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The confluence of new technologieswith artificial intelligence (AI) andmachine learning (ML) analytical
techniques is rapidly advancing the field of precision oncology, promising to improve diagnostic
approaches and therapeutic strategies for patients with cancer. By analyzing multi-dimensional,
multiomic, spatial pathology, and radiomic data, these technologies enable a deeper understanding of
the intricatemolecular pathways, aiding in the identification of critical nodeswithin the tumor’s biology
to optimize treatment selection. The applications of AI/ML in precision oncology are extensive and
include the generation of synthetic data, e.g., digital twins, in order to provide the necessary
information to design or expedite the conduct of clinical trials. Currently, many operational and
technical challenges exist related to data technology, engineering, and storage; algorithm
development and structures; quality and quantity of the data and the analytical pipeline; data sharing
and generalizability; and the incorporation of these technologies into the current clinical workflow and
reimbursement models.

Artificial intelligence (AI) refers to the ability of amachine or computational
model to recognize or “learn” patterns and relationships from input of
representative examples (training data) and make accurate predictions
regarding independent, or previously unseen, data1.

Early efforts at designing AI systems, considered “symbolic” or “rules-
based” AI, were based on encoding human knowledge into computer
programs, so-called “expert systems,” that worked for “narrow tasks” but
not for complex tasks. An example is IBM Watson for Oncology, an AI
system for clinical decision-making in oncology, that failed to achieve
high concordance with expert clinicians in terms of treatment
recommendations2–4.

Machine learning (ML) emphasizes the process by which a computer
system or model “learns” or improves its predictive performance by dis-
covering patterns in data and incorporating what has been learned into the
model in an iterative fashion5. ML techniques are considered “supervised
learning,” with predetermined outputs, or unsupervised learning (e.g.,
without the need for explicit labeling or prior knowledge of the data), to
discover underlying data patterns that are not evident to humans6.

Deep learning (DL) is a subset of ML that focuses on artificial neural
networks, such as convolutional neural networks (CNNs). DLmodels have
improved the state of the art in various fields, including computer vision

(e.g., pathology and radiology image analysis), natural language processing
(NLP) (e.g., electronic health record [EHR] mining), and speech recogni-
tion.DLhas been used for facial recognition, image classification, and video,
speech, and audio processing1,7.

Foundation models or large language models (LLMs) such as
generative pre-trained transformers (GPTs) and vision transformers,
the most recent fundamental advances in DL-based NLP, were first
described in 20178,9. LLMs can enable humans to interact directly with
a computer using natural language (e.g., English). Foundation models
are “pretrained” on vast amounts of data from disparate sources, such
as internet-derived digital data. The models learn to identify objects
from the input data, and through “transfer learning,” their capacity to
recognize objects can be fine-tuned for specific downstream tasks, such
as recognizing cancer cells from a whole slide image of a tumor biopsy.
Foundation models have the capacity for “self-supervised” learning,
e.g., the pre-training task is derived automatically from unannotated or
unlabeled data, a promising feature for the analysis of oncology data-
sets. Importantly, foundation models can accommodate multiple
types, or “modes,” of data (e.g., text, imaging, pathology, molecular
biology, video, audio), incorporating them into a prediction and
enabling “multimodal” analysis that has potential applications for
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decision-making in oncology10. This is particularly important for
measuring biological markers and disease.

These AI approaches are both distinct from and complementary to
traditional inferential statistics. Both inferential statistics andAI approaches
can advance precision oncology, which refers to the use of information
about a patient’s genes, proteins, and environment to diagnose and treat
disease. Initially, the term “precision oncology” was used to describe tar-
geting tumor molecular abnormalities with drugs known to inhibit the
function of a molecular alteration. In recent years, precision oncology has
included the development of therapeutic agents that target any biological
abnormality that is associated with carcinogenesis. Consequently, owing to
recent major breakthroughs in immunotherapeutic strategies, the arma-
mentarium of the precision medicine approach now also includes immu-
notherapy. The term immuno-oncology refers to the use of
immunotherapeutic approaches that include immune checkpoint inhibi-
tors, chimeric antigen receptor T-cell (CAR-T) therapy, cytokines, and
vaccines to treat patients with cancer11. Immuno-oncology is used without
stringent biomarker selection, in contrast to the use of targeted therapies
with small molecules. In a recent meta-analysis, the use of checkpoint
inhibitors was associated with higher rates of overall response, progression-
free survival (PFS), and overall survival (OS) in patients with biomarker-
positive tumors compared with those with biomarker-negative tumors12.
The efficacy of immunotherapeutic treatments varies among different
patients and tumor types, underlying the importance of exploring the
complex immune system in each patient, discovering potentialmechanisms
of response and resistance to these therapeutic approaches, and identifying
predictive biomarkers that will enable the selection of the optimal immu-
notherapy approach for each patient. The goal of precision immuno-
oncology is the optimization of cancer immunotherapy based on the indi-
vidual characteristics of each patient, in combination with specific genetic,
molecular, and immunological characteristics of the patient’s tumor, to
increase efficacy while minimizing toxicity. The application of AI/ML in
precision oncology may enable the analysis of big “omics” data in combi-
nation with clinical, pathological, treatment, and outcome data, providing
sophisticated andpowerful tools to optimize thedevelopment of biomarkers
and treatment of patients.

New modalities for deep measurement of disease (multiplex digital
spatial analysis of pathology slides, quantitative digital analysis of medical
images, genomic sequencing, and mass spectrometric analysis of biologic
molecules) create analytical challenges due to the high-dimensional, mul-
timodal nature of the data. To accelerate the use of these analytical tools in
precision oncology, the key task for oncologists is to ensure that the tools are
adapted to the intended goals and available data (Fig. 1). AI/ML is applied in
many areas of oncology, including generative work, NLP, and other struc-
tured sources of data like the EHR. In this clinically focused overview, we
provide a technological and clinical perspective on the use of AI/ML in
precision oncology to increase our understanding of tumor biology and to
aid in the development of biomarkers that improve treatment selection in
patients with cancer.

Methodology
We conducted a PubMed search using the terms “artificial intelligence” and
“precision oncology” and another search using the terms “machine learn-
ing” and “precision oncology” and publication dates from January 1, 2020,
through November 30, 2024. The following filters were used: “Clinical
Study”; “Clinical Trial”; and “Clinical Trial Phase I.” Phase II or Phase III
clinical trials were included in the term “Clinical Trial.” Clinical trials that
were not cancer-related (n = 6) or did not include AI-based analyses (n = 3)
or were not original studies (n = 1) were excluded. The time period was
selected before data extraction began.

In addition to the above search, we have reviewed published articles
that utilized AI/ML methodologies to analyze patient-derived data, using
the following criteria: detailed description ofAI/MLmethodology, inclusion
of patient data, and results that provided potentially novel clinical insights
not achieved by conventional methodologies.

