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The confluence of new technologies with artificial intelligence (Al) and machine learning (ML) analytical
techniques is rapidly advancing the field of precision oncology, promising to improve diagnostic
approaches and therapeutic strategies for patients with cancer. By analyzing multi-dimensional,
multiomic, spatial pathology, and radiomic data, these technologies enable a deeper understanding of
the intricate molecular pathways, aiding in the identification of critical nodes within the tumor’s biology
to optimize treatment selection. The applications of Al/ML in precision oncology are extensive and

include the generation of synthetic data, e.g., digital twins, in order to provide the necessary
information to design or expedite the conduct of clinical trials. Currently, many operational and
technical challenges exist related to data technology, engineering, and storage; algorithm
development and structures; quality and quantity of the data and the analytical pipeline; data sharing
and generalizability; and the incorporation of these technologies into the current clinical workflow and

reimbursement models.

Artificial intelligence (AI) refers to the ability of a machine or computational
model to recognize or “learn” patterns and relationships from input of
representative examples (training data) and make accurate predictions
regarding independent, or previously unseen, data'.

Early efforts at designing Al systems, considered “symbolic” or “rules-
based” Al, were based on encoding human knowledge into computer
programs, so-called “expert systems,” that worked for “narrow tasks” but
not for complex tasks. An example is IBM Watson for Oncology, an Al
system for clinical decision-making in oncology, that failed to achieve
high concordance with expert clinicians in terms of treatment
recommendations”™.

Machine learning (ML) emphasizes the process by which a computer
system or model “learns” or improves its predictive performance by dis-
covering patterns in data and incorporating what has been learned into the
model in an iterative fashion®’. ML techniques are considered “supervised
learning,” with predetermined outputs, or unsupervised learning (e.g.,
without the need for explicit labeling or prior knowledge of the data), to
discover underlying data patterns that are not evident to humans’.

Deep learning (DL) is a subset of ML that focuses on artificial neural
networks, such as convolutional neural networks (CNNs). DL models have
improved the state of the art in various fields, including computer vision

(e.g., pathology and radiology image analysis), natural language processing
(NLP) (e.g., electronic health record [EHR] mining), and speech recogni-
tion. DL has been used for facial recognition, image classification, and video,
speech, and audio processing"’.

Foundation models or large language models (LLMs) such as
generative pre-trained transformers (GPTs) and vision transformers,
the most recent fundamental advances in DL-based NLP, were first
described in 2017%’. LLMs can enable humans to interact directly with
a computer using natural language (e.g., English). Foundation models
are “pretrained” on vast amounts of data from disparate sources, such
as internet-derived digital data. The models learn to identify objects
from the input data, and through “transfer learning,” their capacity to
recognize objects can be fine-tuned for specific downstream tasks, such
as recognizing cancer cells from a whole slide image of a tumor biopsy.
Foundation models have the capacity for “self-supervised” learning,
e.g., the pre-training task is derived automatically from unannotated or
unlabeled data, a promising feature for the analysis of oncology data-
sets. Importantly, foundation models can accommodate multiple
types, or “modes,” of data (e.g., text, imaging, pathology, molecular
biology, video, audio), incorporating them into a prediction and
enabling “multimodal” analysis that has potential applications for
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decision-making in oncology'’. This is particularly important for
measuring biological markers and disease.

These AI approaches are both distinct from and complementary to
traditional inferential statistics. Both inferential statistics and Al approaches
can advance precision oncology, which refers to the use of information
about a patient’s genes, proteins, and environment to diagnose and treat
disease. Initially, the term “precision oncology” was used to describe tar-
geting tumor molecular abnormalities with drugs known to inhibit the
function of a molecular alteration. In recent years, precision oncology has
included the development of therapeutic agents that target any biological
abnormality that is associated with carcinogenesis. Consequently, owing to
recent major breakthroughs in immunotherapeutic strategies, the arma-
mentarium of the precision medicine approach now also includes immu-
notherapy. The term immuno-oncology refers to the wuse of
immunotherapeutic approaches that include immune checkpoint inhibi-
tors, chimeric antigen receptor T-cell (CAR-T) therapy, cytokines, and
vaccines to treat patients with cancer''. Immuno-oncology is used without
stringent biomarker selection, in contrast to the use of targeted therapies
with small molecules. In a recent meta-analysis, the use of checkpoint
inhibitors was associated with higher rates of overall response, progression-
free survival (PFS), and overall survival (OS) in patients with biomarker-
positive tumors compared with those with biomarker-negative tumors".
The efficacy of immunotherapeutic treatments varies among different
patients and tumor types, underlying the importance of exploring the
complex immune system in each patient, discovering potential mechanisms
of response and resistance to these therapeutic approaches, and identifying
predictive biomarkers that will enable the selection of the optimal immu-
notherapy approach for each patient. The goal of precision immuno-
oncology is the optimization of cancer immunotherapy based on the indi-
vidual characteristics of each patient, in combination with specific genetic,
molecular, and immunological characteristics of the patient’s tumor, to
increase efficacy while minimizing toxicity. The application of AI/ML in
precision oncology may enable the analysis of big “omics” data in combi-
nation with clinical, pathological, treatment, and outcome data, providing
sophisticated and powerful tools to optimize the development of biomarkers
and treatment of patients.

New modalities for deep measurement of disease (multiplex digital
spatial analysis of pathology slides, quantitative digital analysis of medical
images, genomic sequencing, and mass spectrometric analysis of biologic
molecules) create analytical challenges due to the high-dimensional, mul-
timodal nature of the data. To accelerate the use of these analytical tools in
precision oncology, the key task for oncologists is to ensure that the tools are
adapted to the intended goals and available data (Fig. 1). A/ML is applied in
many areas of oncology, including generative work, NLP, and other struc-
tured sources of data like the EHR. In this clinically focused overview, we
provide a technological and clinical perspective on the use of AI/ML in
precision oncology to increase our understanding of tumor biology and to
aid in the development of biomarkers that improve treatment selection in
patients with cancer.

Methodology

We conducted a PubMed search using the terms “artificial intelligence” and
“precision oncology” and another search using the terms “machine learn-
ing” and “precision oncology” and publication dates from January 1, 2020,
through November 30, 2024. The following filters were used: “Clinical
Study”; “Clinical Trial”; and “Clinical Trial Phase 1.” Phase II or Phase III
clinical trials were included in the term “Clinical Trial.” Clinical trials that
were not cancer-related (n = 6) or did not include Al-based analyses (n = 3)
or were not original studies (1 =1) were excluded. The time period was
selected before data extraction began.

In addition to the above search, we have reviewed published articles
that utilized AI/ML methodologies to analyze patient-derived data, using
the following criteria: detailed description of AI/ML methodology, inclusion
of patient data, and results that provided potentially novel clinical insights
not achieved by conventional methodologies.

Results

Using the criteria listed in the Methodology section, 20 trials utilized AI/ML
methodologies to analyze patient-derived data across diverse tumor types
(Table 1). These 20 studies aimed to identify models that improved diag-
nostic accuracy”™", improved the prediction of clinical outcomes'*™,
explored the tumor molecular profile”’** or were related to patient care™ >,
Common limitations included retrospective study design, small sample size,
and lack of external validation. Overall, these studies exemplify the trans-
formative effect of AI/ML tools on the diagnosis, treatment, and indivi-
dualized management of cancer, with the hope of optimizing patient care.

