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Mitigation of AI adoption bias through an
improved autonomous AI system for
diabetic retinal disease
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Where adopted, Autonomous artificial Intelligence (AI) for Diabetic Retinal Disease (DRD) resolves
longstanding racial, ethnic, and socioeconomic disparities, but AI adoption bias persists. This
preregistered trial determined sensitivity and specificity of a previously FDAauthorizedAI, improved to
compensate for lower contrast and smaller imaged area of a widely adopted, lower cost, handheld
fundus camera (RetinaVue700, Baxter Healthcare, Deerfield, IL) to identify DRD in participants with
diabetes without known DRD, in primary care. In 626 participants (1252 eyes) 50.8% male, 45.7%
Hispanic, 17.3% Black, DRD prevalence was 29.0%, all prespecified non-inferiority endpoints were
met and no racial, ethnic or sex bias was identified, against a Wisconsin Reading Center level I
prognostic standard using widefield stereoscopic photography and macular Optical Coherence
Tomography. Results suggest this improved autonomous AI system can mitigate AI adoption bias,
while preserving safety and efficacy, potentially contributing to rapid scaling of health access equity.
ClinicalTrials.gov NCT05808699 (3/29/2023).

Aprovocative publication by the Institution ofMedicine, over 20 years ago,
demonstrated substantial health disparities in the US healthcare system1.
These disparities have remained an almost intractable problem, and scalable
solutions are scarce2,3. There are multiple causes; in diabetes complications
and especially diabetic retinal disease (DRD)4, lack of equitable access to
early diagnosis and treatment5–9, are a major, though not singular source of
such health inequity10. Randomized controlled trials (RCTs) and other
studies have shown that autonomous Artificial Intelligence (AI) –making a
medical decisionwithout human oversight11 – for point-of-care, rapidDRD
diagnosis improves access to the diabetic eye exam12, removes racial and
ethnic access disparities13, and increases clinician productivity and
satisfaction14, offering a scalable solution to a problem long considered
intractable15. Such autonomous AI was originally De Novo authorized by
FDA utilizing a desktop fundus camera, based on its safety and efficacy
(LumineticsCore, Digital Diagnostics, Coralville, Iowa)16. The recent study
on AI utilization by Wu et al.17, showed both rapid scaling – due to broad
stakeholder support, sustainable reimbursement, and care gap closure18,19, -
but also persistent AI adoption bias for this autonomous AI, as under-
resourced clinics that serve racially minoritized, rural and low-income

communities lag in adopting such technology20. Root-cause analysis
through the recently published AI bias mitigation framework21, found that
the cost, clinic space, and workflow burden of the above autonomous AI
system,often exceeds thefinancial, staff expertise, and clinic space resources,
particularly in under-resourced clinics21. Thus, utilizing an already widely
adopted, lower cost, easier to use, one image per eye, handheld fundus
camera optimized for underresourced clinicshas the potential to mitigate
adoption bias, but requires safety and efficacy to be preserved.

The autonomous AI system was optimized for the lower contrast and
smaller retinal area of such a camera (rv700; RetinaVue 700 Imager, Baxter
Healthcare, Deerfield, IL, USA), by compensating for the reduced input
image information through improved biomarker based diagnostic algo-
rithms. A preregistered, Contract Research Organization (CRO; Fortrea
Corp, Durham, NC) managed, intent-to-screen, non-inferiority study
design was developed to evaluate this improved autonomous AI system,
operated by minimally trained existing staff, in a representative sample of
people with diabetes without diagnosed DRD. The aims of this study are to
assess the safety, efficacy and access/adoption impact of the improved
autonomous AI system.
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Results
Study population characteristics
A total of 626 participants (1252 eyes) were enrolled at 8 primary care sites,
of which 619 (1238 eyes) completed all procedures. A subset of 567 (1073
eyes) of these participants could be fully analyzed, see Fig. 1 and Table 1.
Prevalence of Early Treatment of Diabetic Retinopathy severity scale
(ETDRS)22 > = 35 or DiabeticMacular Edema (DME) was 38.9% (221/567)
amongparticipants, and 29.0% (311/1073) among eyes; prevalence of vision
threatening DRD (vtDRD) (ETDRS > = 53 or DME) was 5.6% (60/1073
eyes)22; see Table 2 for detailed prevalences; prevalence of DME was 4.0%
(43/1073 eyes). Average centerfield thickness ± std was 243 µm (±26 µm):
245 µm (±35 µm) in the 221 eyes with ETDRS > = 35 or DME, and 242 µm
(±22 µm) in thosewithout.Noneof theparticipantshad symptomsof vision
loss, there were no adverse events.

Autonomous AI system characteristics
At the eye level, preregistered sensitivity/specificity of the autonomous AI
system against the Level II reference standard by the Wisconsin Reading
Center (WRC)was 97.3% (one-sided 97.5% lower bound: 94.3%) and82.7%
(one-sided 97.5% lower bound: 80.0%), respectively, for detecting
ETDRS > = 35 or DME. Preregistered sensitivity sc against the Level I
reference standard, also by the WRC, was 79.6% (one-sided 97.5% lower
bound: 75.1%), and specificity was 88.4% (one-sided 97.5% lower bound:
86.1%), both exceeding the non-inferiority endpoints (p = 0.021/p < 0.001),
so that the null hypothesis could be rejected.Diagnosabilitywas 90.6% (95%
CI: 89.2%, 92.0%) at the eye level, and 15.5% of eyes needed pharmacologic
dilation. At the participant-level, sensitivity against the Level I standard was

81.5% (one-sided 97.5% lower bound: 76.9%; p = 0.006) and specificity
82.2% (one-sided 97.5% lower bound: 78.4%; p = 0.008), respectively;
diagnosability at the participant level was 95.8% (95% CI: 94.2%, 97.0%).
There were no significant differences between racial, ethnic or sex sub-
groups, or at any intersections, for any of the above outcomeparameters, see
Table 3. See Table 4 for secomndary outcomes.