Results
Using the criteria listed in theMethodology section, 20 trials utilizedAI/ML
methodologies to analyze patient-derived data across diverse tumor types
(Table 1). These 20 studies aimed to identify models that improved diag-
nostic accuracy13–17, improved the prediction of clinical outcomes18–26,
explored the tumor molecular profile27,28 or were related to patient care29–32.
Common limitations included retrospective study design, small sample size,
and lack of external validation. Overall, these studies exemplify the trans-
formative effect of AI/ML tools on the diagnosis, treatment, and indivi-
dualized management of cancer, with the hope of optimizing patient care.

Application of AI/ML in Precision Oncology
Digital pathology
There aremultiple areaswithin thefield of digital pathologywhereAI/ML is
being explored. Key applications include automation in immunohis-
tochemistry (IHC) scoring, the inference of clinically relevant features
beyond histology from hematoxylin and eosin (H&E) images, and novel
insights from emerging tools for measuring multiplex, single-cell, and
spatially resolved analytes from tumor tissue.

The role of AI in automating IHC biomarker scoring. AI-based tech-
nology may help standardize IHC assessments, including those used in
routine practice for treatment selection based onbiomarkers (e.g., PD-L1,
HER2, ER, PR, Ki-67). This would be especially valuable as an assistance
tool for pathologists because the standard manual approach is time
consuming and is associated with high intra-observer variability33–35. An
automated and quantitative AI-based technology has the potential to
standardize the quality of patient care across centers and geographic areas
by overcoming variability in assessment by pathologists, specifically in
rare and complex cases, increasing accuracy and reproducibility, and
reducing turnaround time33,36–39.

Automated AI-based IHC scoring systems have been evaluated by
analyzing scans of whole-slide images (WSIs) of tumor samples in settings
where the standard of care currently requires manual determination of
protein expression by IHC33,40–45. For example, several independent groups
have demonstrated the potential of AI-supported quantitative PD-L1 eva-
luation using CNNs38,40,41. Two separate groups developed CNN systems
that were able to automatically detect the tumor area within WSIs and to
calculate the IHC-based PD-L1 tumor proportion score (TPS) with high
consistency between the AI systems and pathologists40,41.

Others developed a similar CNN PD-L1 TPS classifier and retro-
spectively analyzed 1746 samples across CheckMate studies of nivolumab
combined with ipilimumab for the treatment of patients with various
cancers38. The automated AI system classified more patients as PD-L1
positive (at both the 1% and 5% expression levels) compared with manual
scoring in most tumor types. Importantly, similar improvements in
response and survival were observed using both AI-powered and manual
scoring. However, automated AI-powered digital analysis may identify
more patients who would benefit from immunotherapy treatment com-
pared with manual assessment38. This is because AI-powered methods can
analyze larger datasets, detect subtle patterns, and provide more consistent
evaluations, potentially reducing the variability inherent in manual
assessments.

Recent advances in context-aware attention mechanisms, such as the
Context-Aware Multiple Instance Learning (CAMIL) model, have sig-
nificantly improved diagnostic accuracy in medical imaging. CAMIL
prioritizes relevant regions within WSIs by analyzing spatial relationships
and contextual interactions between neighboring areas. This approach
reduces misclassification rates and enhances diagnostic reliability46.

The workflow for pathologists in the setting of breast cancer diagnosis
is burdensome, as it includes manual quantitative IHC assessment with
clinically relevant cutoff levels ofmultiple proteins includingHER2, ER, PR,
Ki-67, and PD-L1. HER2 assessment is known to be associated with sig-
nificant diagnostic variability. Intra-tumoral heterogeneity within WSIs of
tumor tissue hinders the accurate identification of all cells expressing the
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respective protein. In addition, manual counting of tumor cells to evaluate
biomarker expression levels is associated with low efficiency and poor
reproducibility. In clinical practice, the training and experience of pathol-
ogists significantly influence the accuracy of biomarker assessment (i.e., PD-
L1 expression)47,48. For instance, untrained pathologists exhibit lower
intraclass concordance in PD-L1 expression compared to their highly
trained colleagues41.

One group assessed various ML and DL approaches to automated
quantitativeHER2 IHCscoring and found that aCNNmodel outperformed
classicalML approaches49. Using 71 breast tumor samples, a concordance of
83% between the automated scoring system and a pathologist’s assessment

was demonstrated. Discordance between automated and manual scoring
was found to be associated withHER2 staining heterogeneity in these cases;
notably, an independent review of the discordant cases led to amodification
of the initial pathologist assessment in 8/12 cases, highlighting the potential
utility of AI assistance for the identification of ambiguous cases49.

This potential benefit of using AI as an assistance tool was demon-
strated in a separate study using a CNN to classify cells as either tumor or
non-tumor and to quantify IHC staining intensity for ER/PR and Ki6742.
The goal of the studywas to evaluate the reliability of using anAI systemas a
diagnostic decision support tool in a routine clinical pathology setting (6
WSI scanners/microscopes; 3 staining machines; manual scoring by 10
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pathologists from 8 different centers) by ensuring that the use of AI did not
adversely impact the pathologist assessment. Individual AI analysis results
were confirmedby pathologists in 95.8%of the Ki-67 cases and 93.2%of the
ER/PR cases, indicating the reliability of IHC scoringwith the support of the
CNN AI tool. Statistical analysis also demonstrated high interobserver
variance between pathologists in conventional IHC quantification, which
decreased slightly with AI assistance42.

These reports indicate that AI can assist pathologists by automating
IHC scoring, reducing inter-observer variability (a challenge associatedwith
the determination of clinically relevant expression cutoffs), and shortening
the diagnostic workup period. Prospective trials are needed to confirm the
clinical validity and utility of these promising technologies.

The use of AI to predict biologic characteristics from H&E-
stained WSIs. Given that DL models such as CNNs exhibit “repre-
sentation learning” and are able to extract “deep” patterns from input
data, these DL models have demonstrated the ability to reveal molecular
characteristics from H&E-stained WSIs, as histology reflects
biology33,50–53. These DL models have been associated with difficulties in
“explaining” how they developed their predictions and offer the oppor-
tunity for identifying human-interpretable features (HIFs) based on cell
morphology and histological patterns54. Investigators have prioritized
identification of HIFs derived from CNN models when analyzing H&E
WSIs from patients with cancer to predict molecular phenotypes. HIFs
were correlated with established markers of the tumor microenviron-
ment that are predictive of diverse molecular signatures, including
expression of immune checkpoint proteins and homologous recombi-
nation deficiency, indicating that their application should be further
explored54.

DL analysis of H&E images can predict molecular alterations prior to,
and potentially in lieu of, performing IHC or molecular confirmatory
testing.HER2andBRCAexpressionwaspredicted fromH&E-stainedWSIs
from patients with breast cancer using a CNN that separately processes
H&E-stained slide patches or tiles and outputs an IHC label for the WSI54.
The study demonstrated 83.3% and 53.8% prediction accuracy for HER2
and BRCA, respectively54. Similarly promising early results for BRCA pre-
diction have been reported by others50. In addition, CNN-based analyses of
H&E-stained WSIs have been used to prioritize patients for microsatellite
instability (MSI)/mismatch repair deficiency (dMMR) testing to select
patients for treatment with immunotherapy55,56. A CNN model to predict
MSIwas trained using 100H&E-stainedWSIs frompatients with colorectal
cancer and then validated on an independent validation cohort of 484H&E-
stained WSIs57. The model was associated with high levels of concordance,
with an area under the receiver operating characteristic (AUROC) of 0.931
and 0.779 for the training and independent cohorts, respectively. A large

international consortium trained and validated a CNN model to predict
MSI/dMMR from nine cohorts that included 8,343 patients with colorectal
cancer across different countries and ethnicities56. TheCNNmodel achieved
“clinical grade” performance, with anAUROCof up to 0.96, indicating that
this AI system can rule out 25-50% of patients for MSI/dMMR testing56.