Application of AI/ML in Precision Oncology

Digital pathology

There are multiple areas within the field of digital pathology where AI/ML is
being explored. Key applications include automation in immunohis-
tochemistry (IHC) scoring, the inference of clinically relevant features
beyond histology from hematoxylin and eosin (H&E) images, and novel
insights from emerging tools for measuring multiplex, single-cell, and
spatially resolved analytes from tumor tissue.

The role of Al in automating IHC biomarker scoring. Al-based tech-
nology may help standardize IHC assessments, including those used in
routine practice for treatment selection based on biomarkers (e.g., PD-LI,
HER2, ER, PR, Ki-67). This would be especially valuable as an assistance
tool for pathologists because the standard manual approach is time
consuming and is associated with high intra-observer variability” . An
automated and quantitative Al-based technology has the potential to
standardize the quality of patient care across centers and geographic areas
by overcoming variability in assessment by pathologists, specifically in
rare and complex cases, increasing accuracy and reproducibility, and
reducing turnaround time**™.

Automated Al-based IHC scoring systems have been evaluated by
analyzing scans of whole-slide images (WSIs) of tumor samples in settings
where the standard of care currently requires manual determination of
protein expression by IHC™****. For example, several independent groups
have demonstrated the potential of Al-supported quantitative PD-L1 eva-
luation using CNNs™***'. Two separate groups developed CNN systems
that were able to automatically detect the tumor area within WSIs and to
calculate the IHC-based PD-L1 tumor proportion score (TPS) with high
consistency between the Al systems and pathologists**.

Others developed a similar CNN PD-L1 TPS classifier and retro-
spectively analyzed 1746 samples across CheckMate studies of nivolumab
combined with ipilimumab for the treatment of patients with various
cancers”. The automated Al system classified more patients as PD-L1
positive (at both the 1% and 5% expression levels) compared with manual
scoring in most tumor types. Importantly, similar improvements in
response and survival were observed using both Al-powered and manual
scoring. However, automated Al-powered digital analysis may identify
more patients who would benefit from immunotherapy treatment com-
pared with manual assessment™®. This is because Al-powered methods can
analyze larger datasets, detect subtle patterns, and provide more consistent
evaluations, potentially reducing the variability inherent in manual
assessments.

Recent advances in context-aware attention mechanisms, such as the
Context-Aware Multiple Instance Learning (CAMIL) model, have sig-
nificantly improved diagnostic accuracy in medical imaging. CAMIL
prioritizes relevant regions within WSIs by analyzing spatial relationships
and contextual interactions between neighboring areas. This approach
reduces misclassification rates and enhances diagnostic reliability*.

The workflow for pathologists in the setting of breast cancer diagnosis
is burdensome, as it includes manual quantitative IHC assessment with
clinically relevant cutoft levels of multiple proteins including HER2, ER, PR,
Ki-67, and PD-L1. HER2 assessment is known to be associated with sig-
nificant diagnostic variability. Intra-tumoral heterogeneity within WSIs of
tumor tissue hinders the accurate identification of all cells expressing the
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respective protein. In addition, manual counting of tumor cells to evaluate
biomarker expression levels is associated with low efficiency and poor
reproducibility. In clinical practice, the training and experience of pathol-
ogists significantly influence the accuracy of biomarker assessment (i.e., PD-
L1 expression)”*. For instance, untrained pathologists exhibit lower
intraclass concordance in PD-L1 expression compared to their highly
trained colleagues®'.

One group assessed various ML and DL approaches to automated
quantitative HER2 THC scoring and found thata CNN model outperformed
classical ML approaches®. Using 71 breast tumor samples, a concordance of
83% between the automated scoring system and a pathologist’s assessment

was demonstrated. Discordance between automated and manual scoring
was found to be associated with HER?2 staining heterogeneity in these cases;
notably, an independent review of the discordant cases led to a modification
of the initial pathologist assessment in 8/12 cases, highlighting the potential
utility of Al assistance for the identification of ambiguous cases”.

This potential benefit of using Al as an assistance tool was demon-
strated in a separate study using a CNN to classify cells as either tumor or
non-tumor and to quantify IHC staining intensity for ER/PR and Ki67".
The goal of the study was to evaluate the reliability of using an Al system as a
diagnostic decision support tool in a routine clinical pathology setting (6
WSI scanners/microscopes; 3 staining machines; manual scoring by 10
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Fig. 1 | Clinical perspective on the use of AI/ML in precision oncology. Analytical
tools must be adapted to intended goals and available data. Innovations in artificial
intelligence, machine learning analytical techniques, and new modalities for deep
measurement of disease hold great promise for advancing precision oncology.
Central to deriving maximal benefit from these innovations is for researchers and
practitioners to clearly articulate (a) what goals they are seeking to achieve and (b)
what sources of data are available for analysis. This will then dictate the choice of (c)
analytical tools. Inferential statistics is a “data model” approach that seeks to
understand or infer the relationships between independent variables (covariates)
and dependent variables (outcomes) based on prior assumptions about the data
structure. In contrast, machine learning is an “algorithmic model” approach, which
makes few assumptions about the data but rather designs algorithms that can input
direct measurements or derived variables, transform them through the mathema-
tical workings of the algorithm into “features”, and ultimately “learn” to predict the
dependent variable (label). Inference is to statistics as prediction is to machine
learning, and moving forward, we will need to use all the tools in our analytical
toolkit. Interventional statisticians (i.e., clinical trialists) often use the entire sample
size for a primary analysis to maximize the power of the analysis and less frequently
use training and validation sets, whereas data scientists and observational

statisticians (i.e., epidemiologists) divide patient samples into training, validation,
and test sets to demonstrate predictive ability on the “unseen” test set based on
analysis of the training and validation sets. Both utilize models, but the primary
objectives are different'"’. Inferential statistics, using “data models,” seeks to
understand or infer the relationships between the independent variables and the
dependent or outcome variables within a dataset in three fashions: exploratory or
inductive, hypothesis-testing or deductive, and explanatory or abductive. In all cases,
amodel that makes assumptions about the structure of the data (normal distribution
or proportional hazards between groups) is applied to the dataset in order to

w »

understand the relationship between prespecified independent input variables (“x”)
and dependent outcome variables (“y”) and to draw population inferences from a
sample'®’. ML “algorithmic models” often make fewer assumptions compared to
inferential statistics about the structure of the data or the nature of the relationship
between variables. The flexibility of ML “algorithmic models” lies in their ability to
adapt these assumptions based on the chosen model and application, making these
models applicable to a wide range of predictive tasks'®’. Since ML/DL is a form of
“representation learning,” in that the machine is fed raw data and develops its own
models for pattern recognition'”, the results can be used to make predictions about
independent or “unseen” data. “Created with BioRender.com”.

pathologists from 8 different centers) by ensuring that the use of AI did not
adversely impact the pathologist assessment. Individual AI analysis results
were confirmed by pathologists in 95.8% of the Ki-67 cases and 93.2% of the
ER/PR cases, indicating the reliability of IHC scoring with the support of the
CNN AI tool. Statistical analysis also demonstrated high interobserver
variance between pathologists in conventional IHC quantification, which
decreased slightly with Al assistance™.

These reports indicate that Al can assist pathologists by automating
IHC scoring, reducing inter-observer variability (a challenge associated with
the determination of clinically relevant expression cutoffs), and shortening
the diagnostic workup period. Prospective trials are needed to confirm the
clinical validity and utility of these promising technologies.

