discussion
Recent research indicates a growing, yet cautious, adoption of FDA-cleared
AI, especially autonomous AI, into routine healthcare practices17, high-
lighting a critical challenge of scaling medical AI. Given that in many cases,
health systems are responsible for the acquisition and implementation of
such AI, it is essential to assess the cost-effectiveness of these devices from
the perspective of the health systems themselves. This perspective is critical
to making informed decisions about the integration of AI into health care.
To the best of our knowledge, our study is the first to examine the cost-
effectiveness of operationalizing an autonomous AI strategy for DRD
screening contextualized within a U.S. health system.

Using a WTP threshold of $413 per averted case of DRD as a bench-
mark, our base-case analysis shows that the AI strategy, compared to the
ECP standard of care, results in more patients screened and completing
follow-up exams at an incremental cost for smaller health systems and cost
savings for larger health systems: For a single pediatric endocrine practice
with a 100patients annually eligible forDRDscreening, the incremental cost
of the AI strategy compared to the ECP strategy is $242 per additional
patient screened and $1106 per additional patient follow-up within the
health system and $934 for follow-up outside the health system. However,
cost effectiveness improves with increasing health system scale, and the AI
strategy becomes cost-savings (i.e., negative ICER values) at larger scale: A
medium-sized system consisting of 1-2 endocrine sites with a total of 400-
600 patients eligible annually for DRD screening achieves baseline cost-
effectiveness at+$36 to−$102 (representing cost savings of up to $102) per
additional patient screened, $309 to −$223 (cost savings up to $223) per
additional follow-upwithin the system, and $137 to−$395 (cost savings up
to $395) per additional follow-up outside the system.

We evaluated both strategies against stringent standards. Our model
includes several cost parameters that a health system would realistically
encounter in the initial year of implementation; even though, these para-
meters may not apply to every setting. Due to uncertainties in AI costs
stemming from lack of access to proprietary information, the complexity of
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IT integration, and any disruption to clinical and operational workflows, we
conducted deterministic andprobabilistic sensitivity analyses overwide cost
intervals for setup, integration, and vendor support costs of the AI system
(Table 5). Our findings demonstrate that the cost-effectiveness of the AI
strategy varies significantly with health system size. Specifically, across both
screening and follow-up models, AI was shown to be cost-effective in 14-
42% iterations of the PSA for smaller health systems, while this probability
increased substantially to 51-95% for larger health systems. This probability
indicates that across the diverse range of health systems in the United States
encountering amultitude of costs, AI is likely to be cost-effective for 14-42%
of smaller health systems, increasing to 51-95% for larger health systems.
These results suggest that larger health systems may have a distinct
advantage in implementing AI technology, potentially due to economies of
scale and greater resource availability.

The results of the deterministic sensitivity analysis indicate that AI cost
parameters significantly influence the cost-effectiveness of AI for DRD
screening and follow-up care,with increasing thresholds and cost parameter
tilting in favor of AI as the size of the health system increases (Tables
3 and 4). Estimation of these costs should take into account varying clinical
labor costs by geography and other factors.

Our analysis shows that the AI strategy breaks even and becomes cost-
saving at a threshold of 241 patients eligible for screening per site, an annual
patient volume less than that of a typical pediatric endocrine clinic18.
Although we explicitly excluded revenue from our model19, health systems
operating under both fee- for- service and value-based care20 could poten-
tially break even and recoup their initial investment at even lower patient
volumes if insurance reimbursement revenuewere included.Accounting for
reimbursement would effectively mitigate the implementation and vendor
support costs of the AI system, allowing for much faster cost recovery. This
mitigation is particularly important when comparing the cost-effectiveness
of AI for follow-up carewithin the health systems versus outside the system.

Since our model considers internal follow-up with an ECP as a cost to the
health system—a cost avoided by external referrals—AI appears less cost-
effective for internal follow-ups. However, these internal costs could be
offset by ophthalmic care reimbursements. Thus, the lower cost-
effectiveness of internal referrals should not outweigh the benefits of
keeping patientswithin the health system,which allows for better continuity
of care, potentially improving outcomes and reducing long-term costs.