CNNmodels have also been used to predict EGFR, KRAS, and STK11
mutations from pathology images with high accuracy50,51,58–60. For instance,
CNN-based analyses of two large H&EWSI datasets with matched genetic
profiling across diverse tumor types were used to predict genetic alterations:
TheCancerGenomeAtlas (TCGA)datasetwas used formodel training and
the Clinical Proteomic Tumor Analysis Consortium dataset was used for
validation60. Multiple clinically relevant mutations were predicted (i.e.,
PTEN and TP53 in endometrial cancer, KRAS and BRAF in colorectal
cancer, and EGFR in non-small cell lung cancer [NSCLC]) in both the
training and validation sets, demonstrating the potential role of prioritizing
patients for confirmatory genetic testing60.

Another CNN model was developed to predict the molecular classi-
fication using H&EWSIs from 2028 patients with endometrial cancer. The
patient data were derived from three randomized trials and four clinical
cohorts and divided into training and independent validation sets61. Using
genomic and IHC assessments, patients were classified into one of four
prognostic groups: POLEmut, dMMR, p53 abnormal (p53abn), and no
specific molecular profile (NSMP). In the independent validation set, the
model achieved class-wiseAUROCsof 0.849 for POLEmut, 0.844 for dMMR,
0.883 for NSMP, and 0.928 for p53abn61. Subsequent analysis using ML
techniques demonstrated that morphological features including inflam-
matory, stromal, and tumor cell counts as well as tumor nuclear size and
shape were associated with the molecular phenotypes, suggesting the
potential for integration into an improved risk stratification system.

Other investigators compared the typical workflow for the diagnosis of
prostate cancer (usingH&E-stainedneedle biopsies)with theworkflowafter
introduction of a tool that identifies the need for IHC analysis39. They used
an ensemble ofCNNs to segment tissue fromdebris and from foci of interest
in the H&E-stained WSI and an ML classifier to classify cases as clearly
malignant, clearly benign, or ambiguous. This classifier at the time of H&E
staining triggered an automated request for IHC in ambiguous cases
without waiting for a pathologist’s manual review. The AI assistance tool
attained 99% accuracy and a 0.99 area under the curve (AUC) on the test
data; on a validation set, the average agreement with pathologists was 0.81,
with a mean AUC of 0.80. This AI tool to automate IHC requests would,
therefore, result in a significantly leaner workflow39.

These studies indicate that DL computer vision capabilities for pre-
dicting molecular characteristics, e.g., genetic mutations and MSI, from
H&E-stained WSIs may streamline pathology workflows for known
biomarkers.

Fig. 1 | Clinical perspective on the use of AI/ML in precision oncology.Analytical
tools must be adapted to intended goals and available data. Innovations in artificial
intelligence, machine learning analytical techniques, and new modalities for deep
measurement of disease hold great promise for advancing precision oncology.
Central to deriving maximal benefit from these innovations is for researchers and
practitioners to clearly articulate (a) what goals they are seeking to achieve and (b)
what sources of data are available for analysis. This will then dictate the choice of (c)
analytical tools. Inferential statistics is a “data model” approach that seeks to
understand or infer the relationships between independent variables (covariates)
and dependent variables (outcomes) based on prior assumptions about the data
structure. In contrast, machine learning is an “algorithmic model” approach, which
makes few assumptions about the data but rather designs algorithms that can input
direct measurements or derived variables, transform them through the mathema-
tical workings of the algorithm into “features”, and ultimately “learn” to predict the
dependent variable (label). Inference is to statistics as prediction is to machine
learning, and moving forward, we will need to use all the tools in our analytical
toolkit. Interventional statisticians (i.e., clinical trialists) often use the entire sample
size for a primary analysis to maximize the power of the analysis and less frequently
use training and validation sets, whereas data scientists and observational

statisticians (i.e., epidemiologists) divide patient samples into training, validation,
and test sets to demonstrate predictive ability on the “unseen” test set based on
analysis of the training and validation sets. Both utilize models, but the primary
objectives are different187. Inferential statistics, using “data models,” seeks to
understand or infer the relationships between the independent variables and the
dependent or outcome variables within a dataset in three fashions: exploratory or
inductive, hypothesis-testing or deductive, and explanatory or abductive. In all cases,
amodel thatmakes assumptions about the structure of the data (normal distribution
or proportional hazards between groups) is applied to the dataset in order to
understand the relationship between prespecified independent input variables (“x”)
and dependent outcome variables (“y”) and to draw population inferences from a
sample188. ML “algorithmic models” often make fewer assumptions compared to
inferential statistics about the structure of the data or the nature of the relationship
between variables. The flexibility of ML “algorithmic models” lies in their ability to
adapt these assumptions based on the chosen model and application, making these
models applicable to a wide range of predictive tasks189. Since ML/DL is a form of
“representation learning,” in that the machine is fed raw data and develops its own
models for pattern recognition190, the results can be used to make predictions about
independent or “unseen” data. “Created with BioRender.com”.

