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Scaling convolutional neural networks
achieves expert level seizure detection in
neonatal EEG

Check for updates
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Neonatal seizures require urgent treatment, but often go undetected without expert EEG monitoring.
We have developed and validated a seizure detection model using retrospective EEG data from 332
neonates. A convolutional neural network was trained and tested on over 50,000 hours (n = 202) of
annotated single-channel EEG containing 12,402 seizure events. This model was then validated on
two independentmulti-reviewer datasets (n = 51 and n = 79). Increasing data andmodel size improved
performance: Matthews correlation coefficient (MCC) and Pearson’s correlation (r) increased by up to
50% (15%) with data (model) scaling. The largest model (21m parameters) achieved state-of-the-art
on an open-access dataset (MCC = 0.764, r = 0.824, and AUC = 0.982). This model also attained
expert-level performance on both validation sets, a first in this field, with no significant difference in
inter-rater agreement when the model replaces an expert (∣Δκ∣ < 0.094, p > 0.05).

Themost frequent cause ofneonatal seizures is acutebrain injury in the early
postnatal period. Seizures typically emerge over the first 72 postnatal hours
in term neonates, primarily caused by hypoxic-ischaemic encephalopathy
(HIE) or cerebrovascular injury1–3. More than half of neonates with mod-
erate or severe HIE develop seizures1,3,4. For those neonates who do develop
seizures, approximately 7% to 10%are at risk of death and 23% to 50%are at
risk of poor outcome1,5,6.

Seizures can be subtle, often without clinical correlate, and often
remain undetected7. Continuous electroencephalogram (EEG) monitoring
is the gold standard for neonatal seizure surveillance. Yet real-time inter-
pretation of the EEG requires specialised expertise that is not always
available, limiting the capacity for continuous review of EEGs. A recent
multi-centre study found that, even with continuous EEG or amplitude-
integrated EEG readily available, only 11% of seizures were treated within
1 hour of onset4. Prompt treatment can reduce seizure burden and therefore
may reduce seizure-mediated neuronal damage and improve outcomes8.

Automated review of the EEG, with expert oversight, would allow for
increased monitoring of at-risk neonates. A recent clinical trial of an
automated algorithm to detect EEG seizures demonstrated the potential
clinical utility9. Yet this seizure detection algorithm,whichwas developed in
201110, has been comprehensively surpassed in performance by a range of
newermethods11–19. Most of these contemporary seizure detectionmethods
use deepneural networks. These powerful tools offer increased performance
over feature-based machine learning methods by enabling end-to-end

learning, from raw EEG to label class, and by scaling performance with
increasingmodel size and training data.We have identified 4 key challenges
in the current literature that may be constraining performance.

First, many deep-learning models are trained with small datasets, a
significant limitation in this field11,13–17,19. A widely used open-access dataset
contains 112 h of EEG recordings from 79 neonates20, although in many
cases, only a subset of 39 neonates with seizures is used15–17,19. Second, most
methods use global, and not per-channel, seizure annotations11–19. This
enables faster annotation of the EEG but provides less detailed information
for model training. Additionally, this can make the models susceptible to
variations in the EEG montage. Third, most methods use a relatively small
network architecture, with fewer than 50k parameters11–19. This may limit
the extent to which amodel can capture the complexity of the data. Fourth,
validation of models on held-out datasets is frequently omitted, making it
difficult to determine how the models would perform on new, unseen
data11,15–17,19.

In this study,we aim to address these limitations.Ourprimary goal is to
develop a deep-learning model capable of detecting seizures in neonatal
EEG with accuracy suitable for clinical application. To this end, we test the
hypothesis that increasing both model size and training data will improve
performance. Our models are based on a modern convolutional neural
network architecture and are trained to detect seizures on a per-channel
basis. Additionally, we validate our models on independent, held-out
datasets from Cork and Helsinki to determine efficacy on unseen data.
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Results
Model and data scaling
Weevaluated a wide range ofmodel scales, as described in Table 1, from the
39k parameter Nano variant up to the >500 times larger 21m parameter
Extra-Large (XL) model and find significant performance improvements.
Figure 1b illustrates these improvement gains in Matthews correlation
coefficient (MCC), correlation, and error rate suggesting that model scaling
is indeed a viable path to better models for neonatal seizure detection. A
representative sample of themodel output in Fig. 2b gives a qualitative sense
of this performance improvement.

Onenotable feature is a large drop in performance for thefirst 10-times
scaling fromtheNano to Smallmodel. This phenomenonhasbeenobserved
repeatedly in other applications and is known as deep double descent21. We
also see some evidence of this in data scaling in Fig. 1a from 1k to 10k hours
of EEG.

Figure 1c presents results for held-out validation sets across different
model scales. As these datasets only have global annotations across all
channels, we take the maximum over the per-channel outputs to produce a
global prediction. This simplificationmay obscure some of the per-channel
performancedifferences in themodels.Nevertheless, the power-law trendof
improvement with model scale is clear across many metrics, displaying a
strong validation of the scaling hypothesis. We also find the appearance of
the double-descent dip here again, although less pronounced, across several
metrics on both datasets.

We do, however, see indications of diminishing returns for some
metrics for the Large andXLmodels on theHelsinki dataset.We investigate
this further later in this section.

We also quantify the effect of increasing dataset size with random sub-
sampling by (1) EEG segment and (2) neonate (keep all segments for the
sampled neonates, and drop all others). We do so by training a Medium
modelwith (sub-samples of) 80%of the development dataset and test on the
same left-out 20%. We find that in both cases there is significant perfor-
mance gains, up to 50%, fromscaling the data—illustrated inFig. 1a.Adding
more EEG segments improves performance, even for datasets >20 times
larger than the nearest publishedwork, indicating that scaling data remains
a powerful lever for improving models.