Under value-based care, meeting quality standards and MIPS/HEDIS
measures during health screenings for individuals aged 18-21 further pre-
sents an opportunity for health systems to receive financial incentives,
thereby increasing the overall cost-effectiveness of adopting an AI strategy.
These opportunities, in turn, would further tilt the ICER in favor of the AI
strategy.

While beyond the scope of this study, we acknowledge the potential
downstream productivity gains that could increase the cost-effectiveness of
autonomous AI systems for DRD screening7. By handling routine DRD
screening, autonomous AI systems allow ophthalmologists to focus their
expertise onmore complex cases. These systems can also improve efficiency
by screening and identifyingmore patients for early intervention, increasing
health system capacity, leading to better clinical outcomes and potentially
reducing long term healthcare costs and expenditures7,8. However we
recognize that the benefits of AI are dependent on patient and provider
inclination for AI. While “algorithmic aversion” may be a potential issue,
where the patient and/or provider may prefer human judgment over
algorithmic decision-making evenwhen the algorithms have been shown to
perform better, we did not find evidence of this in published literature7.

One of our goals for evaluating the cost-effectiveness of autonomous
AI systems for DRD care was to explore the potential of these systems to
maximize health equity by expanding access to care particularly in under-
served areas with limited availability of eye care professionals, financial
resources, and access to care. Autonomous AI systems can address health

Fig. 1 | Analyzing ICER trends: Impact of patient volume and number of
pediatric endocrine sites within a health system. This graph illustrates the
necessary annual screening volume (x-axis) and health system size (indicated by line

color) for the autonomous AI screening strategy to be cost-effective compared to the
ECP strategy. ICER values falling below the willingness-to-pay (WTP) threshold of
$413 (dashed line) indicate that the autonomous AI strategy is cost-effective.
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disparities by bringing eye care to these areas. However, the resources
needed for AI-implementation may prevent adoption in low-resource set-
tings, further exacerbating the digital divide and health disparities.
Opportunities to improve affordability through lower hardware costs and
smaller clinical footprint, combinedwithmore sophisticated algorithms has
the potential to improve accessibility even more.

To evaluate the AI strategy under the most stringent criteria, we
considered a comprehensive range of costs that a health system might
encounter in implementation, even though not all of these costs may be a
factor in every real-world implementation scenario. Thus, our results likely
underestimate the true cost-effectiveness. Our analysis was also limited to
the initial year, so IT integration costs in subsequent yearsmay be negligible.
This could further prove the AI strategy’s potential to be even more cost-
effective and cost-savings. While using AI to screen for DRD in primary
diabetes care settings is cost-effective, ophthalmologist visits may provide
additional benefits for children beyond screening for DRD. Moreover, we
modeled health system scale based on patient volume and number of sites,
but there are other variables that describe scale.

Future studies could include more granular cost estimates of the
screening provided through the AI and ECP strategies using activity-based
costing21. It would also be beneficial to conduct cost-effectiveness analyses
across different insuranceanddemographic distributions, locations, and age
groups. Furthermore, pediatric patients with diabetes are most likely to
receive care in a multidisciplinary diabetes clinic, whereas adults with dia-
betes may be treated in a primary care or endocrine setting. Thus, future
analyses will need to account for both settings in cost-effectiveness studies.

To our knowledge, this is the first study to evaluate the cost-
effectiveness of an autonomous AI screening strategy for DRD from the
perspectiveof aU.S. health system.Our analysis shows that autonomousAI-
based screening is a more effective screening strategy compared to the
standard ECP- performed eye exam with greater cost-effectiveness for
smaller health systems and cost-saving for larger ones. By using a decision
model, our study provides a template for health systems to evaluate the cost-
effectiveness of emerging technologies. Our hope is that this analysis will
assist providers in weighing the value proposition of implementing AI
screening and support informed adoption decisions.

Methods
Model design and target population
Using decision analysis22, we evaluated the cost effectiveness of imple-
menting an autonomousAI strategy for thediagnosis of pediatricDRD.Our
model considers patients under the age of 21 with Type 1 (T1D) and Type 2
diabetes (T2D) who are cared for by a primary care physician, pediatric
endocrinologist, or other licensed provider and who are eligible for DRD
screening according to AAO/ADA guidelines2,3.