https://doi.org/10.1038/s41746-025-01471-y Article

npj Digital Medicine |            (2025) 8:75 4

www.nature.com/npjdigitalmed


T
ab

le
1
|O

ve
rv
ie
w

o
fC

lin
ic
al

T
ri
al
s
U
ti
liz

in
g
A
I/
M
L
M
et
ho

d
o
lo
g
ie
s
fo
r
C
an

ce
r
D
ia
g
no

si
s,

P
ro
g
no

si
s,

an
d
T
re
at
m
en

t
O
ut
co

m
es

Fi
rs
t
au

th
o
r
an

d
re
fe
re
nc

e
T
it
le

T
um

o
r
ty
p
e

M
et
ho

d
o
lo
g
y

O
ut
co

m
es

Le
ss

o
ns

le
ar
ne

d

H
ot
ta

T1
3

D
ee

p
le
ar
ni
ng

-b
as

ed
d
ia
gn

os
is
fr
om

en
d
ob

ro
nc

hi
al

ul
tr
as

on
og

ra
p
hy

im
ag

es
of

p
ul
m
on

ar
y
le
si
on

s

Lu
ng

no
du

le
s

C
N
N
,r
ad

io
m
ic
s

Α
fu
lly

au
to
m
at
ed

an
al
ys
is
us

in
g
E
B
U
S
-T
B
N
A

cy
to
lo
gi
ca

lW
S
Is

fr
om

en
la
rg
ed

m
ed

ia
st
in
al

ly
m
ph

no
d
e
d
em

on
st
ra
te
d
hi
gh

p
re
ci
si
on

an
d

se
ns

iti
vi
ty

fo
rl
un

g
ca

nc
er

st
ag

in
g,

w
hi
le

p
er
fo
rm

in
g
fa
st
er

th
an

st
at
e-
of
-t
he

-a
rt

b
as

el
in
e
m
od

el
s

E
B
U
S
-c
om

pu
te
r-
ai
d
ed

d
ia
gn

os
is
sy
st
em

m
ay

ai
d
d
ia
gn

os
is
of

m
al
ig
na

nt
lu
ng

le
si
on

s

Z
ha

ng
Y

14
M
ul
tim

od
al
im

ag
in
g
un

d
er

ar
tifi

ci
al
in
te
lli
ge

nc
e

al
go

rit
hm

fo
rt
he

d
ia
gn

os
is
of

liv
er

ca
nc

er
an

d
its

re
la
tio

ns
hi
p
w
ith

ex
p
re
ss
io
ns

of
E
Z
H
2

an
d
p
57

Li
ve

r
C
N
N

C
N
N
se

gm
en

ta
tio

n
al
go

rit
hm

p
re
d
ic
tin

g
liv
er

ca
nc

er
ha

d
hi
gh

ac
cu

ra
cy

.A
m
ul
tim

od
al

ap
p
ro
ac

h
ha

d
hi
gh

er
se

ns
iti
vi
ty
,a

sp
ec

ifi
c

d
eg

re
e
of

co
ns

is
te
nc

y,
ac

cu
ra
cy

,a
nd

co
ns

is
te
nc

e
co

m
p
ar
ed

to
ea

ch
m
od

al
ity

se
p
ar
at
el
y

M
U
S
m
ay

ha
ve

a
hi
gh

cl
in
ic
al
ap

p
lic
at
io
n
va

lu
e

an
d
ac

cu
ra
te
ly
p
re
d
ic
ts

m
al
ll
iv
er

ca
nc

er

R
en

C
15

C
lin
ic
o-
b
io
lo
gi
ca

l-
ra
d
io
m
ic
s
(C
B
R
)b

as
ed

m
ac

hi
ne

le
ar
ni
ng

fo
ri
m
p
ro
vi
ng

th
e
d
ia
gn

os
tic

ac
cu

ra
cy

of
FD

G
-P

E
T
fa
ls
e-
p
os

iti
ve

ly
m
p
h

no
de

s
in

lu
ng

ca
nc

er

N
S
C
LC

R
ad

io
m
ic
s,

M
L

Th
e
M
L-
b
as

ed
D
eL

on
g
te
st

ha
d
th
e
hi
gh

es
t

p
re
d
ic
tiv

e
ac

cu
ra
cy

an
d
th
e
lo
w
es

tf
al
se

d
is
co

ve
ry

ra
te

am
on

g
al
lt
es

te
d
m
od

el
s

(p
<
0.
05

),
b
ot
h
in

tr
ai
ni
ng

an
d
va

lid
at
io
n
se

ts

Th
e
M
L-
ba

se
d
in
te
gr
at
io
n
of

cl
in
ic
al
,b

io
lo
gi
ca

l
an

d
ra
di
om

ic
s
d
at
a
is
as

so
ci
at
ed

w
ith

in
cr
ea

se
of

th
e
ac

cu
ra
cy

of
ly
m
p
h
no

d
e
st
ag

in
g
in

p
at
ie
nt
s
w
ith

lu
ng

ca
nc

er
,w

hi
le
re
d
uc

in
g
fa
ls
e

p
os

iti
ve

ra
te
s
of

co
nv

en
tio

na
li
m
ag

in
g

Lu
o
X

16
A
ut
om

at
ed

se
gm

en
ta
tio

n
of

b
ra
in

m
et
as

ta
se

s
w
ith

d
ee

p
le
ar
ni
ng

:A
m
ul
ti-
ce

nt
er
,r
an

do
m
iz
ed

cr
os

so
ve

r,
m
ul
ti-
re
ad

er
ev

al
ua

tio
n
st
ud

y.

B
ra
in

M
et
as

ta
se

s
D
L-
b
as

ed
se

gm
en

ta
tio

n
sy
st
em

us
in
g
M
R
I

d
at
a
fr
om

48
8
p
at
ie
nt
s
w
ith

10
,3
38

m
et
as

ta
se

s.

Im
p
ro
ve

d
ac

cu
ra
cy

an
d
ef
fi
ci
en

cy
in

b
ra
in

m
et
as

ta
si
s
se

gm
en

ta
tio

n.
D
L
ca

n
au

to
m
at
e
an

d
en

ha
nc

e
d
ia
gn

os
tic

p
ro
ce

ss
es

in
ne

ur
o-
on

co
lo
gy

.

Le
Y

17
C
T
ra
d
io
m
ic
s
an

al
ys
is
d
is
cr
im

in
at
es

p
ul
m
on

ar
y
le
si
on

s
in

p
at
ie
nt
s
w
ith

p
ul
m
on

ar
y

M
A
LT

ly
m
ph

om
a
an

d
no

n-
p
ul
m
on

ar
y
M
A
LT

ly
m
ph

om
a.

P
ul
m
on

ar
y
an

d
N
on

-P
ul
m
on

ar
y

M
A
LT

Ly
m
p
ho

m
a

R
ad

io
m
ic
an

al
ys
is
us

in
g
lo
gi
st
ic

re
gr
es

si
on

,S
V
M
,a

nd
K
N
N
w
ith

te
n

se
le
ct
ed

fe
at
ur
es

.

C
N
N
m
od

el
s
ha

d
a
hi
gh

ac
cu

ra
cy

in
d
ia
gn

os
in
g
p
rim

ar
y
p
ul
m
on

ar
y
M
A
LT

ly
m
ph

om
a

R
ad

io
m
ic
s
of
fe
rs

si
gn

ifi
ca

nt
p
ot
en

tia
lf
or

su
b
ty
p
e
d
iff
er
en

tia
tio

n
in

ly
m
p
ho

m
as

.

