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Identification of cardiac wall motion
abnormalities in diverse populations by
deep learning of the electrocardiogram
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Cardiac wall motion abnormalities (WMA) are strong predictors of mortality, but current screening
methods usingQwaves fromelectrocardiograms (ECGs) have limited accuracy and vary across racial
and ethnic groups. This study aimed to identify novel ECG features using deep learning to enhance
WMA detection, referencing echocardiography as the gold standard. We collected ECG and
echocardiogram data from 35,210 patients in California and labeled WMA using unstructured
language parsing of echocardiographic reports. A deep neural network (ECG-WMA-Net) was trained
and outperformed both expert ECG interpretation and Q-wave indices, achieving an AUROC of 0.781
(CI: 0.762–0.799). Themodel was externally validated in a diverse cohort fromGeorgia (n = 2338), with
an AUC of 0.723 (CI: 0.685–0.757). Explainability analysis revealed significant contributions fromQRS
and T-wave regions. This deep learning approach improves WMA screening accuracy, potentially
addressing physiological differences not captured by standard ECG-based methods.

Normal heart function requires coordinated contraction. Wall motion
abnormalities (WMAs) of the heart substantially increase adverse
outcomes1–3 including suddendeath and all-causemortality in patients with
ischemic4 or non-ischemic5 heart disease and even in those without an
apparent cardiac history6. WMA can result frommyocardial infarction but
also a multitude of non-ischemic conditions, including cardiac sarcoidosis,
myocarditis, takotsubo syndrome, and hypertrophic cardiomyopathy and,
notably, predicts events independent of reduced systolic function of the
heart7–9.

Current screening approaches for WMA have low sensitivity and
specificity10–12, and primarily assess the electrocardiogram (ECG) to detect Q
waves, T-waves, ST segment alterations or indices such as the Cornell
product13,14. Accordingly, patients with a clinical suspicion of WMA must
subsequently undergo confirmatory echocardiography or other imaging
studies15, which may be unavailable at primary care facilities and in under-
served regions, and introduce delays16. Studies with readily labeled endpoints
have shownthatAI-enabledalgorithmscandetect several abnormalities from
the ECG, including reduced left ventricular ejection fraction (LVEF), pro-
pensity for atrial fibrillation, and predict all-cause mortality17–21.

Wehypothesized that a deepneural network (ECG-WMA-Net)model
trained on the 12-lead ECG could identifyWMAwith higher accuracy than
analysis of standard ECG indices reported by existing ECG machines or
based on qualitative ECG interpretations by physicians. We set out to
develop and test our models in California in a large population, addressing
the challenges of obtaining labels for WMA from complex imaging data
using natural language processing (NLP) of unstructured full-text echo-
cardiography reports in the electronic health record system. We tested the
generalizability of the trained model (ECG-WMA-Net) in an external
population of patients in Georgia who differed substantially in ethnic and
demographic features and comorbidities.

Results
Thedevelopment cohort included 35,210patientswhounderwent ECGand
echocardiography at Stanford University, California, and the external
validation cohort comprised 2338 unique patients at Emory Healthcare,
Georgia, USA. Demographics of the two groups are contrasted in Table 1,
which shows their important differences in race, ethnicity, and the presence
of comorbidities known to influence cardiac disease. The overall prevalence
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ofWMA in the Stanford dataset was significantly greater than in the Emory
dataset (10.7 vs 8.9%, p = 0.006). They were further stratified into training,
validation, and testing cohorts (Supplementary Table 1). Patients at both
centers underwent ECG and echocardiographic assessment within 60 days.
Figure 1 shows data flow in the study. Stanford University and Emory
University Institutional Review Board approvals were obtained for
this study.