Model performance
Table 2 presents a comprehensive evaluation of the XL model across the 3
datasets. The results of the test set are evaluated per channel. Combining
across all channels to form a global annotation increases detection perfor-
mance: for example,AUC increases from0.978 to 0.988 andMCC increases
from 0.648 to 0.703. In Table 3 we also include the limited set of metrics
available for direct comparison to the literature. Despite our relatively
simplistic approach to translating from per-channel to global predictions,
we still find that ourmodels compare quite favourably to those published in
the literature. This is true even for models that have been trained on the
Helsinki dataset and report a cross-validation result.

Additionally, to assess performance on a per-neonate level we analyse
the XLmodel’s ability to estimate seizure burden. Table 4 shows that on the
Cork validation set, the model’s estimate of seizure burden has no

statistically significant difference to that determined by the consensus of
experts. On theHelsinki dataset the seizure burdenwas underestimated, but
on both datasets the median difference is small enough that it is unlikely to
have clinical relevance. Finally, we also assess performance on neonates
without seizure and find median values of ≤0.01 mins/h on both datasets,
confirming the low false detection rates of the model.

The XL model attains expert-level equivalence on both Cork and
Helsinki validation datasets. In both cases, the change in agreement by
replacing a human expert with the AI model predictions was consistent
with 0: Δκ =−0.094 (95% CI:−0.189, 0.005) for Cork and Δκ =−0.082
(−0.156, 0.002) for Helsinki. For the Helsinki dataset, the Medium
model also reaches this benchmark and the Large model is just narrowly
rejected but neither model achieves this benchmark on the Cork vali-
dation dataset. For the smaller models, such as the Nano and Small, this
benchmark is well out of reach (p < 0.001). Results for all models are
presented in Table 5.

Event duration analysis
Figure 3 presents the distribution of model performance for increasing
seizure event durations. We find that for long seizures (>300 s) the model
performs well, with a detection rate of 100%. Most of the missed events are
for short seizures (<30 s). The difficulty with short seizures has a more
pronounced effect on theHelsinki datasetwhere theyweremore commonly
annotated.

Distribution shift
Although we find strong scaling performance with model size for the Cork
validation set, Fig. 1c indicates diminishing returns for the Large and XL
models on the Helsinki validation set. For those models, we find that an
optimal classification threshold shifts down from 0.5 to 0.4 and 0.3
respectively. This may indicate that the larger, more capable models are
learning some features that are useful on training sets butmaynot generalise
to all settings.

One hypothesis for why we observe this effect in the Helsinki dataset
but not in our training data or the Cork validation set could be due to
differences in clinical protocols applied in different centres. The most
obvious difference is that almost 50% (38/78) of the neonates have had
EEG recorded ≥1 week after birth, in contrast to the Cork validation set
whichwere all within a week of birth. If we divide theHelsinki dataset into
two groups, those with EEGs recorded within a week (early-EEG group)
and those with EEG recorded after the first week of life (late-EEG group),
we find significant differences in primary diagnosis. A primary diagnosis
of either asphyxia (including HIE) or stroke accounts for 92% (32/37) in
the early-EEG group compared with just 32% (10/31) in the late-EEG
group, p < 0.001 (n = 68; Fisher exact test). This may not be unexpected as
the suspected diagnosis would likely be the main driver for EEG
monitoring.

With this division of the dataset, we find a remarkable concordance
between this explanation of the distribution shift and the scaling behaviour
for these cohorts. In Fig. 4 we show that for the early-EEG group the same
scaling behaviour observed in both Cork datasets is recovered. In contrast,
for the late-EEG group, we see that the performance peaks at the Medium
model and starts to degrade progressively for the Large andXLmodels. This
is suggestive that these more capablemodels are indeed learning something
specific about EEG, which may be related to the primary diagnosis or to
postnatal age.

Montage robustness
A feature of our seizure detection model is its independence to channel
montage, both the number of channels and the type of montage. To
investigate this robustness, we take our predictions on the Helsinki dataset
and simulate data loss or montage changes by randomly inserting con-
tiguous sections of zeros in the per-channel model output. The final pre-
diction is still calculated as the maximum over all channels so this dropped
data will not contribute to the global estimate.We drop 10%, 25%, 50%, and

Table 1 | Model variants explored in this work

model depth (D) width
(W)

parameters
(count)

computation
(FLOP)

Nano 1 1 38.7 k 1.9 m

Small 2 2 289.2 k 14.4 m

Medium 3 4 1.7 m 84.3 m

Large 3 8 6.7 m 335.4 m

Extra Large 6 10 20.6 m 1 G

Depth and width parameters (D, W) were selected to generate models with an approximate
logarithmic scale in parameter count across 3 orders of magnitude.
Key: FLOP, floating point operations.

https://doi.org/10.1038/s41746-024-01416-x Article

npj Digital Medicine |            (2025) 8:17 2

www.nature.com/npjdigitalmed


100% of the channel data at random in contiguous segments; here 100% is
equivalent to dropping the channel. This was applied across increasing
numbers of channels until all but 1 were affected. This procedure was
repeated for 20 trials.