A
re
zz
o
F1

8
A
m
ac

hi
ne

le
ar
ni
ng

ap
p
ro
ac

h
ap

p
lie
d
to

gy
ne

co
lo
gi
ca

lu
ltr
as

ou
nd

to
p
re
d
ic
t

p
ro
gr
es

si
on

-f
re
e
su

rv
iv
al
in

ov
ar
ia
n
ca

nc
er

p
at
ie
nt
s

O
va

ria
n

M
L

M
L
al
go

rit
hm

s
w
er
e
ap

p
lie
d
to

gy
ne

co
lo
gi
ca

l
ul
tr
as

ou
nd

im
ag

es
al
on

g
w
ith

cl
in
ic
op

at
ho

lo
gi
ca

lc
ha

ra
ct
er
is
tic

s
an

d
cr
ea

te
d
a
m
od

el
to

p
re
d
ic
t1

2-
m
on

th
P
FS

P
ro
gn

os
tic

to
ol
s
m
ay

b
e
cr
ea

te
d
b
y
M
L-
ba

se
d

an
al
ys
is
of

ul
tr
as

ou
nd

im
ag

es
co

m
bi
ne

d
w
ith

ot
he

rr
el
ev

an
tp

at
ie
nt

d
at
a

Z
ha

ng
K

19
U
si
ng

d
ee

p
le
ar
ni
ng

to
p
re
d
ic
ts

ur
vi
va

l
ou

tc
om

e
in

no
n-
su

rg
ic
al

ce
rv
ic
al
ca

nc
er

p
at
ie
nt
s
b
as

ed
on

p
at
ho

lo
gi
ca

li
m
ag

es

C
er
vi
ca

l
D
L,

d
ig
ita

lp
at
ho

lo
gy

P
at
ho

m
ic
fe
at
ur
es

fr
om

H
E
-s
ta
in
ed

im
ag

es
of

p
at
ie
nt
s
w
ith

ce
rv
ic
al

ca
nc

er
un

d
er
go

in
g

ch
em

ot
he

ra
p
y
an

d
ra
d
ia
tio

n
th
er
ap

y
w
er
e

us
ed

fo
ra

p
ro
gn

os
tic

m
od

el

P
at
ho

m
ic
d
at
a
ca

n
b
e
us

ed
to

cr
ea

te
p
ro
gn

os
tic

m
od

el
s

Ji
an

g
W

20
A
no

m
og

ra
m

b
as

ed
on

a
co

lla
ge

n
fe
at
ur
e

su
p
p
or
tv

ec
to
rm

ac
hi
ne

fo
rp

re
d
ic
tin

g
th
e

tr
ea

tm
en

tr
es

p
on

se
to

ne
oa

d
ju
va

nt
ch

em
or
ad

io
th
er
ap

y
in

re
ct
al

ca
nc

er
p
at
ie
nt
s

R
ec

ta
l

S
V
M

A
no

m
og

ra
m

in
co

rp
or
at
in
g
on

a
su

p
p
or
t

ve
ct
or

m
ac

hi
ne

-b
as

ed
cl
as

si
fi
er

an
d
va

rio
us

cl
in
ic
op

at
ho

lo
gi
ca

lc
ha

ra
ct
er
is
tic

s
w
as

p
re
d
ic
tiv

e
of

re
sp

on
se

to
ch

em
or
ad

io
th
er
ap

y
b
ot
h
in

th
e
tr
ai
ni
ng

an
d
va

lid
at
io
n
se

t

C
ol
la
ge

n
fe
at
ur
es

of
re
ct
al

tu
m
or

m
ic
ro
en

vi
ro
nm

en
tm

ay
b
e
as

so
ci
at
ed

w
ith

re
sp

on
se

to
ch

em
or
ad

io
th
er
ap

y
an

d
p
re
d
ic
tiv

e
m
od

el
s

S
ha

rm
a
A

21
D
ev

el
op

m
en

ta
nd

p
ro
gn

os
tic

va
lid

at
io
n
of

a
th
re
e-
le
ve

lN
H
G
-l
ik
e
d
ee

p
le
ar
ni
ng

-b
as

ed
m
od

el
fo
rh

is
to
lo
gi
ca

lg
ra
d
in
g
of

b
re
as

tc
an

ce
r

B
re
as

t
D
ig
ita

lp
at
ho

lo
gy

,C
N
N

C
on

ve
nt
io
na

la
ss
es

sm
en

to
fN

H
G
an

d
C
N
N
-

b
as

ed
gr
ad

in
g
as

se
ss
m
en

t(
p
re
d
G
ra
de

)h
ad

si
m
ila
r
p
ro
gn

os
tic

p
er
fo
rm

an
ce

.

C
N
N
-b
as

ed
m
od

el
(p
re
d
G
ra
d
e)

w
as

as
so

ci
at
ed

w
ith

si
m
ila
r
p
ro
gn

os
tic

va
lu
e
w
ith

cl
in
ic
al
as

se
ss
m
en

to
fN

H
G

A
ra
b
ya

rm
oh

am
m
ad

iS
22

M
ac

hi
ne

le
ar
ni
ng

to
p
re
d
ic
tr
is
k
of

re
la
p
se

us
in
g
cy

to
lo
gi
c
im

ag
e
m
ar
ke

rs
in
p
at
ie
nt
s
w
ith

ac
ut
e
m
ye

lo
id

le
uk

em
ia
p
os

t-
he

m
at
op

oi
et
ic

ce
ll
tr
an

sp
la
nt
at
io
n

A
M
L

M
L

A
sp

ira
te

im
ag

es
fr
om

p
at
ie
nt
s
w
ith

A
M
L
an

d
M
D
S
p
os

t-
al
lo
ge

ni
c
he

m
at
op

oi
et
ic
S
C
T
w
er
e

an
al
yz
ed

us
in
g
M
L-
b
as

ed
al
go

rit
hm

s
to

cr
ea

te
a
p
ro
gn

os
tic

m
od

el
.

M
L-
b
as

ed
an

al
ys
is
of

as
p
ira

te
im

ag
es

ca
n

p
re
d
ic
tr
el
ap

se
an

d
p
ro
gn

os
is
of

p
at
ie
nt
s
w
ith

A
M
L
an

d
M
D
S

S
un

d
ar

R
23

M
ac

hi
ne

-l
ea

rn
in
g
m
od

el
d
er
iv
ed

ge
ne

si
gn

at
ur
e
p
re
d
ic
tiv

e
of

p
ac

lit
ax

el
su

rv
iv
al

b
en

efi
ti
n
ga

st
ric

ca
nc

er
:r
es

ul
ts

fr
om

th
e

ra
nd

om
iz
ed

p
ha

se
III
S
A
M
IT

tr
ia
l

G
as

tr
ic

M
L

A
ra
nd

om
fo
re
st
m
od

el
w
as

us
ed

to
ge

ne
ra
te

a
ge

ne
si
gn

at
ur
e
p
re
d
ic
tin

g
b
en

efi
ts

fr
om

ad
ju
va

nt
tr
ea

tm
en

tw
ith

p
ac

lit
ax

el
in

p
at
ie
nt
s

w
ith

ga
st
ric

ca
nc

er

M
L
al
go

rit
hm

s
ca

n
b
e
us

ed
to

id
en

tif
y
ge

ne
si
gn

at
ur
es

p
re
d
ic
tiv

e
of

b
en

efi
ts

to
va

rio
us

tr
ea

tm
en

t

C
hr
is
to
p
ou

lo
s
P

24
P
la
sm

a
p
ro
te
om

e-
b
as

ed
te
st

fo
rfi

rs
t-
lin
e

tr
ea

tm
en

ts
el
ec

tio
n
in

m
et
as

ta
tic

no
n-
sm

al
l

ce
ll
lu
ng

ca
nc

er
.

N
S
C
LC

M
L
al
go

rit
hm

us
in
g
p
la
sm

a
p
ro
te
om

ic
p
ro
fi
le
s
fo
rt
re
at
m
en

ts
el
ec

tio
n.