Natural language processing of electronic health records for
data labeling
The clinical records for electrocardiogram interpretations and echo-
cardiogram reports were obtained as unstructured text. We developed a
novel scalable approach using NLP to objectively assign ground truth labels
of WMA from echocardiography reports, and qualitative myocardial dys-
function patterns from ECG interpretations. This approach enabled us to
address the challenge of obtaining expert labels in our large echocardio-
graphic and ECG databases, which are larger than others in the
literature22–24. Briefly, theNLPused customized regular expression scripts in
Python v3.7, and provided an accuracy of 100% for extracting the WMA
label when it was documented in the clinical interpretation of the echo-
cardiogram. The accuracy of the NLP engine was analyzed by three expert
reviewers in a randomsubpopulationof 100 studies selected from the test set
and not used for engine development. As proof of concept, Fig. 2 illustrates
NLP classification of echocardiography reports (left column), associated
with raw ECGs (center), and echocardiograms (right) for three patients of
the cohort. In Fig. 2a, a Black man in his 60s is shown with a history of
cerebrovascular accident/stroke (CVA), heart failure (HF), and hyperten-
sion (HTN). An expert echocardiography report (ground truth) showed

lateral (white arrow) and anterior hypokinesis (Supplementary Movie 1).
NoQwaveswere visible onECGor stated in its interpretation. ECG-WMA-
Net (described below) correctly labeledWMA. Figure 2b shows a Hispanic
male in his forties with type-2 diabetes mellitus undergoing chemotherapy
for acute myelogenous leukemia had Q waves (black arrows) without
echocardiographic abnormalities. ECG-WMA-Net classified normal wall
motion. Finally, Fig. 2c shows a White female in her sixties with anterior
myocardial infarction (MI) had an echocardiogram read as akinesis of the
mid-distal anterior wall, anteroseptum, and inferoapex. In this case, the
ECG report read sinus rhythmwith probable old anteroseptal infarct (black
arrows), and ECG-WMA-Net classified abnormal wall motion.

ECG-based ECG-WMA-Net and traditional ECG analysis for
WMA classification
The electrocardiographic data for each patient in the test setwas analyzed by
three methods to classify the endpoint of echocardiographic WMA. We
compared: (1) ECG-WMA-Net analysis of the 12-lead ECG for classifica-
tion of the presence ofWMA, (2) qualitative assessment of the 12-lead ECG
by cardiologists interpreting theECGduring routine clinical care, and (3) an
automated ECG index model based on logistic regression of quantitative
Q-wave, T-wave, and ST-segment measurements.

ECG-WMA-Net was trained and tuned using the TensorFlow 2.0
machine learning library with the Keras API in Python. Input to the model
was a matrix of the eight unique surface ECG waveforms recorded at 2500
500 Hz for 5 seconds (2500 samples). Iterative model architectures with
permutations from the parameter sets were performed using keras-tuner
(https://github.com/keras-team/keras-tuner). The architecture that pro-
vided the highest AUROC was stored and used for internal and external
testing of the model and is shown in Fig. 3a. Overall, ECG-WMA-Net
provided an AUROC of 0.781 (CI: 0.762–0.799) for WMAs. The Youden
index was used to identify an optimal cut point, providing a sensitivity of
65.2% and specificity of 76.8%, negative predictive value of 94.9%, and
positive predictive value of 25.0%. Separately trained models that included
demographic variables did not improve these metrics (p = 0.558, see Sup-
plementary Fig. 1). Model performance did not significantly differ across
deciles of LVEF (Supplementary Fig. 2).

Conversely, the AUROCs for traditional qualitative and quantitative
ECG analysis were 0.571 (CI: 0.552–0.590), and 0.681 (CI: 0.658–0.705),
respectivelywere lower than themachine learningmodel (p < 0.0001 inboth
cases). The threemethods are summarized in Fig. 3b with details in Table 2.
A net reclassification index analysis was performed, to compare individuals
classified by ECG-WMA Net with the physician interpretation and the
quantitative linearmodel, ECG-WMANethad anNRIof 0.25 (95%CI: 0.20
to 0.29), with anNRI for events of 0.36 (95%CI: 0.32 to 0.40) and a NRI for
non-events of -0.11 (95% CI: −0.13 to −0.10) compared with physician
interpretation.Comparedwith thequantitativemodel, ECG-WMANethad
a NRI of 0.12 (95% CI: 0.08 to 0.17), (see Supplementary Table 2).