The result of this experiment is shown in Fig. 5, where we summarise
the impact as % degradation relative to zero data loss for both the AUC and
MCC metrics. We find that the model is remarkably robust: by dropping
one-half of the channels the AUC (MCC) degrades by only 1.4% (7.0%). If

Fig. 1 | Scaling training data and model size yields approximate power-law
performance gains. Metrics calculated at the segment level for 20% (41/202 neo-
nates) of the development dataset in (a) and (b) and neonate level for held-out
validation datasets in (c). a Performance improves with increasing number of
neonates and hours of annotated EEG (counted per channel) in training set; error
bars denote min/max over 3 trials. Prominent datasets from the literature are

included for comparison10,13,20. b Scaling model size over 3 orders of magnitude
reveals typical deep-double descent pattern with a performance dip for the Small
model before recovering for larger models. Marker size indicates computational cost
in giga floating- point operations (GFLOPs). c Scaling model size on the held-out
datasets fromCork andHelsinki.We include a linearfit to illustrate the predictability
of performance increase. See Table 8 for description of metrics used.
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the data loss is partial, we see even stronger results; for example, dropping
25% from 17/18 channels we see only a 0.5% (3.0%) drop in AUC (MCC).
The upper bound on performance here is of course determined by whether
there is sufficient information remaining in the data to recover the global

annotation even in principle, a dependence of the spatial distribution of the
seizure event.

Discussion
We have developed a state-of-the-art convolutional neural network for neo-
natal seizure detection, improving substantially upon previously published
results. We also have verified our hypothesis that scaling is a hitherto under-
utilised lever for performance improvement in neonatal EEG analysis. Scaling
both the dataset size, by neonate and by duration of EEG, yielded up to 50%
increases in MCC. Scaling model sizes similarly delivered significant perfor-
mance improvements of up to 15% in MCC. The result of these improve-
ments is that our bestmodel, the 21mparameterXL variant of theConvNeXt
architecture, attains expert-level equivalence with the EEG experts on two
independent, fully held-out validation sets (Δκ≠ 0 rejected with p > 0.05).

Much of the literature focuses onmethodological improvements, with
specialised architectures trained on very small datasets yielding incremental
gains15–17,19. Our work challenges this approach and suggests a more pro-
mising path to expert-level models is through data and model scale. A key
part of the model scaling strategy is designing an architecture with com-
putational efficient scaling. Failure to do so can lead to prohibitively
expensive training iterations. Scaling the fully-convolutional neural network
model13, for example, to an equivalent size of the XL model would require
>6 times the computational load.

Our scaling results also challenge the conventional wisdom that
increasing model size will eventually lead to overfitting and decreased
generalisation performance. Indeed to date, most research in neonatal EEG
has focused on relatively small models, with <50k parameters11–19. Despite
this, model scaling well past the point of over-parameterisation has been a
key feature of recentAI progress21–23. This observation that performancewill

Fig. 2 | Segment of EEGwith seizure and comparison of different model outputs.
a Sixty second sample of EEG, from the development dataset, with per-channel
seizure annotations shaded. In this example, only 3/8 channels contain seizure.
b Annotation and model outputs for 10 h from C4-O2 of the same EEG recording.
The EEG sample in (a) corresponds to the first 60 s of the first seizure event in (b).

Models of different scales---namely the Nano, Small, Medium, Large, and Extra
Large (XL) models---become more confident, suppressing the output for non-
seizure periods while maintaining high agreement in seizure periods. This ease of
interpretation would be beneficial to clinical implementation that use a real-time
model output trace.

Table 2 | Performance of the XL model on 3 datasets

Test Set Validation Sets

Cork (n = 41) Cork (n = 51) Helsinki (n = 79)

per-channel global channel global channel

AUC 0.978 0.996 0.982

AP / AP50 0.694 / 0.533 0.833 / 0.701 0.891 / 0.794

Pearson’s r 0.723 0.766 0.824

MCC 0.648 0.739 0.764

Cohen’s κ 0.630 0.726 0.761

Sensitivity/
Specificity (%)

51.5 / 99.9 88.9 / 99.2 72.9 / 98.5

PPV/NPV (%) 82.0 / 99.6 62.0 / 99.8 84.9 / 96.8

FD/h 0.053 0.363 0.459

Seizure Burden, r 0.902 0.667 0.739

Testing results are from 20% of the development dataset. Validation results are from held-out
datasets fromCork andHelsinki (described in Table 6.) Performance is assessedper-channel on the
test dataset and globally (across all channels) on the validation datasets. All metrics are calculated
by concatenating all EEG recordings. Metrics for the held-out (validation) multi-annotator sets are
based on unanimous consensus annotations.
Key: AUC, area under the receiver-operator-characteristic curve (AUC); AP, average precision;
AP50, average precision with recall > 50%; MCC, Matthews correlation coefficient; PPV, positive
predictive value; NPV, negative predictive value; FD/h, false detections per hour; r represents
correlation; κ represents kappa.
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initially decline before improving with scaling is known as deep-double
descent andwas found to occur across a range of tasks, model architectures,
and optimisation methods21. Figure 1b illustrates this finding in all metrics
with a decrease in performance for the Small model comparative to the
smaller Nanomodel.We also see indications of this in data scaling (Fig. 1a),
where increasing the size of the training dataset actually decreases perfor-
mance before improving again with more data. This surprising finding is a
corollary of the deep-double descent effect on model scale and was also
observed elsewhere21. If operating in a narrow scale range, on the left-hand
side of the double-descent dip, it is understandable that smaller models and
datasets would seem optimal (as found in other studies13). However, an
exploration of amuch larger scale range, as we show here, yields substantial
benefits by moving past the double-descent trap.

A limitation in the neonatal seizure detection literature is that AUC is
almost always presented as the lead—and often only—performance
metric10–19. This metric can be misleading for many reasons24–26. For
example,with large class imbalance, as is the case for electrographic seizures,
false positives are obscured. To illustrate this, our worst performing model
(Nano) has anAUCof 0.980 on theHelsinki set, exceeding the best reported
value of 0.96414. Our XL model improves on this only slightly to 0.982 but
has approximately 10 times fewer FD/handachieves expert-level agreement
onbothheldoutdatasets. TheNanomodel, in contrast, is far fromachieving
expert-level agreement: Δκ is approximately 5-times (2-times) larger on
Cork (Helsinki) validation datasets.