The use of Al to predict biologic characteristics from H&E-
stained WSIs. Given that DL models such as CNNs exhibit “repre-
sentation learning” and are able to extract “deep” patterns from input
data, these DL models have demonstrated the ability to reveal molecular
characteristics from H&E-stained WSIs, as histology reflects
biology™***’. These DL models have been associated with difficulties in
“explaining” how they developed their predictions and offer the oppor-
tunity for identifying human-interpretable features (HIFs) based on cell
morphology and histological patterns™. Investigators have prioritized
identification of HIFs derived from CNN models when analyzing H&E
WSIs from patients with cancer to predict molecular phenotypes. HIFs
were correlated with established markers of the tumor microenviron-
ment that are predictive of diverse molecular signatures, including
expression of immune checkpoint proteins and homologous recombi-
nation deficiency, indicating that their application should be further
explored™.

DL analysis of H&E images can predict molecular alterations prior to,
and potentially in lieu of, performing IHC or molecular confirmatory
testing. HER2 and BRCA expression was predicted from H&E-stained WSIs
from patients with breast cancer using a CNN that separately processes
H&E-stained slide patches or tiles and outputs an IHC label for the WSI*.
The study demonstrated 83.3% and 53.8% prediction accuracy for HER2
and BRCA, respectively™. Similarly promising early results for BRCA pre-
diction have been reported by others™. In addition, CNN-based analyses of
H&E-stained WSIs have been used to prioritize patients for microsatellite
instability (MSI)/mismatch repair deficiency (AMMR) testing to select
patients for treatment with immunotherapy™. A CNN model to predict
MSI was trained using 100 H&E-stained WSIs from patients with colorectal
cancer and then validated on an independent validation cohort of 484 H&E-
stained WSIs””. The model was associated with high levels of concordance,
with an area under the receiver operating characteristic (AUROC) of 0.931
and 0.779 for the training and independent cohorts, respectively. A large

international consortium trained and validated a CNN model to predict
MSI/dMMR from nine cohorts that included 8,343 patients with colorectal
cancer across different countries and ethnicities*’. The CNN model achieved
“clinical grade” performance, with an AUROC of up to 0.96, indicating that
this AI system can rule out 25-50% of patients for MSI/dMMR testing™.

CNN models have also been used to predict EGFR, KRAS, and STK11
mutations from pathology images with high accuracy’*"****. For instance,
CNN-based analyses of two large H&E WSI datasets with matched genetic
profiling across diverse tumor types were used to predict genetic alterations:
The Cancer Genome Atlas (TCGA) dataset was used for model training and
the Clinical Proteomic Tumor Analysis Consortium dataset was used for
validation®. Multiple clinically relevant mutations were predicted (i.e.,
PTEN and TP53 in endometrial cancer, KRAS and BRAF in colorectal
cancer, and EGFR in non-small cell lung cancer [NSCLC]) in both the
training and validation sets, demonstrating the potential role of prioritizing
patients for confirmatory genetic testing®.

Another CNN model was developed to predict the molecular classi-
fication using H&E WSIs from 2028 patients with endometrial cancer. The
patient data were derived from three randomized trials and four clinical
cohorts and divided into training and independent validation sets®". Using
genomic and THC assessments, patients were classified into one of four
prognostic groups: POLE™, dMMR, p53 abnormal (p53abn), and no
specific molecular profile (NSMP). In the independent validation set, the
model achieved class-wise AUROCs of 0.849 for POLE™", 0.844 for AMMR,
0.883 for NSMP, and 0.928 for p53abn®. Subsequent analysis using ML
techniques demonstrated that morphological features including inflam-
matory, stromal, and tumor cell counts as well as tumor nuclear size and
shape were associated with the molecular phenotypes, suggesting the
potential for integration into an improved risk stratification system.

Other investigators compared the typical workflow for the diagnosis of
prostate cancer (using H&E-stained needle biopsies) with the workflow after
introduction of a tool that identifies the need for IHC analysis®. They used
an ensemble of CNNs to segment tissue from debris and from foci of interest
in the H&E-stained WSI and an ML classifier to classify cases as clearly
malignant, clearly benign, or ambiguous. This classifier at the time of H&E
staining triggered an automated request for IHC in ambiguous cases
without waiting for a pathologist’s manual review. The AT assistance tool
attained 99% accuracy and a 0.99 area under the curve (AUC) on the test
data; on a validation set, the average agreement with pathologists was 0.81,
with a mean AUC of 0.80. This Al tool to automate IHC requests would,
therefore, result in a significantly leaner workflow™.

These studies indicate that DL computer vision capabilities for pre-
dicting molecular characteristics, e.g., genetic mutations and MSI, from
H&E-stained WSIs may streamline pathology workflows for known
biomarkers.
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Al-based biomarker prediction from H&E-stained WSIs is limited by
the following: only molecular biomarkers that have an impact on tissue
morphology can be identified; the sensitivity and specificity of Al-based
mutation identification is suboptimal; and concordance with validated
methodologies is limited (owing to limited tumor tissue availability, poor
DNA quality, inaccuracy of laboratory procedures, and lack of personnel
experience or other resources). In order for Al-based biomarker prediction
from H&E-stained WSIs to be applied in clinical practice, extensive vali-
dation in external datasets and within clinical trials is needed.

The use of Al to predict novel prognostic and predictive biomarkers
from H&E-stained WSils. Challenges associated with the complexity and
heterogeneity of the immune tumor microenvironment and predictive/
prognostic biomarkers may be overcome by computational pathology
technologies” . The Multiomics Multicohort Assessment platform
analyzed H&E-stained WSIs from patients with early-stage colorectal
cancer usinglarge publicly available datasets, such as TCGA, that included
digital H&E-stained WSIs annotated with sequencing and clinical data®.
The investigators employed CNNs and vision transformers to investigate
whether DL analysis of H&E-stained WSIs could predict clinical and
molecular profiles of interest. The model accurately predicted clinical
outcomes, including overall and disease-free survival, as well as molecular
aberrations including copy number alterations, expression levels of key
genes in cancer development, MSI, BRAF mutation, and CpG island
methylator and consensus molecular subtypes®.

A prognostic model for prostate cancer was developed that incorpo-
rated CNN analysis of prostate biopsy H&E-stained WSIs with six clinical
variables (combined Gleason score, Gleason primary, Gleason secondary,
T-stage, baseline PSA, age) from 5654 patients from the Radiation Therapy
Oncology Group prostate cancer studies”. This model was shown to have
better prognostic accuracy than the commonly used National Compre-
hensive Cancer Network (NCCN) risk-stratification tool®. Similar multi-
modal DL approaches have been used to predict outcomes for patients with
gliomas® and high-grade serous ovarian cancer”. A local-global graph-
based distillation (ALL-IN) model combining both local and global histo-
logical features using a graph-based neural network improved stratification
of patient risk groups, with clinical utility®.

Investigators developed a CNN tumor-infiltrating lymphocyte (TIL)
“analyzer” to identify three immune phenotypes (IPs)—inflamed, immune-
excluded, and immune-desert—based on the concentrations of TILs in
tumor epithelium and tumor stroma on H&E-stained WSIs”. The inflamed
IP (high TIL concentration in tumor epithelium) was associated with higher
response rates and longer PFS in studies of immune checkpoint inhibitor
therapy in patients with NSCLC. The TIL analyzer provided prognostic
insight in addition to the PD-L1 TPS in the subset of patients with a TPS of
1%-49%. The 42.5% of patients with an inflamed IP had a 22% response rate
compared with a response rate of only 3.9% in patients with immune-
excluded or immune-desert IPs”.