Generalizability in external test cohort with distinct
demographic makeup
In a distinct external population from Emory Healthcare (Table 1), ECG-
WMA-NetprovidedanAUCof 0.723 (CI: 0.685–0.757) (Fig. 3c),whichwas
not significantly different from the California population (p = 0.069). The
accuracy was 0.710 (CI: 0.695–0.726), F1 score was 0.261 (0.230–0.292),
sensitivity and specificity were 58 and 72%, respectively. The negative
predictive value was 95% and the positive predictive value was 17%. These
results demonstrate the ability of ECG-WMA-Net applied to raw ECGs to
classify echocardiographic WMA in ethnically and physiologically distinct
populations. To evaluate the possibility of the disparate impact of changes in
racial makeup between cohorts on the accuracy of ECG-WMA-Net, we
evaluated its performance in White and non-White patients. The ROC
AUCwas similar at 0.74 forWhite patients and 0.69 for non-White patients
(p = 0.312). For patients with low (<3 comorbidities) and high (>3
comorbidities) comorbidity burdens, the AUC was 0.71 and 0.69, respec-
tively (p = 0.685).

Table 1 | Demographic and clinical characteristics of patients
from Stanford and Emory University cohorts

Stanford
(N = 35,210)

Emory (N = 2338) p value

Age (years) 63.4 ± 16.9 61.9 ± 16.0 <0.001

Male 52.6% 51.3% 0.230

Race - - <0.001

Asian 16.6% 3.2% -

Black 5.6% 41.5% -

Native
American

0.4% 0.2% -

Other 16.4% 0.6% -

Pacific Islander 1.2% 0.2% -

Unknown 4.8% 5.7% -

White 55.0% 48.7% -

Ethnicity - - <0.001

Hispanic/
Latino

11.1% 2.8% -

Non-Hispanic 82.6% 86.0% -

Unknown 6.3% 11.2% -

AT/AF 30.6% 33.9% 0.679

CAD 4.1% 10.2% 0.044

HTN 62.9% 81.4% 0.005

HF 27.3% 39.0% 0.063

CVA 6.0% 15.3% 0.007

Echocardiography

WMA 10.7% 8.9% 0.006

EF (%) 58.9 ± 11.2 56.2 ± 10.4 <0.001

AT/AF atrial tachycardia/atrial fibrillation, CAD coronary artery disease, CVA cardiovascular
accident, EF ejection fraction, HF heart failure, HTN hypertension,WMA wall motion abnormality
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ECG regions used by ECG-WMA-Net to identify WMAs
We probed the trained ECG-WMA-Net to reveal ECG regions that con-
tributed most to identifying the presence or absence of cardiacWMA, first,
using SHapley Additive exPlanations (SHAP) values25. Figure 4a shows the
regions that contributed to the output in the three patients from Fig. 2.
Figure 4a also shows the summary for themost discriminatory ECGregions
for all patients (aggregate). ECG regions arose throughout the QRS and
T-waves and not just at early regions corresponding to early ventricular
activation (Q waves).

Secondly, a data ablation experiment to create a stepwise analysis of
limitedwindowswithin alignedECGbeats confirmed this analysis (Fig. 4b).
By training models using only 120ms windows, we found that the highest-
performing window was between 80 and 200ms (AUC 0.78 CI:
0.751–0.799) which encompassed the early QRS complex, with lower per-
formances in the window of 40–160ms (AUC 0.64 CI: 0.612–0.675). We
found that ECG preprocessing, such as peak detection and transformation,
did not improve model accuracy and may decrease generalizability.

Discussion
In this work, we present ECG-WMA-Net, a deep learning model that
detects cardiac WMAs from the widely available surface ECG and outper-
forms the current clinical standard of clinician ECG interpretation and
other published models focused on this task14. The performance of the
model was externally validated on a demographically distinct population.
This approachmay enable broad screening forWMAindiverse populations
using the affordable and ubiquitous ECG, which could reduce healthcare
disparities and divert resources toward individuals who require additional
evaluation, and reduce inconvenience to those incorrectly identified by
current screening.