Addressing this limitation, we present a comprehensive set of metrics
for continuous and binary variables, including more balanced measures of
performance, such as MCC, Pearson’s r, and Cohen’s κ24–27, in addition to
metrics withmore clinical relevance, such as FD/h, correlation with seizure

burden, and expert-level equivalence testing. We have developed an open-
source framework for metric calculation to assist with transparency in
reporting of performance for this field.

We have also highlighted the utility of developing models with per-
channel annotations, making the algorithm adaptable to different clinical
montage requirements or protocols. Figure 6 illustrates the heterogeneous
time-varying nature of seizure focus among EEG channels. As a result,
global labels will obfuscate important channel differences, similar to
injecting noise into the training data. Although global labels, or weak
labels13, are easier to annotate, they present only summary information
without detail and therefore fail tomaximise the full potential of the valuable
EEGdata. Byproviding a strong training label, Fig. 5 shows that per-channel
models are flexible to different montages and even robust to large amounts
of data loss, as is likely to occur in a clinical environment.

We found evidence of a distribution shift on theHelsinki validation set.
Returns onmodel scaling appears to diminish after theMediummodelwith
the bestmodel becomingmetric dependent, indicating that the gains for the
Large and XL models don’t transfer as well to this dataset (see Fig. 1c).
Analysis in Fig. 4 indicates that the Large and XL models are learning
something specific to the early-EEG group (postnatal age <1 week) com-
pared to the late-EEG group (>1 week). We speculate that this could be
related to subtle differences in the EEG waveforms associated with either
postnatal age or, more likely, with primary diagnosis such as HIE or stroke
versus other primary diagnoses such as sepsis, meningitis, or recovery post
cardiac surgery20. This suggests that future development of seizure detectors
could benefit from more diverse training data, recorded from neonates at
different postnatal ages and with more varied pathologies and seizure
aetiologies other than HIE and stroke.

The key result of this work is—for the first time—a thorough
demonstration of an expert-level neonatal EEG seizure detector. Although
this claim has been made before28 it was accompanied by some important
caveats. First, it was a cross-validation result and not a held-out dataset.
Second, this model failed to reach expert-level equivalence when validated
on a held-out set29. Third, statistical equivalencewas found for only oneΔκa,
when replacing one expert, and not for the overall Δκ, an average over the 3
annotators, as our test finds. In our work, in contrast, we report statistical
equivalence to experts on two different fully held-out datasets with a
combined number of 130 neonates with over 2.7k hours of EEG. For these
reasons, we believe that our claimof expert-level equivalence is thefirst of its
kind for neonatal seizure detection.

This study is not without limitations. The observed distribution
shift on the Helsinki validation set suggests the XL model works best
within the first week of life. Although seizures are most common
during this period1–3, we should not assume that this covers all possible
use cases. Another possible limitation is that our development dataset
is from one centre. A promising direction for improvement on both
counts is to train on a more diverse multi-centre dataset of EEG with

Table 3 | Comparison of proposed model and other published models tested on the Helsinki dataset

all data (n = 79) seizure only (n = 39)

AUCcc AUC (median [IQR]) Cohen’s κ FD/h

XL ConvNeXt (ours) 0.982 0.996 (0.975 - 1.000) 0.800 0.34

FcCNN13 0.956 - - -

ResNet14 0.964 - - -

SVM–Cork10 - 0.961 (0.869 − 0.990) - 1.00

SVM–Helsinki40a 0.955 0.988 (0.931 − 0.998) - 0.86

GAT19a - 0.993 (0.964 − 0.995) 0.880 0.86

Our extra-large (XL) model achieves a new state-of-the-art on most metrics, even outperforming models trained directly on the Helsinki data. In keeping with published methods, all but the concatenated
AUC (AUCcc) is evaluated on the subset for neonates (n = 39) with seizures. A more complete set of metrics on all 79 neonates is shown in Table 2.
a Leave-one-out (LOO) testing result using the Helsinki dataset.
Key: IQR, interquartile range; AUC, area under the receiver-operator-characteristic curve; FcCNN, fully convolutional neural network; SVM, support vector machine; GAT, graph attention network; FD/h,
false detections per hour.

Table 4 | Performance of extra-large (XL) model estimating
seizure burden

Seizure burden (mins/h)

Cork Helsinki

Seizure Expert 0.94 (0.13, 5.93) 6.94 (0.16, 52.13)

XL model 1.46 (0.11, 6.90) 4.55 (0.0, 42.83)

Δ (model - expert) 0.03 (−0.45, 5.67) −1.32 (−22.86, 0.83)a

Non-seizure XL model 0.01 (0.00, 1.27) 0.00 (0.00, 6.12)

For each neonate seizure burden is calculated as themeanminutes of seizure per hour of EEG. The
table presents median (interquartile range) seizure burden over neonates in both the Cork and
Helsinki held-out validation sets using the experts’ annotations and themodel predictions. Δ shows
the model’s predicted seizure burden minus experts’ seizure burden for neonates with seizures.
Experts’ annotation is derived from the consensusannotation.Wealso include thepredictedseizure
burden for babies with no consensus seizures.
a Denotes statistically significant difference using Wilcoxon signed-rank test.
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recordings from a larger postnatal time range. And lastly, although we
show that the proposed model attains expert-level agreement on our
retrospective validation sets, a clinical investigation of the algorithm
cotside is the best way to evaluate utility.