These studies demonstrate that DL approaches based on H&E image
analysis alone or combined with clinical data hold promise for improving
prognostic and predictive biomarkers in precision oncology.

Challenges in the implementation of Al/ML tools in digital
pathology

The performance of AI/ML tools can complement that of medical doctors in
the interpretation, analysis, and conclusions derived from large-scale
datasets. The integration and analysis of large-scale datasets such as geno-
mic, radiomic/radiogenomic, digital pathology, real-world, and EHR
datasets requires advanced computational tools and increased power, owing
to their complexity and heterogeneity. The TCGA includes more than
10,000 digital pathology images from patients with diverse tumor types,
along with associated clinicopathological and genomic data (https://www.
cancer.gov/tcga). The Virchow2G Pathology Dataset includes over 3 million
pathology slides from 225,000 patients across 45 countries and was used to
train Virchow2G, a large pathology model®.

The Cancer Imaging Archive comprises de-identified medical images
of cancer that are associated with patient outcomes, treatment, and genomic
data®. These large-scale datasets present challenges related to the man-
agement and storage of large volumes of data, increased variety of data
sources and formats, assessment of batch effects, high processing power
requirements, and tool integration, along with relevant feature selection,
which is often hindered by nonlinear associations of different features and
inter-tumor and intra-tumor heterogeneity. AI/ML algorithms enable the
extraction of clinically relevant features from these datasets, providing useful
insights that could not be identified by traditional methods or human
intelligence.

Digital pathology, while transformative for the application of precision
oncology, poses several challenges. The generation of “big data” requires
efficient data management and storage systems, and interoperability issues
associated with the lack of compatibility of different digital pathology sys-
tems across platforms and institutions limit data sharing and integration.
The regulatory and legal framework for the use of digital pathology is
evolving, and concerns regarding data privacy and the need for standardi-
zation of practices should be addressed. In addition, quality control and
methodology validation, along with pathologist training, are critical for the
application of digital pathology in clinical practice. The transition from
traditional to digital workflows may be challenging, requiring time and
adaptation. Finally, the increased costs associated with the integration of
digital pathology, including scanning equipment, specialized software, data
storage, technology infrastructure, and extensive physician training, may be
a significant barrier for smaller institutions.

Multiplex, single-cell, and digital spatial analyses. AI/ML tools have
the potential to analyze the emerging complex and highly dimensional
measurements of disease, offering deeper understanding of tumor biol-
ogy, including the interaction of the tumor microenvironment with the
tumor. They can help analyze results derived from digital pathology
multiplex platforms that measure multiple analytes in a single sample,
such as gene expression at the protein (IHC, immunofluorescence, or
imaging mass cytometry) and mRNA (bulk or single-cell RNA sequen-
cing) levels. AI/ML tools are increasingly employed for the character-
ization of individual cells using protein, DNA, RNA, and metabolite
analysis to pinpoint single-nucleotide mutations””” and for the inves-
tigation of epigenomic phenomena such as DNA methylome’"°, ChIP-
seq analysis, and chromatin accessibility data””".

Applying Al algorithms, various tissue types can be classified based on
their spatial characteristics (texture, shape, and color). The spatial dis-
tribution of cancer and neighboring cells can be combined with other
clinicopathological data to establish prognostic and predictive algorithms.
For instance, imaging mass cytometry was applied to evaluate the tumor and
immunological landscape of tissue samples from 416 patients with NSCLC
and to assess a prognostic model”. Investigators demonstrated that CNN-
based spatial analysis of immune lineages and activation status identified
five markers (CD14, CD16, CD94, aSMA, and CD117) that correlated
with OS”.

In another study, imaging mass cytometry-labeled brain tumor biop-
sies were used to create high-dimensional maps of the brain tumor
microenvironment”. CNN algorithms enabled fully automated high-
throughput segmentation and identification of individual cells across
diverse tissues. Differences in the tumor immune landscapes between
patients with high-grade glioma and brain metastasis were observed. Spatial
cellular neighborhoods (CNs) that were associated with OS were identified
in patients with glioblastoma. Furthermore, CNs enriched in M1-like
monocyte-derived macrophages were associated with improved OS, high-
lighting the value of spatial cellular relationships and showing the com-
plexity of tumor CNs*. Others used multiplexed ion beam imaging by time-
of-flight (MIBI-TOF) with a CNN segmentation tool to evaluate in situ
expression of 36 immune-related proteins in patients with triple-negative
breast cancer and to define the tumor-immune microenvironment,
including identification of CNs".
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Other researchers developed a weakly supervised (e.g., not requiring
manual expert annotation) DL framework to identify tumor-immune
interrelations and CNs and to predict which patients with low-risk early-
stage endometrial cancer have a higher risk of recurrence”. Using multi-
plexed immunofluorescence of tissue microarrays from tumor samples for
the simultaneous visualization and quantification of CD68+ macrophages,
CD8 + T cells, FOXP3+ regulatory T cells, PD-L1/PD-1 protein expres-
sion, and tumor cells, they trained and validated a multilevel interpretable
DL framework (using a CNN for patch feature extraction, a graph neural
network to capture CNs and tissue areas, and a multilayer perceptron for
recurrence risk classification) to predict the risk of recurrence. This model
achieved an AUROC of 0.90, and predictions resulted in concordance for
96.8% of cases. The authors concluded that the model could assess the risk of
recurrence in this study population, outperforming current prognostic
factors, including molecular subtyping”.

Another promising approach combines Al-driven image analysis of
cellular phenotypes with automated single-cell or single-nucleus laser
microdissection and ultra-high-sensitivity mass spectrometry. This
approach links protein abundance to cellular and subcellular phenotypes
while preserving spatial context, offering the potential to elucidate pathways
that change in a spatial manner as cancer progresses®’.

In addition, RNA sequencing (RNAseq) plays a crucial role in multi-
plex analyses, providing a comprehensive view of gene expression profiles
within the tumor microenvironment. The integration of RNAseq data with
AI/ML tools allows for the identification of novel biomarkers and gene
signatures that are pivotal for understanding tumor biology and patient
outcomes. Investigators have used an autoencoder, an unsupervised DL
methodology that utilizes input data to create representative features, to
regenerate output data and integrate DNA methylation, RNAseq, and
miRNAseq data from patients with colorectal cancer®. This approach
enabled the identification of a subgroup of patients with improved OS.
Another study highlighted that the clustering algorithms applied to RN Aseq
data can uncover distinct gene expression patterns that correlate with spe-
cific tumor characteristics, thereby facilitating the identification of potential
therapeutic targets”. This synergy between RN Aseq and Al-driven analyses
not only enhances the characterization of tumor-immune interactions but
also supports the development of prognostic models that can predict patient
responses to therapies. By leveraging the high dimensionality of RNAseq
data in conjunction with spatial and multiplex imaging techniques,
researchers can gain deeper insights into the complex interplay between
tumor cells and their microenvironment, ultimately advancing precision
medicine approaches in oncology.

In summary, advanced multiplex imaging technologies coupled with
AT analytics enable a deepened understanding of tumor-immune interac-
tions in the tumor microenvironment and may enable the discovery of novel
biomarkers and therapeutic targets.