The development of a generalizable model was realized via one of the
most extensive datasets in its domain. This dataset was curated by
employing NLP techniques on the unstructured text of clinical records,
facilitating the generation of labels from qualitative expert clinician

echocardiogram assessments without manual structured documentation.
Therefore, it comprises a versatile approach that could be extended for
model development across institutions and clinical contexts. Finally, using
ablative and attention methods, we highlight ECG regions outside of the
traditional ECGQ-wave and ST segmentfindings that identifyWMAs from
the surface ECG.

Detecting regional WMA is an important prognostic feature across
populations, independent of reduced LVEF and the presence of active
ischemia. While WMA may co-migrate with reduced LVEF in some
patients26,27, compensatory hyperkinesia in others may normalize LVEF
(Supplementary Fig. 3 and Supplementary Table 3)28. Accordingly, in
patients with prior myocardial infarction, regional WMAmay outperform
low LVEF in predicting cardiovascular events29. The approach described in
this study could enable more accessible screening for WMA across diverse
populations.Using conventional approaches, theprevalenceofWMAin the
Framingham Heart Study Offspring Cohort was 6.5% in patients with
congenital heart defects and heart failure and 4.2% in patients without these
conditions30. In that study, clinical associations with WMAs were found
with male gender and hypertension on multivariate analysis, and they are
often seen in asymptomatic individuals. ECG-WMA-Net’s use as a
screening tool is supported by greatly improved sensitivity over the current
practice. Implementing ECG-WMA-Net could identify more patients with
WMAs and, despite requiring additional echocardiograms, the low number
of studies required per true positive suggests that the benefits of early
detection outweigh the resources required.Our simple approach tomonitor
WMA could be applied to multi-lead ECG devices for ambulatory assess-
ment. This could also be applied to vulnerable populations including after
acute coronary syndrome and revascularization. Continuous ECG during
ambulatory exercise may allow assessment of ischemia-induced WMAs.
Trials designed to assess the impact of artificial intelligence (AI)-enabled
decision support tools are forthcoming31.

It is noteworthy to mention that ECG-based automatic diagnosis of
WMA has been previously attempted in patients presenting acute
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Fig. 1 | Process for development and external testing of ECG-WMA-net using
ECG and echocardiogram pairs from Stanford and Emory University cohorts.
Consecutive ECG-echocardiogram pairs were curated from the clinical ECG and
echocardiogram databases at Stanford (left) and Emory (right) Universities. Pairs
were excluded if the two studies were >60 days apart, if the ECG reported ventricular
pacing, or if ECG data were missing. Only the most recent valid pair was used such

that all patients in the database were unique. At Stanford, semi-structured echo-
cardiogram reports and ECG reports were parsed by NLP forWMA labels and ECG
labels, respectively. Raw ECGdata were usedwithWMA labels to train ECG-WMA-
Net for comparison against the standard of care. Consecutive ECG-echocardiogram
pairs from Emory were then used to externally test the model.
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conditions14. TheECGpossesses higher predictive power in the acute setting
and WMA generally has a higher prevalence in these datasets. In contrast,
our study is the first to automatically diagnose WMA from ECG data of a
broad range of ambulatory and inpatient individuals and validate it in an
external population.

In exploratory analysis, we applied ECG-WMANet to forecast future
WMA in patients who had normal function at a previous time point, which
showed some ability to identify patients, but has decliningperformancewith
longer lead time, as expected (Supplementary Figure 4).

Our results may help reconcile pathophysiological inconsistencies in
the literature. Although pathologic Q waves were classically described as
sequelae of myocardial infarction scar, they are found in a vascular dis-
tribution in only 29% of patients with WMAs30. In cardiac magnetic reso-
nance imaging studies to detect late gadolinium enhancement, pathologic
Q-waves are actually rare in patients with unrecognized scar (6.7%)32

although they are more common in selected patients with proven coronary
disease10. The classical pathophysiological explanation of early loss of

subendocardial electrical forces and Q-waves is thus likely only a subset of
patients with WMA. Instead, WMAs represent a collection of cardiomyo-
pathic processes, including myocardial dysfunction, scar, pericardial
adhesion, and stiffness. These changes in contractility may manifest across
the duration of the electrocardiogram, including the T wave, where iso-
volumetric contraction stops, and ejection begins.