Our analysis was conducted from the perspective of a health system
providing care to patients. We examined cost-effectiveness during the first
year that a health system considers adding capacity via AI eye exams at the
point of care. Since most youth with diabetes receive care in an endocrine
practice, the focus of analysis is either a single or a conglomeration of
pediatric endocrine practices operating under one organization.

The two DRD screening strategies are as follows: (1) Autonomous AI:
The autonomous AI diabetic eye exam is performed at the pediatric
endocrine site during a diabetes care visit. The operator is guided by the AI
system to capture retinal images, and the AI algorithm provides an
immediate diagnosis of whether DRD or diabetic macular edema (DME) is
present. (2) ECP: The standard of care proceeds with a referral to an ECP
(either an optometrist or ophthalmologist) who performs indirect oph-
thalmoscopy and stereo biomicroscopy under pharmacologic dilation
within a health system. In both strategies, patients with positive (i.e.,
referable DR, ETDRS 35 or greater) or insufficient results would be referred
to a retina specialist or ophthalmologist for further management and
treatment 2,3 (Supplementary Fig. 1).

This study did not require authorization from the institutional review
board as it did not involve human subjects.

Parameters estimates and ranges
To comprehensively assess the cost effectiveness of the two alternatives, our
model incorporates specificpopulation-level parameters (Table 5) including
the prevalence of pediatric DRD, the diagnostic accuracy of the screening
modalities including sensitivity and specificity, human behavioral factors as
reflected by the probabilities of adherence to follow-up recommendations,
health system costs associated with the AI strategy, and reimbursement
levels for ECP-conducted DRD exams as a proxy for the costs of the ECP
strategy. While Medicare, Medicaid, and private insurance reimbursement
exist for AI-based DRD screening, because of the variability in reimburse-
ment rate and the fact that many health systems operate through value-
based care mechanisms, we excluded reimbursement from our analysis20.
Parameter values were obtained from peer-reviewed published literature,
empirical observations, and stakeholder interviews with vendors and hos-
pital administrators. Pediatric data were used when available; otherwise,
parameter values were taken from adult data. In choosing our base-case
estimates, we opted for a conservative approach, with each parameter
estimate tilting the analysis against the AI strategy. We also acknowledge
that ourmodel incorporates a variety of cost considerations thatmay not be
applicable to every health system; however, these costs were incorporated to
evaluate AI against rigorous criteria.

The SEARCH trial estimated the prevalence of DRD among youths
with T1D and T2D as 5.6% and 9.1%, respectively23. For the base case, we
used the weighted average (6.8%) of these estimates. Other studies have
reported divergent prevalence values, ranging as low as 3.4% for T1D and
6% forT2D24 toas high as 20.1% forT1D25 and51.0% for youthonsetT2D26;
these varying figures were used for the low and high estimates in sensitivity
analyses.

ECPs performing adult eye exams achieve a sensitivity of 33% (esti-
mated 95% CI: 20-50%)27–29. In comparison, the three FDA-cleared
autonomous AI systems have demonstrably higher sensitivity in detecting
DRD, ranging from 87.2% - 93.0% (95% CI: 81.8-97.2%) against a prog-
nostic standard, a proxy for clinical outcome, depending on the sample
evaluated30–32. Evenwhenapplied topediatric cases, autonomousAI systems
have demonstrated higher sensitivity at 85.7% (95% CI: 42.1-99.6%)33.

The specificity of ECP-conducted exams in adults averages 95%28, and
the specificity of autonomous AI systems in pediatrics and adults ranges
from 79.3-91.36% (95%CI: 74.3-93.72%)30–33. We used themean specificity
values for the base case and theminimum andmaximum values of the 95%
CI for the sensitivity analysis.

Diagnosability of the autonomousAI system, defined as the percentage
of assessed patients with an interpretable image, ranges from 96.1% and
97.5% for adult andpediatric cases, respectively, andwere averaged for base-
case estimates30,33. Low and high estimates were derived from the 95%CI of
the adult study30.