The improved autonomous AI system sensitivity against the level I
reference standard was significantly higher, at 79.6%, than that of theWRC
evaluating the same images, at 67.2%, p < 0.001 at the eye level (specificity
99.8%). WRC sensitivity failed the primary non-inferiority endpoint.

Among 60 vtDRD eyes, the improved autonomous AI system missed
14 cases (23%). Average centerfield thickness for these false negatives was
250 µm (±4 µm). One eye had ETDRS 60, one eye ETDRS level 61, and of
the 12 false negative cases because of DME, centerfield thickness averaged
307 µm for both Center-involvedDME (CIDME) and Clinically Significant
DME (CSDME), none had ETDRS > = 20, none had symptoms of vision
loss or thickness>360 µm.All of these false negativeswere alsomissedby the
WRC reading the same images (the Level II reference standard), and they
missed 9 more eyes with vtDRD. A worst-case analysis was performed by
assuming all (Level I) DRD eyes to be false negatives and all non-DRD to be
false positives for those eyes receiving an insufficient image quality. Worst
case analysis drops sensitivity to 64.5% (220/341), and specificity to 83.9%
(696/830). Subjects with eyes determined by the AI as insufficient quality
received a ‘referral to eye care provider’ output for patient safety.

In its pivotal trial, the ‘predicate’ autonomous AI, utilizing the higher
cost, tabletop and harder to use, two image per eye, Topcon NW 400
(Topcon USA, Pyramus, NJ, USA) camera, was determined to have

Fig. 1 | Waterfall diagram. Waterfall (STARD)
diagram showing the final disposition of each par-
ticipant in the enrolled, intention to screen (ITS),
and fully analyzable populations.
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sensitivity sc ¼ 87:2%, (95% CI, 81.8%–91.2%) at the participant level16.
Using these and the present results gives a Population Achieved Sensitivity
(PAS) PASNW400/PASRV700 threshold or break-even ratio of 1.07x (95%CI,
1.02–1.15).

Discussion
The results of this preregistered, prespecified, Contract Research Organi-
zation (CRO) managed Good Clinical Practice (GCP)23 arms-length from
the sponsor trial, confirmed the hypotheses of the safety, effectiveness and
lack of in-equity of the improved autonomous AI system, designed to
minimize AI adoption bias and thus maximize access to necessary health
access equity. Sensitivity/specificity against the Level II reference standard
by the WRC at the eye level to detect DRD (ETDRS severity scale 35 or
higher or DME) was 97.3% and 82.7% with a diagnosability of 94.9%. It

exceeded the non-inferiority endpoint at a sensitivity of 79.6% (p = 0.021),
and specificity 88.4% (p < 0.001), at the eye level, against theLevel I reference
standard, in a sample representative of the US population with diabetes. At
the participant level it also exceeded these non-inferiority endpoints, with
sensitivity 81.5% (p = 0.006) and specificity 82.2% (p = 0.008). None of the
outcomes showed evidence of racial, ethnic or sex biases in sensitivity or
specificity.

The sensitivity of theAI against theLevel I reference standard, at 79.6%,
was significantly (p < 0.001) higher than the 67.2% of theWRC reading the
same rv700 images as the AI. The WRC has been considered the most
established reading center in the world for DRD since 197924, and has
created the reference standard for >70% of all industry sponsored FDA
intervention trials forDRD.While the improvedautonomousAI systemhas
lower sensitivity on the rv700 than the predicate on the nw400 images,
measured against the Level I standard, the sensitivity of the WRC against
this same Level I reference standard is significantly lower still. This is likely
due to a camera effect, for which theAIwas able to largely compensate - as it
was designed to do - so the study endpoints were met. This camera effect is
due to the rv700 imaging a smaller area of the retina, (Fig. 2) at lower image
contrast25, reducing the amount of input information for the AI to make its
diagnostic decision.

Table 1 | Demographics of participants and non-participants

Analyzable
(N = 567)

Not
Analyzable
(N = 52)

P value
(2-sided)

Age (years) at
Consent

0.0004

n 567 52

Mean (SD) 54.1 (12.0) 60.3 (12.9)

Median 55.0 60.5

Min, Max 22.0, 87.0 26.0, 86.0

Age Category 0.0011

<65 years 457 (80.6%) 31 (59.6%)

65+ 110 (19.4%) 21 (40.4%)

Sex at birth, n (%) 0.5639

Male 288 (50.8%) 24 (46.2%)

Female 279 (49.2%) 28 (53.8%)

Ethnicity, n (%) 0.0653

Not Hispanic or
Latino

304 (53.6%) 37 (71.2%)

Hispanic or Latino 259 (45.7%) 15 (28.8%)