Several limitations apply to this study. Echocardiography reports were
used in this study, rather than direct assessment of echocardiograms.While
this provides expert-level adjudications, variations in practice between
centersmayaffect generalizability.Nevertheless, this approachenables rapid
deployment from full-text records, at the level of experts at each center.
Electronicmedical records and echocardiogram reports are readily available
and portable. The use of the model as a diagnostic test is limited due to its
modest positive predictive value in a broad population, although it out-
performs other widely-used models and standard ECG interpretation33. In
the external test set, approximately six patients identified by the model
would need to undergo an echocardiogram to diagnose WMA in one

a

The left ventricle is normal in 
size. There is severe concentric 
left ventricular hypertrophy. There 
is mild lateral wall hypokinesis. 
There is mild anterior wall 
hypokinesis.

b

The left ventricle is normal in 
size. A false chord is noted 
(normal variant). There is normal 
left ventricular wall thickness. 
The left ventricular ejection 
fraction is normal.

c

The left ventricle is moderately 
dilated. There is normal left 
ventricular wall thickness. There is 
akinesis of the mid-distal anterior 
wall, mid-distal anteroseptum, apex, 
and inferoapex. This area appears 
aneurysmal.

Fig. 2 | Representative cases of ECG and echocardiographic studies with and
withoutWMAs detected by ECG-WMA-Net. aAblackman in his sixties without Q
waves on ECGbutwithmild anterior and lateralWMA(white arrow) (ECG-WMA-net
true positive).bAHispanicman in his fortieswithQwaves onECGbutwithoutWMAs

on echocardiogram (ECG-WMA-Net true negative). c A female in her sixties with
anterior and lateral Q waves (black arrows) on ECG and akinesis of the apex and mid-
distal anterior and inferior walls (white arrow). Green text highlights show language
tagged for location, and blue text highlights show language tagged for abnormalities.
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Fig. 3 | Structure and performance of ECG-WMA-Net for detectingWMAs from
the ECG. a Structure of ECG-WMA-Net – Input to the model was the first 5 s of the
eight unique leads from the ECG recording. At 500 Hz, this resulted in an input
matrix of (1, 2500, 8). The parameter searching tool optimally found six sets of Conv,
BatchNorm, Max Pool, and Dropout prior to Flatten, and Dense layers. b Receiver

operating characteristics of ECG analysis by ECG-WMA-Net (yellow), quantitative
ECG analysis (blue), and qualitative ECG analysis (green) for detection ofWMA on
echocardiography. The ‘x’ for each curve corresponds to the Youden Index optimal
cut point. cReceiver operating characteristics of ECGanalysis by ECG-WMA-Net in
the internal test cohort (yellow) and external test cohort (blue).

Table 2 | Model performance: ECG-WMA-Net versus qualitative and quantitative ECG metrics

ECG-WMA-Net ECG qualitative ECG quantitative

AUC 0.781 (0.762, 0.799) 0.571 (0.552, 0.590) 0.681 (0.658, 0.705)

Accuracy 0.756 (0.747, 0.764) 0.808 (0.799, 0.817) 0.622 (0.611, 0.632)

F1 Score 0.362 (0.343, 0.381) 0.228 (0.203, 0.253) 0.269 (0.251, 0.287)

Sensitivity 0.652 (0.624, 0.680) 0.271 (0.240, 0.301) 0.665 (0.632, 0.698)

Specificity 0.768 (0.759, 0.777) 0.871 (0.863, 0.879) 0.617 (0.605, 0.628)

NPV 0.949 (0.944, 0.954) 0.911 (0.904, 0.918) 0.940 (0.933, 0.947)

PPV 0.250 (0.235, 0.267) 0.197 (0.174, 0.221) 0.168 (0.155, 0.182)

AUC area under the curve, ECG electrocardiogram, NPV negative predictive value, PPV positive predictive value, WMA wall motion abnormality
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patient. Given the importance of this diagnosis and the availability of
effective treatments this may be a tenable screening paradigm, however,
furtherwork is needed. Studies for implementation of themodelwill have to
be carefully designed given the heterogeneous treatment strategies and
success rates for different etiologies of WMA and may benefit from pilot
studies in certain high-risk subgroups. The model performance may be
further improved by training on federated data across institutions, enabled
by theNLP labeling engine.AImodelsmaybe technically less effectivewhen
there is an imbalance between groups, such as prior studies of hypertrophic

cardiomyopathy or hypoglycemia34–36. yet ourmodels retained performance
in a distinct population. It would be important to identify additional test
populations for further validation.