The model accounts for patient behavioral factors that influence
screening acceptance and completion. Among youths, ECP exam accep-
tance rate averages 52% and can be as high as 72% 34. While some adult
cohorts exhibit a screening acceptance probability as low as 15.3%4.
Acceptance rates for autonomous AI eye exams average between 95-
96.4%33,35. The probability that a patient will follow up with an ECP after
receiving a positive result differs between modalities. After a positive result
from an ECP exam, the probability of the patient following-up with an in-
person ECP visit is 29-95%36, while the probability of follow-up after a
positive AI recommendation is 55.4-64%35,37. The parameter ranges reflect
the low and high values observed in the literature and in practice.

FDA De Novo- authorized or cleared AI systems incur a range of
expenses that vary by device. Most AI vendors offer pricingmodels that are
based on a per patient usage fee or a subscription model with associated
setup fees. Furthermore, health systems take on additional expenses to
integrate AI into clinical workflows related to changemanagement, process
redesign, and IT system integration. Due to limited availability of such
proprietary data, we used the geometric mean of $10,000 as the base case,
and we assumed a per practice AI acquisition and ongoing vendor support
cost range of $1000-100,000. Since the AI acquisition cost is a one-time up-
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front fee, a 20% amortization rate to account for the depreciation of assets
over time was also applied38. Based on stakeholder interviews, we estimated
the cost of integrating an AI system with existing clinical workflows and
health IT systems to be a geometric mean of $3000 per site (with a range of
$1000 to $20,000). All start-up costs andmaintenance costs are included in
this one-year time horizon.

We assumed an hourly wage of $33 for the AI operator based on
Centers for Medicare & Medicaid Services estimates39 and varied this
parameter from $7.25 (the federal minimum wage)40 to $42 (the mean
hourly wage of office-based nurses as they may be the ones to operate AI
systems in pediatric endocrine practices)41. Frequently, in adult DRD
screening, nurse practitioners (with a substantially higherwage), operate the
AI; however, that is less common in pediatric endocrine clinics. Based on
clinical experience, it is estimated that such operators can complete a
maximum of 4 exams per hour33. Another significant cost consideration is
the space required to house the AI system. Current AI DRD systems are
desktop- based andmaybe placed in an existing roomdesigned for ancillary
services, but in some cases endocrine practices may need additional space
for the AI system. Using an average exam room size of 100 sq. ft42 at $28/sq
ft43 which is the rental cost based on commercial real estate rates in Balti-
more where this analysis was conducted, we estimated an annualized
opportunity cost of $2800 for the space required (range of the parameter
over $0-8500).

We used the mean CMS reimbursement of $172 as a base case proxy
for the cost of an initialDRDexamand follow-up examwith anECPand the
10th and 90th percentiles ($110 and $240, respectively) for the sensitivity

analysis range. Thus, while we did not account for revenue from insurers or
patients for providing screening services, our rationale for using the CMS
reimbursement as the basis for the cost estimate of the ECP strategywas that
it represents the allowed cost of providing the service, including ophthalmic
equipment, eye care professional salaries, clinic space and ancillary costs44.
Although we recognize there are setup costs associated with training and
credentialing ECPs and integrating them into clinical workflows, these costs
are assumed to be built into the system and thus are not accounted for in the
model, which also tilts the analysis against the AI strategy.

Outcomes and willingness to pay threshold
The primary outcome measure of interest is the incremental cost-
effectiveness ratio (ICER) of implementing the AI strategy compared to
the ECP strategy. ICER is used in decision-analysis models and cost-
effectiveness studies to gauge the additional cost associated with a unit
increase in effectiveness of one diagnostic strategy compared with another.
We defined effectiveness as 1) the additional number of DRD screenings
completed and 2) the additional number of patients who followed up with
an ECP for further evaluation and treatment. The cost was the total burden
to the health system before reimbursement, resulting from the cost and
probability estimates in Table 5, so the two ICERs are interpreted as the
“marginal financial cost of completing one additional screening with AI,
compared with ECP,” and “the marginal financial cost to complete one
additional follow up with the ECP among patients screened positive by AI,
with respect to ECP.” An ICER value of 0 indicates the point at which the
costs of the AI and ECP strategies are equivalent (i.e., the break-even point)