Unknown or Not
Reported

4 (0.7%) 0

Race (all that apply),
n (%)

0.4370

White 385 (67.9%) 33 (63.5%)

Non-White 182 (32.1%) 19 (36.5%)

American Indian or
Alaska Native

13 (2.3%) 1 (1.9%)

Asian 35 (6.2%) 1 (1.9%)

Black or African
American

98 (17.3%) 13 (25.0%)

Latino 34 (6.0%) 5 (9.6%)

Native Hawaiian or
Other Pacific Islander

6 (1.1%) 0

Refuse to provide 0 0

Unknown 1 (0.2%) 0

Other 2 (0.4%) 0

Mixed Race 5 (0.9%) 1 (1.9%)

HbA1c (%) 0.3234

n 558 52

Mean (SD) 10.0 (1.99) 9.7 (2.24)

Median 10.0 9.7

Min, Max 4.6, 15.3 5.1, 14.4

Table 2 | ETDRS level prevalence in the analyzable subset

ETDRS severity level n (%)

10 545 (50.8)

12 95 (8.9)

14B 5 (0.5)

15 16 (1.5)

20 137 (12.8)

35 A 2 (0.2)

35B 12 (1.1)

35 C 57 (5.3)

35D 9 (0.8)

35E 27 (2.5)

35 F 106 (9.9)

43 A 17 (1.6)

43B 19 (1.8)

47 A 2 (0.2)

60 4 (0.4)

61 A 5 (0.5)

61B 9 (0.8)

65 A 1 (0.1)

65B 1 (0.1)

71 A 1 (0.1)

71 C 1 (0.1)

71D 1 (0.1)

90 1 (0.1)

Table3 |AIbias:p-values fordifferences ineye-level sensitivity
and specificity by sex, race, and ethnicity, all of which are non-
significant; unadjusted for multiple comparisons, adjusting
would make these even less significant

Sex (Male vs
female)

Race (Black vs
non Black)

Ethnicity (Hispanic vs
non-hispanic)

Sensitivity 0.066 1 0.090

Specificity 0.057 0.128 0.366
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For the Level I prognostic standard, the WRC determines ETDRS
severity levels, as well as the presence of DME, from high quality four
widefield stereo color images (4W) and macular optical coherence tomo-
graphy (OCT) imaging, obtained by WRC certified ophthalmic photo-
graphers. For the Level II reference standard, ‘WRC reading of rv700
images‘, these same WRC readers grade only the rv700 images, while
masked to the high quality images and OCT to determine DRD severity–
thus, using the same retinal information that theAI systemuses as input, see
Fig. 2.While the improved autonomous AI system, using the rv700 images,
met the non-inferiority endpoints, the WRC failed to meet them when
presented with exactly the same input image information. The results
demonstrate that autonomous AI has higher sensitivity on the rv700 for
early diagnosis of DRD, as it is well established that individual graders
evaluating retinal images, including rv700 images in a telemedicine setting,
do not approach the sensitivity performance of the WRC – which didn’t
meet this endpoint26,27.

The sensitivity of the improvedautonomousAI system is 81.5%against
the Level I standard at the participant level: while high enough to exceed the
non-inferiority endpoints, this is lower than the 87.2% sensitivity of the
predicate using the nw400 camera against the Level I standard. This tradeoff
results from the Total Product Lifecycle-Bias Mitigation (TPLC-BM)
analysis21, in order tomitigate theAI adoptionbias thatwas identified17. PAS
for these two autonomous AI systems has a break-even ratio of 1.07x (95%
CI: 1.02–1.15), meaning that, if adoption of the improved AI system is at
least 1.07x higher than of the predicateAI,more true patientswithDRDwill

be identifiedwith the improved AI thanwith the predicate.Many hundreds
of the predicate autonomous AI system (using the nw400) have been
adopted since FDA authorization in 2018, making it the fastest growing
medical AI in terms of patient utilization based on claims data17. Since 2020,
many thousands of rv700 cameras have been adopted, albeit in a tele-
medicine setting usinghuman readers. Thus, potentialwidespread adoption
of the improved autonomous AI can be expected to result in a PAS that is
also an order of magnitude larger, substantially over the 1.07x break-even
PAS ratio, given comparablze diagnosability. We used the lower diagno-
sability found in this study for the rv700PAS, even thoughdilationwas used
in 15.5% of subjects compared to 23.6% in the predicate autonomous AI
pivotal trial16, with the nw400, to bias the analysis against the improved
autonomous AI system. Other studies have found dilation rates as high as
40%. Consequently, a rapid positive impact at the population level can be
expected because more patients that have DRD and can benefit from
treatment or close management will be identified with the adopted
improved AI system, than with the predicate21,28, scaling health access
equity, through point of care diagnosis which allows for timely referral and
counseling.

As mentioned in the Introduction, RCTs have already established that
the use of autonomous AI for the diabetic eye exam reduces health dis-
parities and improves health access equity12,13. Improving adoption by
reducing AI adoption bias is the next frontier17, so it is crucial that when
cleared for clinical usage, post-market continuous efficacy monitoring
conforms to the TPLC-BM, to determine whether adoption bias is indeed
being mitigated21. Given the focus on AI bias that this autonomous AI
system is designed to address, it is important that new sources of AI bias are
not introduced. The design, development and validationwas performed per
the TPLC-BM framework for AI21, additionally the results showed no sig-
nificant racial, ethnic or sex bias was present in sensitivity and specificity.