In conclusion, we find strong evidence that scaling training data
and model size improves performance for neonatal EEG seizure
detection. Held-out validation, on datasets with a combined total 2.7-k
hours of multi-channel EEG from 130 neonates, found accurate and
reliable generalisation performance. Achieving expert-level perfor-
mance demonstrates readiness for clinical validation. Automated
analysis of long-duration EEG facilitates increased seizure surveillance

for at-risk neonates. This, in turn, can assist in timely neuroprotective
strategies to help improve long-term outcomes for vulnerable neonates
in critical care.

Methods
Development dataset
EEG records from 202 term neonates were obtained via a fully-anonymised
database of EEG recordings from the Cork University Maternity Hospital
(CUMH), Ireland. EEG was recorded as part of ongoing clinical research
studies. Informed consent was obtained from the parents or guardians and
ethical approval was obtained from the Clinical Research Ethics Committee

Fig. 3 | Influence of seizure event duration ondetection performance.Extra-Large
(XL) model performance by event duration of consensus seizures for (a) Cork and
(b) Helsinki validation datasets. A notable finding is that most of the model errors

are for short seizures (<30 s), where perhaps the 16 s input segment size limits
detection resolution.

Fig. 4 | Divergence of scaling behaviour between 2
groups in the Helsinki validation dataset.
aDistribution of postnatal age in weeks. bMatthews
correlation coefficient (MCC) for both groups. The
scaling for <1 week postnatal age tracks closely with
that observed in both Cork datasets, even matching
the double-descent dip for the Small model. At
≥1 week however we see progressive degradation for
the Large and Extra-Large (XL) models comparative
to the Medium model.

Table 5 | Estimates of Δκ, the change in level of agreement by replacing a human expert with the AI model predictions

Cork (n = 51, 2.5k h) Helsinki (n = 79,102 h)

model Δκ (95% CI) p-value Δκ (95% CI) p-value

Nano −0.424 (−0.572 to −0.275) <0.001 −0.132 (−0.206 to −0.060) <0.001

Small −0.387 (−0.521 to −0.252) <0.001 −0.126 (−0.193 to −0.058) <0.001

Medium −0.195 (−0.324 to −0.066) 0.003 −0.052 (−0.118 to 0.010) 0.099

Large −0.114 (−0.221 to −0.008) 0.035 −0.066 (−0.126 to −0.001) 0.047

XL −0.094 (−0.189 to 0.005) 0.063 −0.082 (−0.156 to 0.002) 0.055

Results are described for both Cork and Helsinki held-out datasets for all model sizes. Distributions are estimated from 1000 bootstrap samples and confidence intervals (CI) including zero and a p-
value > 0.05 indicate no difference in inter-rater agreement (highlighted by bold font). The Extra-Large (XL) model passes the test for expert equivalence on both datasets.

https://doi.org/10.1038/s41746-024-01416-x Article

npj Digital Medicine |            (2025) 8:17 6

www.nature.com/npjdigitalmed


of the Cork Teaching Hospitals. EEG recording commenced as soon as
possible after birth and continued for hours or days. EEGs were recorded
from termneonates withmixed aetiologies at risk of seizures in the neonatal
intensive care unit (NICU) inmost cases.We also include a control subset of
healthy term newborns recorded in the postnatal wards (≤2 h of EEG per
neonate) to use as part of the training data30–33.

The Neurofax EEG-1200 (Nihon Kohden), NicoletOne ICU Monitor
(Natus, USA), or the Lifelines EEG (iEEG Lifelines, Stockbridge, United
Kingdom) machines were used to record the EEG. Sampling frequencies
were set at 200, 256, or 500Hzdepending on themachine. EEG signals were
recorded from the frontal (F3/F4, Fp1/Fp2, or Fp3/Fp4), temporal (T3/T4),
central (C3/C4 and CZ), and occipital (O1/O2) or parietal (P3/P4) regions.

A total of 6487 h of multi-channel EEG was reviewed for seizure by
two neonatal neurophysiologists (authors SRM and SV). A bipolar
montage of 8 channels was used to review seizures, as shown in Fig. 2a. For
the control cohort of healthy newborns, the montage was set to F4–T4,
T4–P4, P4–CZ, CZ–P3, F3–T3, T3–P3 as these records did not include
C3/C4 electrodes31.

Each channel was reviewed and annotated separately, resulting in
50,299 h of annotated EEG. Seizures were identified in 77 neonates. A total
of 12,402 individual per-channel seizure events were annotated (see Fig. 2a
for example of per-channel annotations), with a median (interquartile
range, IQR) of 48 (19 to 144) distinct seizures events per neonate. Demo-
graphic and clinical data are presented in Table 6.

To estimate inter-rater agreement, EEG from 13 neonates was
reviewed by both neurophysiologists. Cohen’s κ indicated high inter-rater
agreement,with amedianκof 0.808 (IQR: 0.702–0.874; range: 0.548–0.990).

Although this is calculated on a per-channel rather than global annotation,
agreement is in keepingwith the previously reported estimates of inter-rater
agreement: κ = 0.767 for the Helsinki dataset20 and κ = 0.827 for a Cork/
London dataset34; both assessments used Fleiss κ to account for the 3
reviewers.

Analysis of the per-channel annotations indicate a high degree of
variability in the number of EEG channels involved in each seizure event
and in the variability of the time-synchronization of seizures across chan-
nels, as illustrated in Fig. 6. This figure also indicates that seizure burden is
approximately independent of EEG channel, although the frontal channels
(F3–C3 and F4–C4) appear to have a slightly lower burden compared to the
other channels.