Im
p
ro
ve

d
fi
rs
t-
lin
e
tr
ea

tm
en

td
ec

is
io
ns

th
ro
ug

h
b
io
m
ar
ke

r-
d
riv

en
ap

p
ro
ac

h.
P
la
sm

a
p
ro
te
om

ic
s
an

d
m
ac

hi
ne

le
ar
ni
ng

en
ha

nc
e
p
er
so

na
liz
ed

tr
ea

tm
en

ti
n

m
et
as

ta
tic

N
S
C
LC

.

M
al
ha

ire
C

25
E
xp

lo
rin

g
th
e
ad

d
ed

va
lu
e
of

p
re
th
er
ap

eu
tic

M
R
d
es

cr
ip
to
rs

in
p
re
d
ic
tin

g
b
re
as

tc
an

ce
r

B
re
as

tC
an

ce
r

Id
en

tifi
ed

p
at
ie
nt
s
at

ris
k
of

p
oo

rr
es

p
on

se
to

ne
oa

d
ju
va

nt
ch

em
ot
he

ra
p
y.

M
ul
tim

od
al
ap

p
ro
ac

he
s
im

p
ro
ve

p
re
d
ic
tiv

e
ac

cu
ra
cy

fo
rc

he
m
ot
he

ra
p
y
re
sp

on
se

.

https://doi.org/10.1038/s41746-025-01471-y Article

npj Digital Medicine |            (2025) 8:75 5

www.nature.com/npjdigitalmed


T
ab

le
1
(c
o
nt
in
ue

d
)|

O
ve

rv
ie
w

o
fC

lin
ic
al

T
ri
al
s
U
ti
liz

in
g
A
I/
M
L
M
et
ho

d
o
lo
g
ie
s
fo
r
C
an

ce
r
D
ia
g
no

si
s,

P
ro
g
no

si
s,

an
d
T
re
at
m
en

t
O
ut
co

m
es

Fi
rs
t
au

th
o
r
an

d
re
fe
re
nc

e
T
it
le

T
um

o
r
ty
p
e

M
et
ho

d
o
lo
g
y

O
ut
co

m
es

Le
ss

o
ns

le
ar
ne

d

p
at
ho

lo
gi
c
co

m
pl
et
e
re
sp

on
se

to
ne

oa
d
ju
va

nt
ch

em
ot
he

ra
p
y.

C
om

b
in
in
g
M
R
If
ea

tu
re
s
w
ith

cl
in
ic
ob

io
lo
gi
ca

lp
re
d
ic
to
rs

in
cl
ud

in
g

tu
m
or
-i
nfi

ltr
at
in
g
ly
m
ph

oc
yt
es

.

Lv
L2

6
R
ad

io
m
ic
an

al
ys
is
fo
rp

re
d
ic
tin

g
p
ro
gn

os
is
of

co
lo
re
ct
al
ca

nc
er

fr
om

p
re
op

er
at
iv
e
18

F-
FD

G
P
E
T/
C
T.

C
R
C

D
ev

el
op

ed
su

rv
iv
al
m
od

el
s
w
ith

cl
in
ic
o-

b
io
lo
gi
ca

la
nd

ra
d
io
m
ic
fe
at
ur
es

.
R
ad

io
m
ic
s
si
gn

at
ur
e
in
te
gr
at
in
g
P
E
T/
C
T

fe
at
ur
es

an
d
cl
in
ic
al
fa
ct
or
s
ac

hi
ev

ed
a

co
nc

or
d
an

ce
su

rv
iv
al
in
d
ex

of
0.
78

0
fo
ra

ll
C
R
C
st
ag

es
an

d
0.
82

0
fo
rs

ta
ge

III
C
R
C
,

ef
fe
ct
iv
el
y
st
ra
tif
yi
ng

p
at
ie
nt
s
in
to

lo
w
-r
is
k
an

d
hi
gh

-r
is
k
gr
ou

p
s
(P

<
0.
00

01
).

D
em

on
st
ra
te
d
st
ro
ng

co
rr
el
at
io
n
b
et
w
ee

n
ra
d
io
m
ic
fe
at
ur
es

an
d
tu
m
or

m
et
ab

ol
ic

p
ar
am

et
er
s,

in
d
ic
at
in
g
th
at

ra
d
io
m
ic

fe
at
ur
es

ca
n
p
ro
vi
d
e
va

lu
ab

le
in
si
gh

ts
in
to

C
R
C

p
ro
gn

os
is
.

K
im

C
.G

27
A
P
ha

se
II
op

en
-l
ab

el
ra
nd

om
iz
ed

cl
in
ic
al
tr
ia
l

of
p
re
op

er
at
iv
e
d
ur
va

lu
m
ab

or
d
ur
va

lu
m
ab

p
lu
s
tr
em

el
im

um
ab

in
re
se

ct
ab

le
he

ad
an

d
ne

ck
sq

ua
m
ou

s
ce

ll
ca

rc
in
om

a

H
N
S
C
C

S
p
at
ia
ld

is
tr
ib
ut
io
n
an

al
ys
is
of

tu
m
or
-

in
fi
ltr
at
in
g
ly
m
p
ho

cy
te
s
an

d
hi
gh

-
d
im

en
si
on

al
p
ro
fi
lin
g
of

ci
rc
ul
at
in
g

im
m
un

e
ce

lls
tr
ac

ke
d
d
yn

am
ic

in
tr
at
um

or
al
an

d
sy
st
em

ic
im

m
un

e
re
sp

on
se

s

P
re
op

er
at
iv
e
d
ur
va

lu
m
ab

w
ith

tr
em

el
im

um
ab

re
m
od

el
ed

tu
m
or

m
ic
ro
en

vi
ro
nm

en
tt
ow

ar
d

im
m
un

e-
in
fl
am

ed
p
he

no
ty
pe

s,
in
co

nt
ra
st
w
ith

d
ur
va

lu
m
ab

m
on

ot
he

ra
p
y
or

cy
to
to
xi
c

ch
em

ot
he

ra
p
y.

H
ig
h-
di
m
en

si
on

al
p
ro
fi
lin
g
of

ci
rc
ul
at
in
g
im

m
un

e
ce

lls
d
em

on
st
ra
te
d
th
at

co
m
bi
na

tio
n
tr
ea

tm
en

tl
ed

to
a
si
gn

ifi
ca

nt
ex

p
an

si
on

an
d
ac

tiv
at
io
n
of

T-
ce

ll
su

b
se

ts
co

m
pa

re
d
w
ith

d
ur
va

lu
m
ab

m
on

ot
he

ra
p
y.

A
I-
as

si
st
ed

W
S
Ia

na
ly
si
s
m
ay

re
ve

al
ch

an
ge

s
in

tu
m
or

m
ic
ro
en

vi
ro
nm

en
ta

nd
ci
rc
ul
at
in
g

im
m
un

e
ce

lls
in

p
at
ie
nt
s
re
ce

iv
in
g

im
m
un

ot
he

ra
p
y.