The autonomousAI systemmissed cases ofDRD, including 14/60 eyes
with vision threatening DRD; all of these were also missed by the ‘WRC
reading rv700 images’, primarily because the lesions in these eyes were
outside the area of the retina imaged by the rv700, see Fig. 2. Clinically, none
of these 14 eyes had symptoms of vision loss, their centerfield thickness
averaged 277 µm, one eye had ETDRS 60 (status after panretinal photo-
coagulation), one eye ETDRS level 61, and all of the others were ETDRS <
= 20. Thus, none of these eyes qualified for immediate treatment with anti-
vascular endothelial growth factor, steroids or other29,30.

The results show the safety and efficacy, as well as lack of racial and
ethnic inequity of the improved autonomous AI. WRC experts show sig-
nificantly lower sensitivity, compared to the improved autonomous AI,
using the level I reference standard. Scientific and professional societies
recommend in the chair indirect ophthalmoscopy and biomicroscopy,
performed by ophthalmologists and retina specialists30,31. Sensitivity for this
standard practice is even lower, around 30–40%, using the level I standard,
according to the two comparison studies available in the literature on
clinician accuracy27.

According to the largest study to date, using claims data, only 15.3%32

of people with diabetes get a regular diabetic eye exam. While sensitivity of
the improved autonomous AI is slightly lower than that of the predicate
autonomous AI, it is significantly more sensitive than either the current
standard practice of teleretinal imaging or clinical exams by ophthalmologic
clinicians. However, this preferred practice has not succeeded in addressing
either the substantial health inequities, nor expanding access, as explained in

Fig. 2 | Retinal coverage of retinal cameras.Retinal areas of the posterior pole of the
right eye covered by the ETDRS 4widefield color stereo protocol, inwhite, the nw400
‘predicate’ fundus camera two non-stereo image protocol, in yellow, and the rv700
low-cost, compact, handheld, easy-to-use one image per eye protocol, in blue,
provided their respective imaging protocols are compliedwith. Any abnormality due
to DRD that is not within the blue outline, but is within the white outlines, is, by
definition, not available for the improved autonomousAI system that uses the rv700.

Table 4 | Secondary outcomes

Point estimate Bounds

Positive Predictive Value (PPV) 70.6% one-sided 97.5% lower bound: 64.1%

Negative Predictive Value (NPV) 87.9% one-sided 97.5% lower bound: 83.9%

Positive Likelihood Ratio (PLR) 4.47 one-sided 97.5% lower bound: 3.00

Negative Likelihood Ratio (NLR) 0.26 one-sided 97.5% lower bound: 0.16
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the Introduction. In contrast, the improved autonomous AI system was
explicitly designed to vastly expand access to diabetic eye exams specifically
in underserved communities.

The results reinforce the importanceof the choice of reference standard
against which any AI is compared, as expressed by the metric for reference
standard quality28. If the reading center based Level II is used instead of the
most rigorous, Level I prognostic standard, the sensitivity of the AI see-
mingly improves from 79.6 to 97.3%, at the eye level. Obviously, its true
performance did not change –these apparent differences are caused by the
difference in reference standard: where the Level II standard uses the same
images as the AI system, the Level I standard is based on a much larger
retinal area imaged at high contrast in stereo as well as OCT performed by
highly experienced WRC certified ophthalmic photographers, Fig. 2. The
Level I prognostic standard is directly tied to what patients and their pro-
viders care about – clinical (visual) outcome28,33. Still, most image based
medical AI – in any specialty – continues to be validated against Level II or
even Level III (derived from multiple clinical experts, not part of a formal
reading center) reference standards, and rarely are they compared against a
prognostic standard as in the case of the autonomous AI for the diabetic eye
exam, making valid comparisons challenging.

The results show the importance of developing (autonomous) AI
under an ethical framework33,34, as the resultingmetrics developedwithFDA
andother healthcare stakeholders21,28 allowed careful quantitative analysis of
both individual benefit as well as health equity impact. This allows a balance
where the autonomousAI is both safe and effective under criteria previously
established (sensitivity and specificity meeting independently established
non-inferiority endpoints)16, and at the same time maximizes the health
equity impact, as quantified through PAS21,28,35.

The results also demonstrate how the autonomous AI algorithm out-
put is tied to clinical outcome, if the patient is never treated.An autonomous
AI output of “disease present”, i.e., ETDRS > = 35 or DME present, confers
a ~18.5% risk of that patient having proliferative or worse DRD within 3
years, or a risk of ~11% of moderate or worse vision loss within 1 year, and
~35% in 3 years, if the patient were not treated. A “disease present” output
thus maps to International Classification of Diseases (ICD)-10 category
E11.339x: “Type 2 diabetes mellitus with moderate diabetic retinopathy
without macular edema”, for the appropriate (“x”) laterality for a type 2
diabetes patient, as all patients will have at least this level of disease; while
some patients with a “disease present” output will have biomarkers corre-
sponding to more severe ETDRS levels or to DME, they will all have the
E11.339x level of disease.A ‘disease not present’output confers a risk for any
of these outcomes below 1.8%. DRD terminology is often confusing, hence
the current project to create a novel grading system forDRD36. For example,
under the International Classification ofDiabetic Retinopathy, ETDRS 35 is
termed moderate37, but under ETDRS itself, it is described as mild22. We
strictly use the ETDRS terminology where possible, rather than using the
terms ‘mild’ or ‘moderate’, as they tend to introduce confusion.