Digital radiology (radiomics)

In the past decade, the field of medical image analysis has grown expo-
nentially, with an increased number of pattern recognition tools and larger
data sets. Radiomics refers to the high-throughput mining of quantitative
image features from standard-of-care medical imaging that enables data to
be extracted and applied within clinical decision support systems to identify
complex patterns and trends for improving diagnostic, prognostic, and
predictive accuracy®. This approach expands the utility of radiologic data
beyond medical images that are simply visual aids for human
interpretation®.

Digital medical images are converted into mineable high-dimensional
quantitative data in a matrix format where each element, known as a voxel,
corresponds to a small section of the body. These voxels contain x-ray
attenuation values directly proportional to the density of the material being
scanned, with a total range of more than 4096 intensities, while only a small
fraction of these intensities can be perceived by humans. The limited dis-
criminatory capacity of the human eye suggests the potential for DL
methods”. Quantitative radiomic features, measured or mathematically

transformed, representing intensity, geometry, and texture may reflect
aspects of the tumor phenotype and microenvironment that can predict
clinical outcomes and support clinical decisions.

Image segmentation involves partitioning an image into meaningful
regions, which is essential for accurately identifying tumors and organs at
risk in radiation oncology. Accurate segmentation is crucial for treatment
planning, as it directly impacts the precision of radiation delivery. Tradi-
tional manual segmentation is not only time-consuming but also prone to
inter-observer variability, which can lead to inconsistent results.

For instance, the BRATS (Brain Tumor Segmentation) challenge, an
annual international competition focused on brain tumor segmentation, has
been instrumental in driving advancements in this field. This challenge
encourages the development of innovative segmentation algorithms and
fosters collaboration among researchers, leading to improved methodolo-
gies and performance benchmarks. A research group introduces a weakly
supervised approach to pan-cancer segmentation, showcasing the potential
of AI/ML to tackle complex segmentation tasks, even with limited
annotation®’. Their method leverages slide-level annotations to train seg-
mentation models, demonstrating that effective tumor segmentation can be
achieved without extensive pixel-level labeling, which is often a bottleneck in
clinical practice®. Many investigators have reported on segmentation
algorithms for various organs, such as the liver”, brain”, pancreas™, and
prostate’”. Guidelines for the development, clinical validation, and
reporting of AI models in radiation therapy have been developed by the
European Society for Therapeutic Radiation Oncology and the American
Association of Physics in Medicine for the standardization of this
approach™,

Investigators used statistics and ML (Least Absolute Shrinkage and
Selection Operator) to develop a radiomic model to predict TIL density, as
determined from Al-powered analysis of H&E-stained WSIs, using the
same technology as previously described”, and baseline CT imaging from a
training cohort of 220 patients with NSCLC treated with immunotherapy™.
The final ML-based TIL-prediction model included only two features, both
indicative of intralesional texture heterogeneity, and demonstrated that high
predicted TIL density ( > median) was associated with longer PFS compared
to low predicted TIL density (median, 4.0 months vs. 2.1 months, p = 0.002)
when applied to a 294-patient validation cohort. TIL density was sig-
nificantly associated with PFS independent of PD-L1 status, and patients
with high TIL density and high PD-L1 (TPS = 50%) had the longest PFS
compared with patients with low TIL density and/or PD-L1 TPS”.

In addition, radiomics has been used to predict immunotherapy
outcomes™. For instance, investigators have evaluated CT imaging data
from 54 patients with hepatocellular carcinoma treated with immu-
notherapy using nine ML and two ensemble learning techniques to con-
struct predictive models”. The models were validated in an external set
comprising 29 patients; selected ML models were shown to accurately
predict the short-term efficacy of immunotherapy in patients with hepa-
tocellular carcinoma”. Other investigators used radiological images anno-
tated with clinical and outcome data from 2552 patients to develop ML
models to predict OS in patients with head and neck cancer and validate the
models in three external cohorts comprising 873 patients”. Among 12
different models, one achieved the highest prognostic accuracy using
multitask learning on clinical data and tumor volume. However, the results
demonstrated significant decreases in model performance, and could not be
validated in the external datasets”.

Other investigators constructed and validated a sub-regional radiomics
model based on a support vector machine algorithm using 1896 features
from each tumor sub-region, (5688 features per sample) from 264 patients
with NSCLC”. In the validation set, the model demonstrated improved
accuracy in predicting immunotherapy response compared to conventional
radiomics, tumor mutational burden (TMB), or PD-L1%.

In another study, an ML (random forest) prognostic radiomic model
was developed using CT images from patients with advanced melanoma
who participated in pembrolizumab multicenter clinical trials'®”. The model
achieved a high AUC for OS estimation in the validation set, suggesting that
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this tool could be used for clinical decisions'”. Based on radiomics features,
other investigators used pre-operative CT images from 127 patients with
NSCLC from TCGA to construct a TMB prediction model'”". Three
radiomics features (flatness [shape of original feature], autocorrelation
[GLCM], and minimum [first order of wavelet features]) were found to be
associated with TMB levels and were significantly different between the
high- and low-TMB groups'*".

Additional ML radiomics models have been developed to identify
patients who may benefit from immunotherapy (e.g., patients with mela-
noma, NSCLC, or breast cancer)'*'”. The above examples employed ML
techniques to assist in the analysis of non-ML-derived, classical, “hand-
crafted” (i.e., human-defined) radiomic features. Recent investigations
employing CNNs for DL of features may outperform approaches using
handcrafted radiomic features'”'*. For example, transformers and novel
architecture methodologies have shown promising results in improving
feature extraction and diagnostic accuracy in medical imaging tasks'*'”.

An ML model trained on dual-energy CT radiomics (DECT) was
shown to be superior to standard CT imaging and enabled quantification of
iodine and fat concentrations in lesions, in addition to visual inspection'”.
The application of DECT to an ML-based radiomics model significantly
improved immunotherapy response prediction for patients with stage IV
melanoma compared to standard CT imaging'”.

The application of AI/ML algorithms has been shown to improve or
surpass the performance of physicians in cancer diagnosis and staging'*™'"°.
In one study, an AI model trained on 506 CT images exhibited better
diagnostic accuracy in distinguishing benign vs. malignant pulmonary
nodules compared to different groups of physicians'®. In another study, an
Al-based model developed and validated on 170,230 mammography ima-
ges demonstrated higher diagnostic performance in terms of breast cancer
detection compared to radiologists'”. However, with the addition of AL the
performance of radiologists significantly improved.

In summary, use of AI/ML techniques in radiomics analysis can
transform medical imaging data into quantifiable variables that may be used
as noninvasive prognostic and predictive biomarkers for response to
treatment, overcoming the limitations of tissue-based analysis for clinical
decision-making. However, these preliminary data warrant validation in
larger patient cohorts.

Challenges regarding the use of AI/ML techniques in radiomics include
the following: lack of prospective analyses of imaging data; lack of evaluation
of radiomics within prospective clinical trials or standardized and homo-
geneous frameworks; a limited number of studies with independent vali-
dation of the results and their interpretability; and a lack of training and
knowledge of physicians on radiomics. Data reproducibility across different
datasets is hindered by various methodological approaches, including
variability in imaging protocols among different hospitals, heterogeneity in
patient populations, preprocessing (image normalization, noise reduction,
and image segmentation), feature selection, and model training'"'. Devel-
oping multicenter studies assessing the standardization of protocols and
workflows in medical imaging is important to ensure reproducibility and
applicability across institutions.