S
ob

ot
tk
a
B

28
E
st
ab

lis
hi
ng

st
an

da
rd
iz
ed

im
m
un

e
p
he

no
ty
pi
ng

of
m
et
as

ta
tic

m
el
an

om
a
b
y

d
ig
ita

lp
at
ho

lo
gy

M
el
an

om
a

D
L

D
L
al
go

rit
hm

s
w
er
e
d
ev

el
op

ed
to

ac
cu

ra
te
ly

m
ea

su
re

C
D
8
+
T-
ce

ll
sp

at
ia
ld

is
tr
ib
ut
io
n
an

d
ca

te
go

riz
e
tu
m
or
s
in
to

cl
in
ic
al
ly
re
le
va

nt
im

m
un

e
d
ia
gn

os
tic

su
b
gr
ou

p
s,

in
cl
ud

in
g

“i
nfl

am
ed

”,
“e
xc

lu
de

d
”,
an

d
“d
es

er
t”
.

Th
e
d
ev

el
op

m
en

to
fa

co
m
pu

ta
tio

na
l

d
ia
gn

os
tic

al
go

rit
hm

th
at

ac
cu

ra
te
ly
as

se
ss
es

C
D
8
+
T
ce

ll
d
en

si
tie

s
in

va
rio

us
tu
m
or

co
m
p
ar
tm

en
ts

m
ay

le
ad

to
tu
m
or

cl
as

si
fi
ca

tio
n
in
to

re
le
va

nt
im

m
un

e
su

b
gr
ou

p
s

w
ith

cl
in
ic
al
im

p
lic
at
io
ns

M
an

z
C
R

29
E
ff
ec

to
fi
nt
eg

ra
tin

g
m
ac

hi
ne

le
ar
ni
ng

m
or
ta
lit
y

es
tim

at
es

w
ith

b
eh

av
io
ra
ln

ud
ge

s
to

cl
in
ic
ia
ns

on
se

rio
us

ill
ne

ss
co

nv
er
sa

tio
ns

am
on

g
p
at
ie
nt
s
w
ith

ca
nc

er
:a

st
ep

p
ed

-w
ed

ge
cl
us

te
r

ra
nd

om
iz
ed

cl
in
ic
al
tr
ia
l

A
ll
tu
m
or

ty
p
es

M
L

In
te
rv
en

tio
ns

co
m
p
ris

in
g
of

M
L
m
or
ta
lit
y

p
re
d
ic
tio

ns
w
ith

b
eh

av
io
ra
ln

ud
ge

s
th
at

w
er
e

d
el
iv
er
ed

to
on

co
lo
gi
st
s
si
gn

ifi
ca

nt
ly

in
cr
ea

se
d
th
e
ra
te

of
se

rio
us

ill
ne

ss
co

nv
er
sa

tio
ns

am
on

g
p
at
ie
nt
s
w
ith

ca
nc

er
an

d
th
ei
rp

hy
si
ci
an

s

M
L-
b
as

ed
to
ol
s
ca

n
fa
ci
lit
at
e
p
at
ie
nt
-d
oc

to
r

co
m
m
un

ic
at
io
n
an

d
im

p
ro
ve

p
at
ie
nt

ca
re

G
ué

ve
lE

30
D
ev

el
op

m
en

to
fa

na
tu
ra
ll
an

gu
ag

e
p
ro
ce

ss
in
g

m
od

el
fo
rd

er
iv
in
g
b
re
as

tc
an

ce
rq

ua
lit
y

in
d
ic
at
or
s:

A
cr
os

s-
se

ct
io
na

l,
m
ul
tic

en
te
rs

tu
d
y

B
re
as

t
N
LP

H
ea

lth
ca

re
Q
ua

lit
y
an

d
S
af
et
y
In
d
ic
at
or
s
w
er
e

p
ro
ce

ss
ed

us
in
g
N
LP

m
od

el
s
to

au
to
m
at
ic
al
ly

ex
tr
ac

ti
nd

ic
at
or

el
em

en
ta
ry

va
ria

b
le
s.

Th
e

ex
tr
ac

tio
n
al
go

rit
hm

s
d
em

on
st
ra
te

an
av

er
ag

e
ac

cu
ra
cy

of
76

.5
%
,p

re
ci
si
on

of
77

.7
%

an
d

se
ns

iti
vi
ty

of
71

.6
%

A
lth

ou
gh

d
at
a
ex

tr
ac

tio
n
fr
om

un
st
ru
ct
ur
ed

re
p
or
ts

ca
n
b
e
en

ab
le
d
us

in
g
N
LP

,i
tc

an
b
e

lim
ite

d
b
y
d
at
a
av

ai
la
b
ili
ty

an
d
co

m
pl
et
en

es
s

an
d
al
go

rit
hm

p
er
fo
rm

an
ce

.

M
a
L3

1
C
or
re
la
tio

n
b
et
w
ee

n
A
I-
b
as

ed
C
T
or
ga

n
fe
at
ur
es

an
d
no

rm
al
lu
ng

d
os

e
in

ad
ju
va

nt
ra
d
io
th
er
ap

y
fo
llo

w
in
g
b
re
as

t-
co

ns
er
vi
ng

su
rg
er
y:

a
m
ul
tic

en
te
rp

ro
sp

ec
tiv

e
st
ud

y

B
re
as

t
D
L-
gu

id
ed

ra
d
ia
tio

n
Th

e
p
ro
p
os

ed
D
L-
b
as

ed
or
ga

n
fe
at
ur
e
co

ul
d

ac
cu

ra
te
ly
p
re
d
ic
tn

or
m
al
lu
ng

d
os

e
in
p
at
ie
nt
s

w
ith

b
re
as

tc
an

ce
rr
ec

ei
vi
ng

ad
ju
va

nt
ra
d
io
th
er
ap

y
af
te
rb

re
as

t-
co

ns
er
vi
ng

su
rg
er
y,

p
os

si
b
ly
re
du

ci
ng

th
e
ris

k
fo
rr
ad

ia
tio

n
p
ne

um
on

iti
s

A
It
oo

ls
ca

n
b
e
us

ed
to

op
tim

iz
e
ra
d
ia
tio

n
th
er
ap

y
d
os

e.

C
hr
ys
ta
ll
D

32
D
ee

p
le
ar
ni
ng

en
ab

le
s
M
V
-b
as

ed
re
al
-t
im

e
im

ag
e
gu

id
ed

ra
d
ia
tio

n
th
er
ap

y
fo
rp

ro
st
at
e

ca
nc

er
p
at
ie
nt
s

P
ro
st
at
e

D
L-
gu

id
ed

ra
d
ia
tio

n,
C
N
N

A
C
N
N
-b
as

ed
re
al
-t
im

e
im

ag
e-
gu

id
ed

ra
d
ia
tio

n
th
er
ap

y
m
ar
ke

rw
as

d
ev

el
op

ed
an

d
va

lid
at
ed

in
an

ex
te
rn
al
co

ho
rt
,r
es

ul
tin

g
to

se
ns

iti
vi
ty

of
98

.3
1%

an
d
sp

ec
ifi
ci
ty

of
99

.8
7%

.