A limitation of this study is that it was not intended or designed to
determine whether the improved autonomous AI system improves health
equity. It was designed to determine safety, efficacy and lack of in-equity of
the improved autonomous AI. It had a sufficient number of cases and
controls to test the hypotheses and confirm safety, efficacy; no inequity
signal was found (no undesirable ethnic or racial bias). However, previous
RCTs and retrospective studies12,13 of the predicate autonomous AIwith the
nw400 showed improved real world health equity (i.e., it reduced racial and
ethnic disparities). Such future real world studies will have to be performed
also for the improved autonomous AI system once FDA authorized.

Key in AI validation trials is that the sample and workflow are repre-
sentative of the population the AI will be used in, after FDA clearance, as
underlined by our work with US FDA on this subject21,28. Omitting such
constraints introduces impossible to correct for bias and overestimation of
accuracy and patient benefit, resulting in substantial patient risk and poorer
outcomes, as shown in the Fenton, et al. study38,28. For example, some
validation studies of other autonomousAI have included subjects in clinical

care for DRD to enrich the sample. However, this biases the sample in favor
of those DRD phenotypes that are easier to diagnose by clinicians, and
against those where the true state of disease has historically been hard to
determine by clinicians, such as venous beading in 2 quadrants exclusively, a
well known marker for ETDRS 5339.

The prevalence of ETDRS > = 35/DME in this study at the subject level
was comparable to other recent primary care based studies at around 20-
25%, though prevalence can vary based on how long a DRD screening has
been deployed. While less recent studies from around the world showed
higher prevalence40, these recent studies in the intended use environment
show that estimates from this study are likely to reflect performance in the
real world13,41.

In conclusion, this preregistered arms-length trial showed that the
improved autonomous AI system utilizing a widely adopted, lower cost,
easier to use, handheld camera to minimize AI adoption bias and designed
to compensate for the lower image quality, retains safety and efficacy. It
thereby has the potential to maximize health equity, as adoption bias in
under-resourced clinics can be minimized because of the handheld, com-
pact, lower cost, and easier to use one image per eye camera. At an increased
adoption of at least 1.07x – and rv700 has already been adopted an order of
magnitude more than the predicate - population achieved sensitivity PAS
will increase, so thatmore patients withDRD in a given diabetes population
will be identified than with the predicate, while retaining diagnostic
accuracy21,28. These are the patients that will benefit from earlier manage-
ment and treatment of DRD and their diabetes. In fact, the improved AI
system outperforms even the most experienced retinal experts reading the
same images. RCTs and other studies have established that autonomous AI
can reduce health disparities in under-resourced clinics serving minority,
rural and low-income populations, but AI adoption bias remains a major
hurdle. The improved autonomous AI system is designed to mitigate this
pernicious form of AI bias, and has the potential to increase adoption by
under-resourced clinics in order to reach better visual outcomes, health
equity and access to care for all people with diabetes.

Methods
Study design
FromMarch 3, 2023 to November 30, 2023, participants were prospectively
enrolled in this preregistered observational study at 8 primary care practice
sites throughout the United States. The study protocol was approved by the
InstitutionalReviewBoard (Advarra Inc,Columbia,MD21044), for each site,
(Approval # Pro00061789), all participants provided written informed con-
sent and adhered to theDeclarationofHelsinki. The study,whichwas funded
by Digital Diagnostics Inc, was designed by the authors with input from the
U.S. Food and Drug Administration (FDA) on the endpoints, statistical
testing, and study design. The study protocol, endpoints, primary and sec-
ondary outcomes, and their statistical analysis and hypothesis testing were
preregistered on March 29.2023 on ClinicalTrials.gov ID NCT05808699.

Autonomous AI diagnostic system
The improved autonomous AI system, (LumineticsGo, Digital Diagnostics
Inc, Coralville, Iowa), is paired with the RetinaVue 700 Imager (rv700,
Baxter, Deerfield, IL), handheld portable fundus camera, and has two core
AI components;
1. rv700: a lower cost, compact, handheld, fundus camera, allowing one

image per eye, with reduced image contrast, covering less retinal area
than the ‘predicate’ 2 image per eyeNW400protocol, and substantially
less retinal area than the ETDRS 4W imaging protocol, as in Fig. 2.

2. Assistive AI for image quality: essentially the same image quality sys-
tem as in the original system16, which is implemented as multiple
independent detectors for retinal area validation as well as focus, color
balance and exposure, and has beenmodified to support one image per
eye and lower image contrast. It is used assistively by the operator to
detect, in real time, sufficient image quality or not, and thereby
recommend whether an image should be retaken.
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3. Autonomous diagnostic AI, which is based on the original autono-
mous AI16, and has been studied extensively over two decades42–44. It
consists of multiple, partially redundant (statistically partially depen-
dent) validated detectors for biomarkers, including hemorrhages,
neovacularizations, exudates, and other lesions characteristic for DRD
in the form of multilayer convolutional neural networks (CNN)45,46,
and has beenmodified to support a lower cost, compact, handheld one
image per eye camera,while retaining at least the sameperformance on
the predicate fundus camera two image protocol.