In summary, a novel deep learning classifier applied to the ECG pro-
vided improvedperformance for echocardiographicWMAover standardof
care ECG interpretation. This could be used for screening large populations,
even on reduced lead sets which are amenable to portable wearable devices.
Finally, linking non-q-wave regions of the QRS to abnormal cardiac
structure alters our physiological understanding of ECG genesis.

Fig. 4 | Temporal localization of ECG features
associated with WMAs identified by ECG-WMA-
Net. a Times of cardiac activation on the ECG that
identify abnormal wallmotion. ColumnsA, B, andC
are the output of SHAP analysis of trained machine
learningmodels to each of the patient cases fromFig.
2, in order. The cropped and aligned ECG signal
from each patient is shown in red trace. The column
labeled aggregate displays the summated ECG
SHAP values output map for all patients. Both the
example cases and the aggregate shadings support
that ECG features throughout the QRS and T-waves
were used to identify WMA. b A sliding window of
120 ms was used to build successive models for each
40 ms from 60 to 540 ms, while ablating the
remainder of waveform data. The black line shows
the ROC AUC values with confidence intervals for
each model trained on windows centered at each
time point. The red tracing indicates a standardized
average ECG with normalized voltage.
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Methods
Development cohort
We enrolled data from patients who received an ECG at Stanford University
between 05/01/2014 and 08/17/2018who underwent echocardiographywith
final reports generated by readers with level III American Society of Echo-
cardiography training within 60 days. Figure 1 shows data flow in the study.
The search resulted in 82,340 echo-ECG pairs. We excluded 31,220 pairs
when the finalized ECGwas not within 60 days of the index echocardiogram
and 1712 where ventricular pacing was involved. Ventricular pacing was
excluded since it obscures native conduction patterns. Five echo-ECG pairs
were excluded due to corrupt ECG files. Finally, we included only the most
recent valid echo-ECG pair for each patient, thus excluding 14,193 multiple
examinations. This resulted in 35,210 unique patient cases. An external test
dataset was developed in a similar fashion at EmoryHealthcare. Consecutive
ECGs from 5/15/2018 to 6/1/2020 were collected with the same criteria as
above. 23,658 cases (with paired ECG and echo)met the inclusion criteria, of
which ~10% were randomly selected (N= 2338), and 90% were reserved to
avoid contamination of the dataset for future model development at Emory
University. Table 1 includes the demographics of the two study populations.
Demographics are further stratified between the training, validation, and
testing partitions (Supplementary Table 1). Stanford University and Emory
University Institutional Review Board approvals were obtained for this study
(IRB-41045 and STUDY00000160, respectively). Waiver of consent forms
were approved by both IRBs due to the retrospective nature of the study.

Natural language processing for wall motion assessment
Wall motion was assessed by experts in echocardiography with Level III
American Society of Echocardiography (ASE) training and coded for all
heart walls in six segments using planimetry, transverse and longitudinal
strain. Abnormal wall motion was noted as present for reduced wall
thickening (hypokinesis), absence of thickening (akinesis), or a thinnedwall
with paradoxical motion (aneurysm). The text was analyzed using custom
regular expression algorithms developed in Python 3.7 using the re library.
First, the section of the echocardiogram report relating to the left ventricle
was extracted. Then, statements were parsed according to terms related to
wall motion (normal, hypokinesis, akinesis, and aneurysm) in six clinical
regions of the heart (apical, septal, inferior, posterior, lateral, and anterior)37.
Negative space terms were applied to appropriately assign the sentiment of
negating statements. The regular expression terms are reported in Supple-
mentary Table 4 and shared publicly via GitHub38. The accuracy of this
approach to identify labels from the clinical reports was verified by three
reviewers in a random subset of 100 echocardiography reports from the test
set and found to have an accuracy of 100%.