The per-channel annotations were used to develop a channel-
independent algorithm. Different centres will use different protocols
when recording EEG, ranging from a 1-channel amplitude-integrated EEG
(aEEG) to a full 10:20 electrode array of 19 channels20. Developing an AI
model on a specific number of channels and a specific montage leads to
models that are sensitive to that montage only. Electrodes may detach or
become unusable due to artefact during recording. Sustaining a long-
duration EEG recording, as is needed for seizure surveillance, without
degradation of signal quality on some channelsmay be unrealistic, given the
challenging recording environment of the NICU.

Held-out EEG validation sets
To validate the performance of our algorithms we tested on two held-out,
unseen datasets. Thefirst dataset is a cohort consisting of EEG from51 term
neonates with mixed aetiologies at risk of seizures34. EEGs were reviewed

Fig. 6 | Summary of per-channel EEG seizure annotations for 77 neonates. a:
number of channels involved in each seizure event. b: agreement among seizure
annotations across channels for each seizure event, as quantified by Fleiss κ. c: total

seizure duration for each neonates' EEG estimated from each channel separately. For
a small number of EEGs, F3 is replaced by Fp1 or Fp3; and likewise, F4 is replaced by
Fp2 or Fp4.

a b

Fig. 5 | Summary of the effect of data loss on model performance on the Helsinki dataset. Degradation is measured relative to zero data loss for Matthews correlation
coefficient (MCC) in (a) and area under the receiver-operator-characteristic curve (AUC) in (b) using XL model. Inset figures illustrate data loss for up to 8 channels.

https://doi.org/10.1038/s41746-024-01416-x Article

npj Digital Medicine |            (2025) 8:17 7

www.nature.com/npjdigitalmed


independently by three international EEG experts, with a high level of
agreement34. Although the EEG data is collected in the same location as the
development dataset (CUMH), there is no reviewer overlap between this
and the development dataset.

The second validation dataset is an open-access neonatal EEG dataset
with seizure annotations20. Again, this was reviewed by three EEG experts.
The dataset consists of EEG from 79 term neonates with mixed aetiologies.

For both validation datasets, seizure annotations were global, a single
label used to indicate seizure in one or more channels. We refer to the
datasets according to geographic origin: the Cork and Helsinki validation
sets. Table 6 includes demographic information on both datasets.

Seizure detection model
We develop a modern convolutional neural network, based on the Con-
vNeXt architecture35, for our seizure detection model. In order to test our
hypothesis of increasing model scale leading to improved performance we
implement several variants of themodel related by a simplewidth anddepth
scaling paramaterisation. All models are trained to maximise classification
performance on 16 s segments of EEG. The hyperparameters and pre- and
post-processing are the same for each model (these were fixed via experi-
ments using the smallest model). The development of these models is
described in more detail in the following.

We adapt the ConvNeXt architecture35, originally designed for 2D
computer vision applications, to our 1D time-series EEG data. This

architecture was systematically designed for efficiency and performance.
Taking inspiration from the recent success of vision transformer archi-
tectures itwasdesignedwithpurely convolutional components andachieved
state-of-the-art performance across several computer-vision tasks35. The
basic building block of the model is shown in Fig. 7. Notably, the use of
depth-wise convolution and stacked 1 × 1 convolutional layers contribute to
increased computational efficiency without sacrificing accuracy.

The detailed architecture is described in Table 7. Our parameterisation
defines the network by 2 parameters: D for depth andW for width. Due to
the residual structure, simply varying these two integer values allows for easy
creation of model variants at different scales without any further adjust-
ments. In thiswork,we exploremodels ranging in scales from38.7k– 20.6m
parameters; see Table 1 for the depth–width parameter settings for
each model.

Training methods
For long-duration continuous recordings, seizure events typically occupy a
small fraction of recording time, with themajority of the EEG being seizure
free. A study by Rennie and colleagues described a median (IQR) total
seizure burden of 69 (28 to 118) minutes over a median (IQR) of 70 (31 to
97) hours of EEG recording4. Additionally, not all neonates with EEG
monitoring will have seizures: the same study found that 139 from 214
neonates did not have recorded electrographic seizures, despite the long
duration of monitoring. Our development dataset reflects this imbalance,
with an approximate class imbalance of 50:1. This imbalance can present a
challenge for training machine-learning models, as the models can become
biased towards the majority class.

The most common ways to deal with this are (a) oversampling the
minority class, (b) undersampling the majority class, and (c) re-weighting
the loss function. Oversampling is computational demanding, and for large
datasets such as long-durationEEG recordings, unappealing andwasteful of
expensive computational resources. Undersampling is also wasteful, as a
large proportionof thediverseEEGrecords are discarded. Loss re-weighting
is usually a good option but in our case such a large imbalance can result in
large loss values which, even with gradient clipping, can de-stabilise the
learning.

Fig. 7 | ConvNeXt block. Here theW is an integer parameter we use to control the
width of our models. The block includes three convolutional layers, one with depth-
wise convolutions (indicated by the d) and one-dimensional kernel of length
7 samples, followed by two 1 × 1 convolutional layers, an equivalent implementation
of a multi-layer perceptron. Notable features are the use of layer normalisation (LN)
rather than batch normalisation and a Gaussian error linear unit (GELU) instead of
the rectified linear unit (ReLU).