The autonomous AI algorithms are ‘physiologically plausible’ to a
limited degree due to their multiple, redundant, lesion-specific detectors for
biomarkers47. Suchdetector basedAI systemshavemultiple advantages over
straight shot image based CNN AI: increased robustness against small
perturbations in input images48, racially and ethnically invariant to retinal
pigmentation, as per FDA’s approach16,21,44, and lower computational
complexity, -less than 10 26

floating point operations - urged by the recent
US White House Executive Order on AI49,50.

The complete AI system was locked before the start of this study and
placed in escrow at the Algorithm Integrity Provider.

Study population
The target populationwas asymptomatic persons, ages of 22 and older, who
had been diagnosed with diabetes and had not been previously diagnosed
with DRD. A diagnosis of diabetes was defined as in all our studies16,
meeting the criteria established by either the World Health Organization
(WHO) or the American Diabetes Association (ADA); Hemoglobin A1c
(HbA1c) ≥ 6.5% based on repeated assessments; Fasting Plasma Glucose
(FPG) ≥ 126mg/dL (7.0 mmol/L) based on repeated assessments; Oral
Glucose Tolerance Test (OGTT) with two-hour plasma glucose (2-hr
PG) ≥ 200mg/dL (11.1mmol/L) using the equivalent of an oral 75 g
anhydrous glucose dose dissolved in water; or symptoms of hyperglycemia
or hyperglycemic crisis with a random plasma glucose (RPG) ≥ 200mg/dL
(11.1mmol/L)51,52. Exclusion criteria are listed in Supplemental Table S1
and includes any persistent vision loss, blurred vision that cannot be cor-
rected, or floaters.

Study and site initiation
Fortrea, a CRO, provided overall site and project management, including
data management and independent monitoring services for all sites, as well
as interdicting access to these by the Sponsor. The CROwas responsible for
ensuring all sites adhere toGCP23 and complywith applicable guidelines for
study execution. Fortea acted as Algorithm Integrity Provider (AIP), con-
tracted to lock the AI system, hold any intermediate and final results and
images in escrow, and interdict access to these by the Sponsor, fromprior to
the start of the study until final data lock. Boston Biostatistics Research
Foundation conducted all analyses. Because the Sponsor was interdicted
from access to the participants or AI system, the AIP performed all neces-
sary maintenance and servicing activities during the study as well as
throughout closeout. To ensure scientific rigor, the study, including Statis-
tical Analysis Plan, was registered before study start at ClinicalTrials.gov
under NCT05808699. See Supplementary materials for the preregistered
protocol and statistical analysis.

All primary care sites in the study identified one or more in-house
operator trainees to perform the AI system protocol (see below). After
installation of the equipment by the Sponsor at the site, but before any
participant was recruited, AI systemoperator trainees had to attest that they
had not previously performed ocular imaging. Also, before start of study
recruitment at each site, AI system operator trainees underwent a one-time
standardized 2 h training program. They were trained how to acquire
images, how to improve image quality if the AI system gave an insufficient
quality output, and how to put images for analysis into the AI system. No
additional training was provided to any of the AI system operators for the
duration of the study. Independently, WRC certified expert photographers
were identified in geographic locations close to each site by the CRO, and

documented 4W WRC certification was required before any participant
was imaged53. The CRO completed site initiation visits at each site to ensure
each site met all the GCP requirements prior to start of enrollment.

Study protocol
All participants consented to participate in both the AI system protocol as
well as theWRC imaging protocol, using two different cameras:

The AI system protocol consisted of the following steps:
1. operator takes images with the rv700 according to a standardized

imaging protocol (Fig. 2);
2. operator submits images to the autonomous AI system for automated

image quality and protocol adherence evaluation;
3. if theAI systemoutputs insufficient quality, steps 1–2 are repeateduntil

sufficient quality is output or 3 attempts were made. If the AI system
still indicates that images are of insufficient quality, the participant’s
pupils are dilated with tropicamide 1.0% eyedrops, until the pupil
diameter is at least 5mm in each eye or 30min have passed, and steps
1–2 are repeated until sufficient quality is output or 3 attempts were
made. If the AI system still outputs that images are of insufficient
quality, the AI system output of insufficient quality is automatically
provided to the CRO via secure data transfer;

4. whenever the AI system indicates sufficient quality, the AI system
disease level output (either ETDRS > = 35 or DME detected or not
detected) is automatically provided to theCROvia secure data transfer;

ThefinalAI systemoutput provided to theCROafter this protocolwas
either ETDRS > = 35 or DME detected; or ETDRS < 35 and DME not
detected; or insufficient quality

The WRC imaging protocol was then conducted, always after phar-
macologic dilation, and consisted of the following steps, all performed by a
WRC certified photographer:
1. if participant is not alreadydilated, tropicamide 1.0%dilating eye drops

are administered;
2. digital widefield stereoscopic fundus photography is performed, using

a camera capable of widefield photography (Maestro, TopconMedical
Systems,Oakland,NJ) according to theWRC4Wstereo protocol, by a
WRC certified photographer53;

3. anterior segment photography for media opacity assessment is per-
formed according to the Age Related Eye Disease Study54, by a WRC
certified photographer;

4. OCTof themacula is performed using a standardOCT system capable
of producing a cube scan containing at least 121 B scans, (Maestro,
Topcon Medical Systems, Oakland, NJ) according to the WRC OCT
protocol, by a WRC certified photographer53.