Electrocardiography acquisition and labeling
ECGs for development and internal testing were recorded at Stanford Uni-
versity and stored unfiltered in XML format in a clinical ECG system (iECG,
Philips, Amsterdam, NL). A total of eight ECGwaveforms (leads I, II, V1-6)
were stored for eachcase. LeadsaVR, aVL, aVF, and III canbecalculated from
leads I and II, so these were not stored to avoid redundancy. Each ECG was
reviewed by a cardiologist, and a semi-structured interpretationwas stored as
plain text during standard clinical care. Quantitative measurements of Q
waves, T waves and ST segments in each lead were derived from the clinical
ECG software and stored as metadata with each ECG.

For model training, 8-lead ECG waveforms were used. All ECG pre-
processing was algorithmic with no manual steps required. ECG voltage
time series were extracted from XML files in raw format. They were trim-
med to 5 s duration (2500 samples), and baseline wander was removedwith
the signal.detrendmethod from the SciPy Python library39. The eight signals
were then scaled by the standard deviation on a per-ECG basis.

For this study, we applied NLP regular expression analysis to “quali-
tatively” identify the presence/absence of abnormalities suggesting myo-
cardial dysfunction from ECG codes. Statements across all the ECG
physician interpretation statements were tokenized and counted by fre-
quency. Analysis of the tokenized statements by expert reviewers (AJR, SN,

and NKB) resulted in keywords (and keyword variants) indicating possible
myocardial dysfunction. These included “infarct”, “injury”, “ST elev”, and
“Q wave” with segmental notation in one of the distributions “posterior”,
“inferior”, “lateral”, “septal”, or “anterior”40. The term “ischemia” was not
used due to its lack of regional distinction unless another term was present.
ECG interpretation statements regarding the apex, including “apex” or
“apic” were analyzed individually (N < 100). Negation was included to
ensure accurate sentiment handling for tokens. The total unique statement
phrases were 17,990. Using this NLP method, we parsed the EHR for
statements suggesting myocardial dysfunction in the unstructured final
ECG record. The presence/absence of these terms (Boolean) is referred to as
the Qualitative ECG assessment of WMA.

Separately, quantitative measurements made by the ECG algorithm
(iECG, Philips Healthcare, Amsterdam, NL) pertaining to myocardial
abnormalities were extracted from ECG metadata, including the Q wave
duration (in milliseconds; ms), Q wave amplitude (in millivolts; mV), T
wave amplitude (mV), and the mid-point of ST segment (mV). A logistic
regression model was trained using these features for the eight leads and
tested on the holdout test set of the development cohort. This model is
referred to as the quantitative ECG assessment of WMA.

Machine learning model development
The ECGdata from each patient were analyzed in three ways, as follows: (a)
deep learning-based classification of 12-lead ECGs (ECG-WMA-Net), (b)
qualitative evaluation of 12-lead ECG signals by trained cardiologists, and
(c) an ECG index model developed using logistic regression on an assort-
mentof lead-wise features (Qwave, ST segment, andTwave features). ECG-
WMA-Net used the TensorFlow 2.0 machine learning system with the
Keras API. Model architectures were iterated using keras-tuner41 over 100
trials to maximize the AUC metric by training with a range of parameter
sets, including filters, convolution widths, strides, learning rates, and decay.
The best-performingmodel consisted of six stacks of the following network:
two consecutive blocks of 2D convolution, batch normalization and expo-
nential linear unit activation followed by one block of max pooling and
dropout.This networkwas augmentedwith aflattening layer, and twodense
layers with a hidden dimension of 500. The network was optimized using
the Adam optimizer over a weighted binary cross-entropy loss, which
maximized the average between AUC, Precision, and Recall. The training
was performed on the development cohort using a batch size of 8 and over
75 epochs. The optimal learning rate was learned using hyper-parameter
tuning. The overall network architecture is shown in Fig. 3b and made
available publicly via GitHub38. The loss function was binary cross entropy.
The parameter set yielding the optimum model was saved for full model
evaluation and testing.