Molecular medicine

The exponential growth of techniques to assess “omics” data, including
next-generation sequencing (NGS) techniques, has contributed to the
identification of novel prognostic and predictive biomarkers and drug tar-
gets. A challenge in genomic analysis using NGS is the annotation of
molecular alterations and variant calling, e.g., identifying the differences
between the analyte sequence (patient’s sample) and the reference
sequence'"”. This process is prone to errors, ranging from 0.1% to 10%, and
has important clinical consequences. Variant callers based on ML models
(logistic regression; hidden Markov models; naive Bayes classifiers), such as
the Genome Analysis Toolkit, had less than optimal accuracy, even on
short-read sequencing technologies such as Illumina with 75-250 bases, and
were poorly generalized to the newer long-read NGS technologies, such as
Pacific Biosciences with 15,000 bases and Oxford Nanopore with up to 1

million bases'"*'"*. A major step forward was the implementation of CNNs
in variant calling as exemplified by DeepVariant'”. This model out-
performed all other existing tools, winning the highest performance in an
FDA-administered variant calling challenge. Furthermore, this model
performs well on both short-read and long-read whole genome and exome
sequencing technologies and generalizes even to other mammalian
species'"’.

AI/ML tools have also been used to analyze large-scale epigenomic
datasets to identify patterns associated with specific tumor types'”, which
can serve as biomarkers for early detection”, accurate diagnosis'®, and
prediction of patient outcomes'’. By analyzing large-scale genomic and
epigenomic data sets, AI can help discover novel epigenetic drugs, repurpose
existing drugs, identify potential candidates that target specific epigenetic
modifications'"®, and develop predictive models with integration of epige-
nomic, clinical, and patient outcomes data””".

AI/ML tools have also been used for the analysis of the output of
proteomic measurement techniques. A “sample-to-data” roadmap for
integrating AI/ML throughout the proteomic workflow has been
suggested”. In another study, an Al algorithm was developed to identify
protein interaction networks for individual patients based on their pro-
teomic profiling data'”’, indicating that interaction networks may be accu-
rately reconstructed, representing an advancement over standard

methods'”.

Integrative (multimodal) analyses

Most applications of AI/ML in precision oncology represent “narrow” tasks
using one data modality such as pathology, radiology, or molecular
sequencing data. However, oncologists integrate all relevant available modes
of data when evaluating patients. The task of modality conversion is central
to advancing Al in network medicine applications'*’~'**. Modality conver-
sion involves transforming data from one form to another, which is crucial
for enabling AI to mimic human-like sensory integration and interpretation.
One example in the field of radiation therapy is the use of DL tools for the
generation of synthetic CT images from magnetic resonance images to aid in
radiation therapy planning'*’. Transformer-based text, vision, and speech
models can facilitate these conversions. Multiomic or panomic technologies
using AI/ML/DL tools may improve the discovery of molecular
biomarkers'”. Emerging Al methodologies can drive the progress in net-
work medicine, ultimately improving patient outcomes and uncovering
novel therapeutic targets'**'*".

The development of multimodal AI models incorporating all relevant
sources of data—eventually including biosensor (devices that continuously
detect and measure physiologic or environmental parameters to assess
specific biomarkers), social determinants, and environmental data—is
becoming potentially feasible'”’. Investigators developed a multimodal
classifier to predict response to PD-L1 blockade in patients with NSCLC'”
that included the clinical, pathological, radiomic, and genomic character-
istics of 247 patients treated at a single center. Radiomic features were
extracted using classical radiomics techniques; PD-L1 tumor cell expression
was assessed as the standard TPS; a CNN model was also used to develop an
automated PD-L1 classifier on digital PD-L1-stained WSIs; and genomic
analysis assessed somatic mutations, copy number alterations, and fusions
in 341-468 genes most associated with cancer and TMB. Clinical data
included neutrophil-to-lymphocyte ratio, pack-years smoking history, age,
albumin, tumor burden, presence of brain and liver metastases, tumor
histology, and scanner parameters. An attention-based DL model was
developed that could account for non-linear relationships across the input
modalities. The model was able to predict objective responses better than
any modality separately or linearly combined and led to enhanced separa-
tion of Kaplan-Meier survival curves (indicating potential as a useful bio-
marker for longer-term outcome). Analysis of the model revealed that all
data modalities (radiomics, genomics, and pathology) contributed to the
prognostic classification success'”’. Frameworks, such as Prototypical
Information Bottlenecking and Disentangling, were used to address
redundancy issues in multimodal data, thereby improving cancer survival
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predictions'”®. In summary, the application of AI/ML algorithms to inte-
grated medical multimodal data has great promise and will depend on the
assembly of large, well-annotated, multi-institutional training datasets'”’.

Large language models and generative Al

Many useful applications in the field may result from AI advances in NLP,
especially with the development of LLMs. The advent of LLMs with a user
interface, which enables communication between the AI system and a
human using natural language, has facilitated the emergence of “generative”
Al i.e., technology that can generate text, images, or other data (video,
sound) based on features learned from input training data'”.

After training on big data, LLMs can perform various tasks, including
summarization, translation, text completion, and imaginative writing'*.
LLMs have been leveraged to facilitate decision support for patients with
cancer”' ™. A panel of clinicians evaluated the responses of Almanac, an
LLM augmented with retrieval capabilities from curated medical sources, to
clinical questions including medical guidelines and treatment
recommendations'**. Almanac’s responses to 314 clinical questions were
better than the other LLMs (ChatGPT-4, Bing, and Gemini) that were not
augmented with medical data'*.

The use of Med-PaLM Multimodal, a multimodal generative LLM
finetuned on medical data, was associated with high performance across
diverse tasks including responses to medical questions, interpretation of
mammography and dermatology images, radiology report generation and
summarization, and genomic variant calling. The application of this mul-
timodal LLM indicates the potential for the broader use of medical Al
systems'.

Other applications of LLMs include mining of EHRs to identify
clinically relevant data, such as treatment-related adverse events, and to
support insurance reimbursement'”’. The LLM GatorTron was successful in
recognizing adverse events attributed to certain drugs'’. If validated, this
approach may improve patient care™.

However, the application of LLMs should be interpreted with caution
because it is associated with challenges. One example is the poor perfor-
mance of an LLM chatbot (ChatGPT) in terms of providing treatment
recommendations concordant with NCCN guidelines'”’. High rates of
discordant responses and “hallucinations” (e.g., responses not related to any
recommended treatment) were identified in 13 (12.5%) of 104 ChatGPT
outputs. These “hallucinations” have been previously described as a critical
issue with AT chatbots'*’. Other challenges related to the use of LLMs are
accountability, research integrity, and data security. In summary, LLMs
cannot be incorporated into clinical practice at this time. Thorough clinical
validation using stringent criteria is required from developers to ensure high
rates of accuracy in terms of generative Al predictions and responses, and
clinicians should be aware of their limitations.

FDA-approved Al/ML-enabled medical devices

As of December 20, 2024, the FDA has approved 1016 AI/ML-enabled
medical devices that are authorized for marketing in the United States'*'.
Specific examples where Al has successfully impacted clinical outcomes,

underscoring the real-world applicability, are listed in Table 2.

Ethical and regulatory aspects of Al deployment in precision
oncology

The rapid evolution of Al in precision oncology necessitates thorough
ethical and regulatory considerations related to biases associated with data,
model transparency, and accountability.