The WRC certified photographers were masked to the AI system
outputs at all times. After completion of the imaging procedures, the CRO
transferred all images (including the RV700 images) to the WRC.

Reference standards and clinical outcome
Two Reference Standards were created based on the images collected: a
prognostic standard, i.e., the highest level I reference standard, required to
have a known relationship with clinical outcome, and a level II reference
standard, determined by a validated reading center, but where the rela-
tionship to outcome has not been decisively determined28. To determine the
Level I Prognostic Standard, the 4WandmacularOCT images were graded
by three WRC retinal grading experts who independently graded each
image according to the ETDRS and DRCR severity scales, using a majority
voting paradigm22,55,56. CSDME was identified from 4W if there was either
retinal thickeningor adjacenthard exudates<600 µmfromthe foveal center,
or a zone of retinal thickening >1 disc area, part of which is less than 1 disc
diameter from the foveal center, according to the WRC, in any eye22,53,57.
CIDME was identified, from the macular OCT images, according to the
DRCR grading paradigm29, if a participant had central subfield (a 1.0 mm
circle centered on the fovea) thickness that was >300 µm, in that eye58.
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Because the prognostic standards for ETDRS, CIDME and CSDME have
been linked to visual outcome, the risk ofmoderate ormore vision loss given
a “ETDRS > = 35 or CIDME or CSDME present” output from the auton-
omous AI can be determined, as follows59.

For ETDRS > = 35, the risk of Proliferative Diabetic Retinopathy at 3
years, based on observational studies22,60,61 and the ETDRSRCTwith an arm
that left patients untreated, was 18.5%, whereas ETDRS < = 20 conferred a
risk <= 1.8%. For CSDME, the last RCT that had an arm which left parti-
cipants with CSDME untreated, according to the ETDRS imaging and laser
protocol, showed that the risk of moderate or worse vision loss (15 or more
letters loss on the standardized ETDRS chart) for control arm participants
with CSDME+ at 1 years was 8% and 24% after 3 years62.Without CSDME
and ETDRS < 20 the riskwas ~1.4% at both 1 year and 3 years. For CIDME,
therehasbeennountreated arm inanyRCT.Theoutcomesof the lastRCTs,
RISE and RIDE for ranibizumab for CIDME63, which had a laser photo-
coagulation arm (which in turn formed the treatment arm in the ETDRS
RCT) showed that the risk in thephotocoagulationarmwas5%at 1year and
12% at 3 years for CIDME. Extrapolation by combining a weighted com-
bination of theCSDME treated andCIDMEphotocoagulation risks leads to
CIDME+ having a risk of moderate or worse vision loss of ~11% at 1 year
and ~35% at 3 years63. CIDME and CSDME were combined into a DME
present (or not) label for level I, and vision threatening DRD (vtDRD) was
defined as ETDRS > = 53 and/or DME.

The second Reference Standard was a Level II Reference Standard, i.e.,
determined by a validated reading center (the sameWRC readers), but this
time instead of using 4WandOCT, using the same information theAI uses
to make its diagnosis, i.e., only the rv700 images, one per eye, according to
the ICDR severity scale, andmasked to 4W and OCT, as well as masked to
the Level I readings. The Level I Prognostic Standard require 4W andOCT
images obtained by certified ophthalmic photographers, under dilation.
rv700 images are neither stereo, nor widefield, only one field per eye, and
obtained by minimally trained operators rather than certified ophthalmic
photographers, andwere not part of the original ETDRS trial. As suchonly a
reference standard level II can be determined. The Level II reference stan-
dard thus allows any decrease in performance due to less retinal area and
lower image contrast, see Fig. 2, to be isolated, because both expert readers
that create the Level II standard and the diagnostic AI algorithms have
exactly the same input image information to base their output on.

The rationale for the ‘ETDRS > = 35 or DME’ cut-off is as follows: it
follows the American Academy of Ophthalmology (AAO) preferred prac-
tice pattern30, where only those patients with any eye up to ETDRS 20, i.e.,
less than ETDRS 35, are recommended to be seen at 12 months interval.
With any eye at ETDRS > = 35 the recommended interval is shorter,
because the risk of poor outcome at that level and up is much higher, as
analyzed and documented above; this also conforms to the 2018 FDA De
Novo clearance for the predicate autonomous AI16.

WRC staff, primary care site personnel, Sponsor personnel, and the
statistical teamweremasked at all times to theAI systemdiagnostic outputs.

Outcome parameters
Primary outcomes were sensitivity and specificity of the autonomous AI
system against the Level I prognostic standard at the eye-level. Secondary
outcomes are sensitivity and specificity against the Level II reference stan-
dard at the eye and participant level, sensitivity and specificity at the par-
ticipant-level, diagnosability at the eye and participant level, sensitivity and
specificity of the Level II reference standard against the Level I prognostic
standard, sensitivity and specificity without bootstrapping, positive pre-
dictive value (PPV) and negative predictive value (NPV), positive and
negative Likelihood Ratio (PLR and NLR), and sensitivity and specificity
that impute “worst-case” scenario values. Post-hoc analysis (i.e., not pre-
registered) included Population Achieved Sensitivity (PAS) and PAS ratio
threshold.