Table 6 | Cohort demographics according to theEEGdatasets

Development
Dataset

Validation Datasets

Cork (n = 202) Cork (n = 51) Helsinki
(n = 79)

gestational age,
weeks+days

40+0 (39+2 to 40+5)
[n = 197]

40+4 (39+3
to 41+2)

40 to 41c

[n = 78]

birth weight, kg 3.50 (3.27 to 3.76)
[n = 77]

3.50 (3.13
to 3.91)

3.50 to 4.00c

[n = 64]

sex, female 86 (42.8%)
[n = 201]

22 (43.1%) 35 (45.5%)
[n = 77]

Clinical demographics:

normal cohorta 73 (36.2%) 0 (0%) 0 (0%)

hypothermia 28 (18.7%)
[n = 150]

13 (25.5%)

HIE, 63 (31.2%) 27 (13.4%) 29 (14.4%)

mild/moderate/
severe

23 / 26 / 14 8 / 13 / 6 3 / 8d / 18

birth asphyxia 7 (3.5%) 10 (5.0%) 4 (2.0%)

stroke 9 (4.5%) 6 (3.0%) 11 (5.4%)

EEG characteristics:

total duration, h 6487 2548 112

durationb, h 7.4 (1.1 to 51.6) 36.4 (21.4
to 74.4)

1.24 (1.06
to 1.59)

startb, h 13.8 (10.3 to 27.8) 4.6 (3.0 to 17.9) <168

neonates with
seizures

77 (38.1%) 24 (47.1%) 39 (49.4%)

annotated seizure
events

12,402 1572e 450e

Data are presented asmedian (interquartile range) or number (percentage) unless otherwise stated.
Number of neonates (n) is indicated when data not complete. The development set is used for
training and testing themodels and the validation sets are used for held-out testing. For theHelsinki
dataset, clinical information is extracted from the associated metadata. Common primary
diagnoses of HIE, birth asphyxia, and stroke are included in the clinical demographics.
Key: HIE, hypoxic-ischaemic encephalopathy.
a EEG collected from healthy neonates in the postnatal ward31.
b per neonate; EEG start is time from birth to first EEG recording.
c mode, as data are categorical.
d category includes moderate and mild/moderate as defined in the metadata20.
e average number for the 3 reviewers.
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Instead, we use stratified mini-batch sampling: we keep all data and
dynamically undersample the non-seizure examples at random during
training. From one training epoch to the next the model will see a
different sample of the non-seizure data but the same seizure data. By
selecting a different random sample of non-seizure data per training
epoch, all of the non-seizure data will be exposed during training with a
sufficient number of training epochs. In practice, we found that dyna-
mically undersampling to a ratio of 5:1 and combining loss re-weighting
to account for this imbalance was the most stable and efficient
implementation.

All models are trained with the same hyperparameters using AdamW
on a learning-rate schedule. The learning-rate schedule follows a variant of
the 1-cycle policy36 with 4 phases: warmup, freeze-at-max, cooldown, then
freeze-at-min. The learning rate changes logarithmically during the
warmup and cooldown phases. In our experiments we found this schedule
reliably led to training convergence: 10 random initialisations of the Med-
iummodel resulted in amean (standard deviation) relative change inMCC
of just−0.083%(0.614%).This eliminated theneed for early-stoppingbased
on monitoring of validation loss. Although common practice in many
machine-learning applications, we have found this to be unreliable. The
large variability among neonates resulted in the early stopping condition
being highly sensitive to the choice of babies in the validation set. One
approach to mitigate this is to use more than one k-fold13, but this results in
several models that need to be ensembled somehow. Problematically, this
sensitivity of the model to the validation set raises questions about gen-
eralisation to unseen data when using this method. Additionally, a con-
sequence of the deep-double descent phenomenon, whichwe observe in the
Results section (Fig. 1), is that early stopping will only select the best model
in the special case of when the model size and dataset size are critically
balanced21.

To improve model robustness we developed and experimented with
several data augmentation techniques. This consisted of several signal
processing transformations: magnitude scaling, magnitude warping, jitter,
time warping, and spectral-phase randomisation. In addition, generic
transformations such as flip, cutmix37, cutout38, and mixup39 were applied.
The parameters of each augmentation were manually adjusted to ensure all
transformations were label preserving. Different probabilities were assigned
to each transformation for a given batch. From our experimentation, only

flip and cutout gave consistent improvements in performance and were
therefore included in themodel development presented here. Improvement
varies somewhatwith scale but inclusionof augmentation gives~5%relative
improvement on MCC.

Pre- and post-processing
Pre-processing of the EEG consisted of bandpass filtering within the
0.3–30 Hz passband, downsampling to 64 Hz, and removal of some
artefacts. These artefacts were either periods of contiguous zeros,
caused by checking the impedance of electrode scalp contact, or periods
of excessive high-amplitude activity, defined by a standard deviation
greater than 1 mV for each segment. EEG was divided into 16 s seg-
ments with a step size of 4 s. These segments were labelled as seizure if
≥8 s of the segment was annotated as seizure and non-seizure otherwise.
Each channel of the segment was then used as a separate training
example and was assigned a positive label if that specific channel con-
tained a seizure annotation. This results in ~42m segments (10.5m
without overlap) with a negative:positive ratio of ~ 50: 1.

When testing the model with a full EEG recording, we processed 16 s
segments with a step size of 0.25 s. The continuous-valued output of the
model is then smoothed with a 32 s rectangular window. From this
probability-like output, we apply the standard threshold of 0.5 to generate
the binary decision mask. Very short segments (<10 s) of seizure (non-
seizure) are deleted (filled) in the final mask. We deliberately restrict our
post-processing to be simple and limited in contrast to somemore involved
schemes in previous work10,13,40. While approaches like adding a collar to
detected events or optimising the threshold can help with some metrics on
some datasets10,13,40, we believe the best way to generalise well to other
datasets is to rely on the model to learn the start and end of seizure events
directly from the data.