Models used ECG data as inputs and were trained to the presence or
absence of WMA ascertained from NLP of echocardiography reports.
Patients were randomly split into separate cohorts of 70% for training, 10%
for validation and 20% for testing so that each patient appeared in only one
of these groups. Supplementary Table 1 shows the characteristics of each
split. There were no differences between the groups. The Youden index was
used to assign the cut point for classification of the continuous output
probabilities from the model.

We assessed the impact of demographic variables on model accuracy
using a separate multimodal model in which age, gender and ethnicity and
race were input along with ECG voltage time series, which did not improve
performance (Supplementary Fig. 1).

External test cohort
The collection of ECG and echocardiogram pairs was performed at Emory
University using the same criteria described above (studies within 60 days,
excluding ventricular pacing on ECG). The demographics of this cohort,
showing a different ethnic makeup are shown in Table 1. ECG-WMA-Net
and the optimal threshold cut point was shared with Emory University via
GitHub. The classifier was then applied, and results were compiled to assess
model performance.
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Identifying ECG regions critical to the identification of WMA
To identify regions of the ECG input used by ECG-WMA-Net to detect
WMA, referenced to specific time points within the ECG, we performed a
posthoc analysis inwhichwe aligned singleECGbeats by theirR-wave.Two
analyses were performed to assess important segments of the aligned ECG
signal: one attention method and one ablation method. R wave peaks were
first detected using a wavelet-based algorithm for QRS complex detection42.
Each ECG beat window was defined as 600ms (300 samples) total, with
200msprior to theRwavepeak and400ms after thepeakwere extracted for
input to the model. The resultant input shape is a matrix of size 300 × 8.

Toassess attentionof theneural network to specific regions of theECG,
We used SHAP via the python library25. SHAP values link regions of the
trained model most critical to model classifications to values from game
theory to identify inputs that most influence classifications. We utilized a
python library with built-in neural network methods, called
DeepExplainer43. DeepExplainer was run on our raw eight-lead ECG inputs
to identify hot-spots.

To further dissect ECG time points identified by the SHAP values to
classifyWMA, we performed an ablation experiment using windows of the
aligned ECGwaveforms. Classifiers with a similar structure to ECG-WMA-
Netwere trained using successive 120mswindows of the alignedECG input
signal. This process was repeated for each sliding window across the entire
tracing.Otherwaveformdata not included in eachwindowwas ablated. The
AUC and confidence intervals for each window-based classifier were
recorded.

Retrospective analysis for prediction of future WMAs
We conducted an additional analysis within our internal testing cohort
(N = 7078). This analysis aimed to determine the model’s ability to predict
the presence of wall motion abnormalities (WMA) on future echocardio-
grams based on prior ECGs. We included patients with available ECG and
echocardiogram pairs recorded up to 1 year prior to the echocardiogram
included in the overall test set. We excluded those who already had
abnormal wall motion at the time of the prior ECG. The analysis was
stratified by the time interval between the ECG and the echocardiogram.
The results of the retrospective analysis are given in Supplementary Fig. 4.

Statistical methods
For clinical demographics, continuous variables between development and
external datasets were compared by t-tests and categorical variables were
compared with a Chi-squared test. Normality was assessed using the
Shapiro–Wilk test. Non-normal distributions were compared using the
Mann–WhitneyU-test. Continuous variables are reported asmean ± SD or
median ± IQR for non-normal distributions, and categorical variables are
reported as percentages. Comparisons between partitions of the develop-
ment cohortwere performedusingANOVA.Confidence intervals onECG-
WMA-Net test characteristics were obtained via bootstrapping with 10,000
trials and an alpha of 0.05. To compare ROC AUCs in paired sets of data,
DeLong’s test was performed. To compare ROC AUCs in unpaired data,
ROC AUCs and standard errors were bootstrapped and a two-tailed z test
was calculated to assess differences. The mean total, event, and non-event
net reclassification indices were calculated with 95% confidence intervals by
bootstrapping with N = 1000 iterations.

Data availability
The rawpatientdata arenot publicly available due to institutional policy and
human subjects' approval to protect patient privacy.

Code availability
The source code for this project, including ECG-WMA-Net model archi-
tecture and language processing code is available on GitHub at https://
github.com/sanarayan-code/ECG-WMA-Net.git.38
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