The thresholds for FDA clearance were 80% for sensitivity, 80% for
specificity16 at the subject level, established through an extensive FDA led
Delphi process using clinical experts from around the world, as described in

Abramoff et al.28. As AI focusesx more on per eye level, those thresholds
were transposed to the eye level. Sample sizes of 200 eyes with Early
Treatment of Diabetic Retinopathy (ETDRS) severity scale ≥ 35 and/or
DME, including at least 20 eyes with ETDRS > = 53 to mitigate spectrum
(disease severity) bias, and 140 eyes with ETDRS < = 20 and no DME were
determined to be sufficient, and able to rule out sensitivity and specificity
inferiority thresholds (with one-sided 97.5% confidence bound) to reflect
non-inferiority margins (5% for sensitivity, 2.5% for specificity). Sample
sizes were chosen to provide adequate power for the null hypotheses for
sensitivity and specificity. Additionally, both Lundeen et al.64, as well as the
pivotal trial of the original autonomousAI16, established that approximately
20% of ‘ETDRS > = 35 or DME’ eyes are ‘ETDRS > = 53 or DME’,
prompting our inclusion of an additional minimum acceptable sample size
within this clinically important stratum. The CRO received all final WRC
gradings and the final AI system outputs for all eyes. There were no interim
analyses. The analysis was conducted following statistical analysis plan
finalization and final database lock.

PAS and their ratios were prespecified, as developed in the work by
Abramoff with FDA21,28. PAS measures the number of patients identified
that truly have the disease in a given population, and quantifies the effects of
adoption bias:

PAS ¼ sccpcdc
cpc þ 1� cð Þp̂nc

ffi sccdc ð1Þ

with:
sc = sensitivity
dc = diagnosability
c = access
pc = measured prevalence in the subpopulation with access
p̂nc ¼ estimated prevalence; in the subpopulation without access
We conservatively assume prevalence p will be the same in the sub-

population lacking access c as in the subpopulation that has access –
depending on the causes, it is likely that p is larger in the subpopulation
without access. We have conservatively used p = 0.2 for both subpopula-
tions, based on recent real world studies41. Because c is hard to determine for
new technology with yet limited adoption, we eliminate c by calculating the
ratio of PASnw400/PASRVrv700. This ratio expresses the threshold at which
adoption of the improved autonomous AI (in this study, with the rv700)
results in equal numbers of at risk patients identified in a given population
compared to the predicate (with the nw400), even though sensitivities differ.
Above this break-even ratio, the improved autonomous AI system will
identify more patients with DRD in a given population than the predicate.
The sensitivity sc (participant level) and diagnosability dc for the predicate
autonomous AI (with the nw400) is taken from its pivotal trial, the sensi-
tivity sc anddiagnosabilitydc for the improved autonomousAI (with rv700)
from the present results.

Statistical analysis
Study success was pre-defined as both sensitivity and specificity of the
autonomous AI system, and the hypothesis of interest was

H0 : p < p0vs:HA : p≥ p0 ð2Þ

To preserve Type I error, study success was defined as requiring both null
hypotheses to be rejected at the end of the study, e.g.,

Pπ HA; j;Data
� �

> 0:975:

where p is the sensitivity or specificity of the autonomous AI system and
p0 ¼ 75% for the sensitivity endpoint and p0 ¼ 77:5% for the specificity
endpoint under the null hypotheses.

We pre-specified conservative one-sided non-inferior hypothesis
testingwith overall one-sided 2.5%Type I error and >80%power to rule out
pre-defined 77.5% specificity and 75% sensitivity lower bounds, using
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clustered bootstrapping as the primary analysismethodology to account for
inter-eye correlation and randomly expanding the percent with ETDRS
level≥53 tobe consistentwith the targetpopulation.One-sided97.5% lower
confidence bounds were reported, except where indicated when 95% con-
fidence intervals or standard deviation were used. Reported subgroup
analyseswere alsoprespecified; subgroups<10participants arenot reported.
The primary and secondary endpoints were preregistered and prespecified
on clinicaltrials.gov NCT05808699, and the detailed statistical analysis plan
(SAP) was finalized before database lock. The SAP documents the sample
size and power analysis for the primary endpoints – in a hypothesis testing
design - analysis methods, data handling procedures, and other statistical
analysis considerations. Bonferroni correction would be inappropriate for
the primary endpoints. For secondary and exploratory endpoints, hier-
archical testing was pre-specified in lieu of multiple testing correction, as
others65,66 have noted the limitations of such adjustments. All calculations
were performed using SAS statistical software, version 9.4.

Data availability
Data and materials availability: the Protocol, Statistical Analysis Plan, and
STARD checklist, are available as Supplementary Information. The datasets
generated during the current study that were used to calculate the primary
outcome parameters are available upon reasonable request from the cor-
responding author, MDA, as well as from PTL. Code availability: the
improved autonomous AI system described in this study is available as
LumineticsGo from Digital Diagnostics, Coralville, Iowa. The underlying
source codes are copyrighted by the sponsor, and are not available.No other
custom code was used in the study.

Code availability
The autonomous AI system described in this study is available as Lumi-
neticsGo from Digital Diagnostics, Coralville, Iowa. The underlying source
codes are copyrighted by the sponsor, and are not available. No other
custom code was used in the study.
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