Data bias. One of the major concerns is data bias, as AI models were
often trained with non-representative or biased datasets'*’. Unintentional
existing biases within the healthcare system may contribute to treatment
inequities among marginalized racial and ethnic groups if the training
data do not adequately represent these populations'*. Biases in health-
care research and public health databases may mislead Al outputs, which

may negatively affect treatment recommendations and patient
outcomes'**'*,

Model transparency and trust. The complexity of Al algorithms is often
associated with lack of transparency, which may result in healthcare
professionals feeling uncertain about the reliability of Al applications'*’.
Clinicians may hesitate to rely on Al recommendations due to the “black
box” nature of many models"*”'*. Explainable AI (XAI) methods are
essential for building trust in AI recommendations, helping users to
understand the reasoning behind the suggestions, providing transpar-
ency, and boosting confidence in the decisions made"**'*".

Accuracy and reliability. The development of clinical decision support
systems is ongoing, and these systems cannot yet be utilized because of
the inaccuracy and unreliability of Al predictions'*”'"**. Rigorous clinical
validation, standardization, and real-world testing are essential before
deployment. Transparency about model limitations and monitoring of
performance post-deployment are critical to maintaining clinical safety.

Accountability. As Al systems become integrated into healthcare, issues
regarding accountability and liability that may adversely affect a patient’s
health should be addressed. A clear guideline that delineates the
responsibilities of AI developers, healthcare providers, and institutions is
necessary"’'. Effective post-market surveillance mechanisms to monitor
the performance of Al systems after deployment and ensure that they
continue to operate within ethical and clinical standards should be

implemented by the regulatory agencies'*’.

Data privacy and ethical use. Al systems require extensive patient data,
raising privacy and ethical concerns regarding consent, ownership, and
secondary use'*”'”. Transparent policies governing how patient data are
collected, stored, and shared that align with regulations such as the
General Data Protection Regulation (GDPR) and the Health Insurance
Portability and Accountability Act (HIPAA) are essential to ensure
ethical standards and respect for patient rights'*”'>. As the field evolves,
continuous collaboration among stakeholders, including ethicists, leg-
islators, and medical practitioners, is necessary to advance the ethical and
effective integration of AI in healthcare. Harmonization of policy and
practice are essential components of the implementation of AI/ML in the
clinical workflow.

Data privacy and inter-institutional collaboration in Al-driven
oncology

The advancement of Al applications in oncology requires extensive, diverse
datasets for model training and validation. However, sharing sensitive
patient data across institutions presents significant privacy, regulatory, and
ethical challenges. The data that was once a byproduct of clinical research is
increasingly becoming a resource'*. Data management includes ensuring
the safety, accessibility, and accuracy of the data. Guidelines and processes to
access and curate data and alignment with regulatory and compliance
departments are essential elements of data management'*.

Federated learning (FL) has emerged as a transformative solution that
enables multi-institutional collaboration without compromising patient
privacy. This approach allows AI models to be trained across multiple
institutions while keeping patient data securely within their original
locations'™". In FL, instead of centralizing data, the training algorithm travels
to each institution’s secure environment, learns from local data, and only
shares model parameters rather than raw patient information"**'.

A critical component of successful multi-institutional collaboration is
data harmonization. Modern platforms implement standardized clinical
data harmonization pipelines that enable FL including Fast Healthcare
Interoperability Resources standards and automated data transformation
workflows'*. Furthermore, FL architectures are designed to comply with
major privacy regulations, including GDPR and HIPAA, ensuring that data
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Al enabled patient-specific predictions, improving
decision-making for targeted use of ADT in prostate
Improves diagnostic accuracy and efficiency in lung

How Al Changes the Practice
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Enhances diagnostic precision, leading to more

Achieved 84% accuracy in detecting prostate
targeted and effective treatments.

Unfold Al: Al tool using deep learning on prostate MRI

2024 Prostate Cancer
scans for cancer detection.

Avenda Health®””

cancer, outperforming doctors’ 67% accuracy.

Provides a less invasive and more accessible

screening option, potentially increasing

screening rates.

FDA-approved; detected 83% of colorectal cancers

in clinical studies.

Al-driven blood-based screening test (Shield) for

detecting cancer biomarkers.

2024 CRC

Guardant Health®*®

Assisted in personalized treatment planning by

predicting patient outcomes.

Included in NCCN Clinical Practice Guidelines as a

predictive test.

Al prognostic tool leveraging genomic data to predict

outcomes in localized prostate cancer.

2024 Prostate Cancer

ArteraAl’®®

Expanded access to accurate skin cancer screening

in dermatology and primary care settings.

FDA-approved device for detection of all three major

skin cancers.

Al-powered device using light reflectance for non-

invasive skin cancer diagnosis.

Melanoma, BCC

and SCC
ADT Androgen Deprivation Therapy, Al Artificial Intelligence, AUC Area Under the Curve, BCC Basal Cell Carcinoma, CAD Computer-Aided Diagnosis, CNN Convolutional Neural Network, CRC Colorectal Cancer CT Computed Tomography, DL Deep Learning, FDA Food

and Drug Administration ML Machine Learning, MR/ Magnetic Resonance Imaging, NCCN National Comprehensive Cancer Network, SCC Squamous Cell Carcinoma, SVM Support Vector Machine.

2024

DermaSensor?'%2'!

remain within institutional boundaries and that there is no direct sharing of
protected health information'**'”".

This privacy-preserving approach to multi-institutional collaboration
represents a paradigm shift in how healthcare data can be utilized for
research while maintaining the highest standards of patient privacy and data
security. This is especially important for the future of AI in oncology to
ensure that training datasets are large, diverse, and inclusive of low-
frequency “rare” cancers, thereby ensuring generalizability and clinical
utility.

Future directions and emerging trends

Biosensors are devices or platforms that continuously detect and measure
physiologic or environmental parameters to assess specific biomarkers
associated with diverse diseases, including cancer. They comprise a biolo-
gical sensing component and a transducer responsible for converting the
identified signal into a quantifiable output. The combination of AI/ML with
biosensors for the real-time continuous monitoring of physiologic para-
meters may provide new clinically relevant insights into the early diagnosis,
prognosis, and treatment of cancer. Al-based biosensors are being evaluated
in diverse tumor types to improve early detection'”'”, diagnosis'*"'* and
treatment outcomes'**'”; and they should be further validated in large
studies. In addition, several biosensors continuously measure parameters
including metabolites of glucose or lactate, electrolytes, skin temperature,
and cortisol levels using microneedle patches, smart textiles, wristbands,
and/or electronic epidermal tattoos'®. Biosensors offer real-time monitor-
ing of various functions/laboratory tests to individuals, who may control
them and therefore decrease the risk of cancer-associated factors, including
diabetes, hypertension, and lack of exercise.

Simple AI models are commonly more transparent, but less accurate,
than complex ones. In contrast, complex models (i.e., CNNs) achieve higher
accuracy but often lack interpretability. As mentioned earlier, explainable Al
(XAD)" aims to make Al-based predictions more transparent'*'”’, inter-
pretable, and trustworthy in cancer care. XAl can reveal potential biases in
Al-based predictions, strengthening their credibility. The enhanced trans-
parency of XAI algorithms may facilitate their application in clinical
decision-making and real-world clinical scenarios'”".