Table 5 | Decision model parameters

Parameter Description Base-case
estimate

Low High Distribution Sources

Population-level metrics

Prevalence of DR in T1D 5.6% 3.4% 20.1% Beta 23–25

Prevalence of DR in T2D 9.1% 6.0% 51.0% Beta 23,24,26

Diagnostic accuracy metrics

Sensitivity of ECP 33% 0% 100% Beta 27–29

Specificity of ECP 95% 70% 100% Beta 28

Sensitivity of autonomous AI 89.3% 42.1% 99.6% Beta 30–33

Specificity of autonomous AI 88.2% 74.3% 93.7% Beta 30–33

Diagnosability of autonomous AI 96.8% 94.6% 97.3% Beta 30,33

Human-behavior factors

Probability of patient going for initial ECP-based
screening

52.0% 15.3% 72% Beta 4, 34

Probability of patient accepting AI- based screening 95-96.4% 50% 100% Beta 33,35

Probability of patient following up with ECP after ECP
screening yielded positive result

29% 0 100% Beta 36

Probability of patient following up with ECP after AI
autonomous screening yielded positive result

65% 55.4% 100% Beta 35,37

Autonomous AI Costs to the Health System

Acquisition (equipment, camera, system) per site $10,000 $1000 $100,000 Log normal Stakeholder
interviews

IT integration (including health system and vendor)
per site

$3000 $1000 $20,000 Log normal Stakeholder
interviews

Ongoing support fee (including health system and
vendor)/ per site

$10,000 $1000 $100,000 Log normal Stakeholder
interviews

Facility Space Allocation Cost for AI Device per site $2800 $0 $8500 Log normal 42,43

tion $33.00/hour $7.25/hour $42.00/hour Gamma 39–41

Optician Productivity Rate 2 patients
screened/hour

1 patient
screened/hour

4 patients
screened/hour

Poisson 33

Standard of Care (ECP) Costs to the Health System

Cost of service per patient $172 $110 $240 Log normal 44
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and an ICER value less than 0 indicates that the AI strategy is less expensive
than the ECP strategy, resulting in cost savings to the health system.

To further rigorously assess the cost-effectiveness of AI strategy, we
established a willingness to pay (WTP) benchmark of $413 per averted case
of DRD, far below the standard $50,000 threshold45. This conservative
ceiling was calculated using the lowest Medicaid reimbursement rate of
$28.08 for AI DRD exams46 divided by the most probable prevalence of
diabetes-related disease (6.8%)23.

Scenarios
Since the costs associatedwith the two screening strategies scalewith the size
of the health system, wemodeled a series of scenarios based on practice size
estimates of pediatric diabetes volumes: (1) a small endocrine practice with
an annual volumeof 100-200pediatric patientsdue forDRDscreening, (2) a
medium-sized health system consisting of 1-2 pediatric endocrine sites with
a total annual screening volume of 400-600 patients (200-600 patients per
site), and (3) a large health system consisting of 3-4 pediatric endocrine sites
with a total annual screening volume of 1000-4000 patients (250- ~1333
patients per site)18.

For patients that are identified to have an abnormal diabetic eye exam
(by AI or ECP) or whose images are insufficient and thus require referral to
an ECP, we examined the cost-effectiveness of follow-up with an ECP and
considered two additional scenarios for each sized health system—whether
the follow-up with the ECP takes place 1) within the same health system or
2) outside thehealth system. For example, if the follow-upvisit occurswithin
the health system, then the total costwould includeboth the initial screening
cost basedon themodality and the cost of theECP follow-upvisit itself. If the
follow-up visit occurs outside the health system, such as at another private
practice or hospital system, the total cost would include only the initial
screening.

To account for sampling and parameter uncertainties, deterministic
and PSA were performed within each of the scenarios using the ranges
shown in Table 5. The deterministic sensitivity analysis informs the
thresholds where one strategy is preferrable over the other. The PSApro-
vides a measure of confidence in the outputs of the base-case analysis. To
translate the PSA intomeaningful terms, we also report theminimumWTP
at which the AI strategy achieves 95% cost-effectiveness probability within
each scenario. Modeling and sensitivity analyses were performed using the
TreeAge Pro software version (TreeAge Pro 2023, Williamstown, MA,
USA). The study was conducted from June 2023 to August 2024.

Data availability
All data generated or analyzed during this study are included in this pub-
lished article and its supplementary information files.

Code availability
The model was built using the TreeAge software. No separate code was
written to run the model.
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