All models were designed and built using the development
dataset. The set was divided with a random 80:20 split of neonates:
80% of neonates’ EEG used for training and 20% for testing. When
development was finalised the models were then trained on all the

Table7 |Model architecture for theproposedConvNeXtmodel

Component Description Input tensor
(dimension)

Output tensor
(dimension)

stem 1 × 4, stride 4 1 × 1 × 1024 6W × 1 × 256

stage 1 d1× 7; 6W
1× 1; 24W
1× 1; 6W

2
4

3
5×D

6W × 1 × 256 6W × 1 × 256

downsample LN, 1 × 2, stride 2 6W × 1 × 256 6W× 1 × 128

stage 2 d1× 7; 12W
1× 1; 48W
1× 1; 12W

2
4

3
5×D

6W × 1 × 128 12W × 1 × 128

downsample LN, 1 × 2, stride 2 12W × 1 × 128 12W × 1 × 64

stage 3 d1× 7; 24W
1× 1; 96W
1× 1; 24W

2
4

3
5× 3D

12W × 1 × 64 24W × 1 × 64

downsample LN, 1 × 2, stride 2 24W × 1 × 64 24W × 1 × 32

stage 4 d1× 7; 48W
1× 1; 192W
1× 1; 48W

2
4

3
5×D

24W × 1 × 32 48W × 1 × 32

average pool 1 × 32 48W × 1 × 32 48W × 1 × 1

linear layer 48W × 1 48W × 1 × 1 1

Parameters (D, W) define the depth (D) and width (W) of the network. The network starts with the
stem, followedbymultiple stagesanddownsampling layers, and finisheswith averagepoolinganda
linear layer to combine features. The input tensor is an array of 1024 samples for 16 s of EEG
sampled at 64 Hz.

Table 8 | Description of metrics used in this work

Variable type Name Description

continuous AP average precision (area-under the
precision–recall curve)

AP50 AP for recall >0.5; × 2 tonormalise to range (0,1)

Pearson’s r Pearson’s correlation coefficient for (p, y)

cross
entropy

meanðy logðpÞ þ ð1� yÞ logð1� pÞÞ

AUC area under the receiver-operator-
characteristic curve

binary PPV positive predictive values (precision);
TP/(TP+ FP)

NPV negative predictive values; TN/(TN+ FN)

sensitivity TP/(TP+ FN) (recall)

specificity TN/(TN+ FP)

error rate (FP+ FN)/N; 1 − accuracy

MCC Matthews correlation coefficient

Cohen’s κ measure of pairwise agreement accounting for
chance

Fleiss’ κ generalisation of Cohen’s κ to >2 annotators

FD/h false event detection per hour

seizure
burden, r

correlation coefficient for hourly estimate of
predicted versus true seizure burden in mins/h

Note whenever cc subscript is used it means the value was computed by concatenating all
recordings.
Key: y, true label; p, model prediction probability; TP, true positives; FP, false positives; TN, true
negatives; FN, false negatives; N, total predictions.
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development dataset and tested on the held-out validation sets. There
was no back-and-forth between model development and testing on
the held-out datasets.

Evaluating performance
We conduct a comprehensive evaluation of the model using two
complementary approaches: (1) performance metrics using human
annotations as the gold standard and (2) human-expert equivalence
testing. To enable reproducible research, we developed an open-source
Python framework to run the evaluations (including both metrics and
statistical tests) used in the study (available at https://github.com/
CergenX/SPEED, commit c09f60a).

We include a rangeof performancemetrics to avoid reliance on a single
metric. Because of the many limitations associated with the area under the
receiver-operating-characteristic curve (AUC)24–26, we opt to include more
transparent measures such Pearson’s correlation andMatthews correlation
coefficient (MCC)26,27. We also include clinically-relevant measures such as
false detections per hour (FD/h) and seizure burden per hour. A complete
list of metrics is presented in Table 8.Withmultiple annotators, as we have
for both our validation sets, we follow the convention of using a consensus
annotation13,19,40.

The metrics presented in Table 8 use annotations from a single expert
or a consensus of experts as a gold standard. This approach is useful for
comparingmodels but is often hard to interpret for clinical adoption. It also
fails to capture the level of agreement among experts or quantify perfor-
mance relative to that.

We evaluate performance relative to inter-rater agreement using a test
developed for neonatal EEG seizure detection28,29,40. The method measures
the impact of replacing each expert with the AI model predictions and
quantifying the difference in inter-rater agreement using Fleiss κ to account
for agreements by random chance. We define this difference in agreement
for our 3 annotator held-out datasets as

Δκa ¼ κexperts � κAI; a for a ¼ 1; 2; 3 ð1Þ

where κexperts is the inter-rater agreement among the 3 experts and κAI,a is the
agreement with 2 experts and the AI for the 3 possible combinations. An
overall difference in agreement,Δκ, is estimatedas themeanvalueofΔκaover
the 3 experts. The conditionofΔκ = 0 indicates that theAIpredictions donot
change inter-rater agreement and therefore can be considered equivalent29,40.
To test whether Δκ = 0, we follow the process of generating a distribution of
Δκ by bootstrapping with 1000 iterations randomly resampling by neonate,
computingΔκ for each resample. This allows us to estimate the variability in
Δκ introduced by variability in inter-rater agreement as well as model
performance. From this distribution, if the 95% confidence interval (CI)
includes 0 then we accept the null hypothesis that the model predictions do
not significantly alter inter-rater agreement. Adherence to this condition
establishes expert-level performance for the AI model.

Data availability
The EEG datasets are not publicly available because under the terms of the
data licensing agreement and the consent obtained from the ethics com-
mittee we do not have permission to share the raw data. The Helsinki EEG
dataset used for validation is freely available at https://doi.org/10.5281/
zenodo.4940267.

Code availability
A PyTorch implementation of the model is publicly available at https://
github.com/cergenx/ConvNeXt-Seizure (commit fd7e48f). The codeuse for
all evaluation metrics is publicly available at https://github.com/cergenx/
SPEED/ (commit c09f60a).
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