Discussion

The field of precision oncology may benefit greatly from the integration of
AI/ML because these techniques offer a promising avenue by which to
comprehend the complexity of tumor biology. Owing to the convergence of
advanced AI/ML/DL data analytical techniques (software), computer
hardware computational advances, high-bandwidth and cloud computing
infrastructures, and innovative advanced therapeutics, we are currently at a
“sea change” transition point in oncology (Fig. 2). By analyzing multi-
dimensional -omics data, spatial pathology, and radiomics data, these
technologies enable a deeper understanding of the intricate molecular
pathways within tumors, aiding in the identification of critical nodes within
the tumor’s biology to optimize treatment selection. However, as other
investigators have reported, “deployment of medical Al systems in routine
clinical care presents an important yet largely unfulfilled opportunity”'”.
The applications of AI/ML in precision oncology are extensive and include
the generation of synthetic data, e.g., digital twins, in order to provide the
necessary information to design or expedite the conduct of clinical trials.
Digital twins hold the promise of accelerating scientific discoveries and can
be an important tool for decision-making based on the synergistic combi-
nation of models and data'”’. The National Academy of Sciences has defined
a digital twin as a set of virtual information constructs that mimics the
structure, context, and behavior of a natural, engineered, or social system (or
system-of-systems), is dynamically updated with data from its physical twin,
has a predictive capability, and informs decisions that realize value. The
bidirectional interaction between the virtual digital twins and the physical
real patients is central to the digital twin approach'”. Currently, many
operational and technical challenges remain related to data technology,
engineering, and storage; algorithm development and structures; and other
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Fig. 2 | Convergence of innovations in artificial intelligence analytical techniques.
New modalities for deep measurement of disease and precision oncology ther-
apeutics represent a potential “sea change” transition point for precision oncology.
The first “wave” included the development of symbolic artificial intelligence tools
(1997, Deep Blue expert system beat Kasparov in chess; 2011, Watson expert system
won Jeopardy). These advances were followed by the second “wave”, e.g., the

Immuno-therapies: modulate
the tumor immune
microenvironment

development of deep learning tools (2012, ImageNet; 2016, AlphaGo beat Lee Sedol
in GO). The third “wave” included the transformers (2018, GPT; 2020, AlphaFold2;
2022, ChatGPT, DALL-E). Simultaneously, starting in 1997, significant advances
were made in biomarker innovation that enabled an improved understanding of
tumor biology in parallel with accelerated drug development that involved targeted
therapy and immunotherapy. “Created with BioRender.com”.

elements of the data and analytical pipeline. The digitization of slides,
reporting of results, and generation of new codes to submit to payers are
ongoing themes that should be validated in precision oncology.

One challenge is ensuring the quality and quantity of the data.
Guidelines to standardize data structure have been developed, such as the
“FAIR” data principles, which stipulate that data must be findable (have
adequate metadata and a persistent identifier), accessible (data and meta-
data are understandable to humans and machines and are deposited in a
trusted repository), interoperable (metadata use a shared and broadly
applicable machine language), and reusable (data have clear usage licenses,
adhere to confidentiality standards, and provide accurate information on
provenance)' ™,

Models built on training data may not reflect the underlying hetero-
geneity of the patient population because they were derived from a specific
patient subpopulation, non- representative of the overall population,
therefore leading to biased output and limited generalizability. For example,
a foundation model trained on data derived from a specific patient popu-
lation may not apply to patients with different ethnic, cultural, socio-eco-
nomic, and medical practice standards'”’. To ensure that highly predictive
AI/ML tools are developed, there is an urgent need to share data, which is a
major challenge for institutions that have traditionally considered their data
as proprietary.

Another major hurdle in the ongoing application of AI/ML in practice
is the seamless integration of this technology in the existing clinical work-
flow of patient care. Although HIPAA-compliant generative Al can be
seamlessly integrated into EHRs, personalizing responses to patient mes-
sages, streamlining handoff summaries, and providing up-to-date insights
for the physicians, these efficiency tools are not routinely used'”. Further-
more, Al-enabled clinical decision support systems are too early in their
development to be used. Significant work is needed to overcome barriers to
Al integration associated with the cost, effort, and natural resistance to
change. Data repositories are controlled by individual departments or
institutions and cannot be accessed by other departments or institutions,
thus hampering system interoperability'””'”*. Significant time and effort are
required to educate EHR users to incorporate AI/ML technology in the
clinical workflow without disruption, particularly when real-time decision-
making is required'”*'"’. Other barriers include the significant cost to pur-
chase, personalize for each institution, and maintain AI/ML software.
Finally, the adoption of Al-based tools should not jeopardize patient safety

or the wellbeing of hospital employees, who should not have to work
overtime to ensure the smooth operation of the clinical workflow.

Significant resources are required to convert conventional pathology to
a fully digital format, with significant costs associated with digitization and
data storage and analysis. This transformation requires a significant cam-
paign of education and training for its successful implementation. Addi-
tionally, there is generally an inherent impediment to the adoption of new
technologies, including AI/ML. The complexity of learning a new science
and applying this to the practice of medical oncology represents an enor-
mous challenge for oncologists because computer science has not been a
part of their training. Collaboration with scientists who develop AI/ML
technologies and harmonization of policy and practice will be required for
the integration of these new disciplines and technologies in clinical practice.
Currently, formal educational programs on Al in oncology are lacking'*".
However, several courses on the application of Al are being organized to
provide basic knowledge about this rapidly developing field"**'®. Their aim
is to educate clinicians to understand basic principles of Al interpret Al-
generated data, recognize the limitations of Al and effectively utilize
advanced tools for both clinical and research purposes. The development of
user-friendly comprehensive training programs focusing on the integration
of Al into clinical practice will be critical for the future of oncology care.

Standardization in applying AI/ML in oncology and adaptation to the
new AI/ML-driven changes will be prolonged unless the current reimbur-
sement models prioritize rapid implementation of these transformational
technologies in oncology practice.

As a result of these challenges, very few clinical trials in oncology have
been conducted with the prospective use of such models, although multiple
articles have been published regarding the availability of this technology.
Currently, the main use of AI/ML technology in precision oncology is
associated with image analysis to identify radiomic features, pathologic
characteristics, and other signatures/biomarkers associated with clinical
outcomes. However, for the use of Al as an intelligent “agent” or medical
assistant to become possible, development of relevant benchmarks to ensure
performance under real-world conditions will be necessary'®.

To minimize resistance to its adoption, the transition to Al-enabled
clinical practice should occur efficiently and smoothly. Strategies to reduce
resistance from healthcare professionals and institutions include the
involvement of all stakeholders (including physicians) in the planning,
decision-making, and implementation processes; incorporation of Al in
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routine insurance coverage; clinician training; and continued support to
minimize concerns regarding the use of AI/ML tools. The feasibility and
effectiveness of Al applications should be continuously assessed. Feedback
and experience with Al tools will optimize their use in clinical practice. AI-
enabled specific projects may help build trust and reduce physician
burnout'®. Finally, patient education regarding the use of Al may increase
their engagement and trust in Al-tools, enhancing the application of Al in
clinical practice.

The next layer of advances in AI may include the merging of the
symbolic and the DL models in order to combine the benefits of both
approaches, i.e., neuro-symbolic AI'°. This will allow both the benefits of
the neural networks and the available structured knowledge regarding
tumor biology to be merged into a more explainable, high-performance
technology.

In conclusion, considering a patient’s individual characteristics and the
role of multiplex, multi-omics analyses, Al-driven decision support tools
will optimize treatment strategies and clinical trial enrollment, leading to
better outcomes, accelerating drug development, and advancing the stan-
dard of care. However, current data can be best categorized as early “proof-
of-concept” evidence. To favorably impact standard of care, these AI/ML
models must go through the prospective, multicentric, large sample size
demonstration of clinical validity, clinical utility, and real-world usability
that is required of all new technologies, diagnostics, or therapies.
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