C
N
N
ca

n
su

cc
es

sf
ul
ly
id
en

tif
y
im

p
la
nt
ed

p
ro
st
at
e
m
ar
ke

rs

A
IA

rt
ifi
ci
al
In
te
lli
ge

nc
e,
A
M
L
A
cu

te
M
ye

lo
id
Le

uk
em

ia
,C

B
R
C
lin
ic
o-
b
io
lo
gi
ca

l-
ra
d
io
m
ic
s,
C
N
N
C
on

vo
lu
tio

na
lN

eu
ra
lN

et
w
or
k,
C
R
C
co

lo
re
ct
al
ca

nc
er
,D

L
D
ee

p
Le

ar
ni
ng

,E
B
U
S
E
nd

ob
ro
nc

hi
al
U
ltr
as

ou
nd

,H
E
H
ae

m
at
ox

yl
in
&
E
os

in
,H

N
S
C
C
H
ea

d
A
nd

N
ec

k
S
q
ua

m
ou

s
C
el
l

C
ar
ci
no

m
a,

M
D
S
M
ye

lo
d
ys
p
la
st
ic
S
yn

d
ro
m
es

,M
L
M
ac

hi
ne

Le
ar
ni
ng

,M
U
S
M
ul
tim

od
al
U
ltr
as

ou
nd

,N
H
G
N
ot
tin

gh
am

H
is
to
lo
gi
ca

lG
ra
d
e,

N
LP

N
at
ur
al
la
ng

ua
ge

p
ro
ce

ss
in
g,

N
S
C
LC

N
on

-S
m
al
lC

el
lL
un

g
C
an

ce
r,
S
C
T
st
em

ce
ll
tr
an

sp
la
nt
,S

V
M

S
up

p
or
tV

ec
to
rM

ac
hi
ne

,
W
S
IW

ho
le
S
lid

e
Im

ag
in
g

https://doi.org/10.1038/s41746-025-01471-y Article

npj Digital Medicine |            (2025) 8:75 6

www.nature.com/npjdigitalmed


AI-based biomarker prediction from H&E-stainedWSIs is limited by
the following: only molecular biomarkers that have an impact on tissue
morphology can be identified; the sensitivity and specificity of AI-based
mutation identification is suboptimal; and concordance with validated
methodologies is limited (owing to limited tumor tissue availability, poor
DNA quality, inaccuracy of laboratory procedures, and lack of personnel
experience or other resources). In order for AI-based biomarker prediction
from H&E-stained WSIs to be applied in clinical practice, extensive vali-
dation in external datasets and within clinical trials is needed.

The use of AI to predict novel prognostic and predictive biomarkers
fromH&E-stainedWSIs. Challenges associated with the complexity and
heterogeneity of the immune tumor microenvironment and predictive/
prognostic biomarkers may be overcome by computational pathology
technologies62–65. The Multiomics Multicohort Assessment platform
analyzed H&E-stained WSIs from patients with early-stage colorectal
cancer using large publicly available datasets, such asTCGA, that included
digital H&E-stained WSIs annotated with sequencing and clinical data62.
The investigators employed CNNs and vision transformers to investigate
whether DL analysis of H&E-stained WSIs could predict clinical and
molecular profiles of interest. The model accurately predicted clinical
outcomes, including overall and disease-free survival, as well as molecular
aberrations including copy number alterations, expression levels of key
genes in cancer development, MSI, BRAF mutation, and CpG island
methylator and consensus molecular subtypes62.

A prognostic model for prostate cancer was developed that incorpo-
rated CNN analysis of prostate biopsy H&E-stained WSIs with six clinical
variables (combined Gleason score, Gleason primary, Gleason secondary,
T-stage, baseline PSA, age) from 5654 patients from the Radiation Therapy
Oncology Group prostate cancer studies63. This model was shown to have
better prognostic accuracy than the commonly used National Compre-
hensive Cancer Network (NCCN) risk-stratification tool63. Similar multi-
modal DL approaches have been used to predict outcomes for patients with
gliomas64 and high-grade serous ovarian cancer65. A local-global graph-
based distillation (ALL-IN) model combining both local and global histo-
logical features using a graph-based neural network improved stratification
of patient risk groups, with clinical utility66.

Investigators developed a CNN tumor-infiltrating lymphocyte (TIL)
“analyzer” to identify three immune phenotypes (IPs)—inflamed, immune-
excluded, and immune-desert—based on the concentrations of TILs in
tumor epithelium and tumor stroma onH&E-stainedWSIs67. The inflamed
IP (highTIL concentration in tumor epithelium)was associatedwith higher
response rates and longer PFS in studies of immune checkpoint inhibitor
therapy in patients with NSCLC. The TIL analyzer provided prognostic
insight in addition to the PD-L1 TPS in the subset of patients with a TPS of
1%–49%.The42.5%ofpatientswith an inflamed IPhad a22%response rate
compared with a response rate of only 3.9% in patients with immune-
excluded or immune-desert IPs67.

These studies demonstrate that DL approaches based on H&E image
analysis alone or combined with clinical data hold promise for improving
prognostic and predictive biomarkers in precision oncology.

Challenges in the implementation of AI/ML tools in digital
pathology
TheperformanceofAI/ML tools can complement that ofmedical doctors in
the interpretation, analysis, and conclusions derived from large-scale
datasets. The integration and analysis of large-scale datasets such as geno-
mic, radiomic/radiogenomic, digital pathology, real-world, and EHR
datasets requires advanced computational tools and increased power, owing
to their complexity and heterogeneity. The TCGA includes more than
10,000 digital pathology images from patients with diverse tumor types,
along with associated clinicopathological and genomic data (https://www.
cancer.gov/tcga). TheVirchow2GPathologyDataset includes over 3million
pathology slides from 225,000 patients across 45 countries and was used to
train Virchow2G, a large pathology model68.

The Cancer Imaging Archive comprises de-identified medical images
of cancer that are associatedwithpatient outcomes, treatment, and genomic
data69. These large-scale datasets present challenges related to the man-
agement and storage of large volumes of data, increased variety of data
sources and formats, assessment of batch effects, high processing power
requirements, and tool integration, along with relevant feature selection,
which is often hindered by nonlinear associations of different features and
inter-tumor and intra-tumor heterogeneity. AI/ML algorithms enable the
extractionof clinically relevant features from these datasets, providinguseful
insights that could not be identified by traditional methods or human
intelligence.

Digital pathology, while transformative for the application of precision
oncology, poses several challenges. The generation of “big data” requires
efficient data management and storage systems, and interoperability issues
associated with the lack of compatibility of different digital pathology sys-
tems across platforms and institutions limit data sharing and integration.
The regulatory and legal framework for the use of digital pathology is
evolving, and concerns regarding data privacy and the need for standardi-
zation of practices should be addressed. In addition, quality control and
methodology validation, along with pathologist training, are critical for the
application of digital pathology in clinical practice. The transition from
traditional to digital workflows may be challenging, requiring time and
adaptation. Finally, the increased costs associated with the integration of
digital pathology, including scanning equipment, specialized software, data
storage, technology infrastructure, and extensive physician training, may be
a significant barrier for smaller institutions.

Multiplex, single-cell, and digital spatial analyses. AI/ML tools have
the potential to analyze the emerging complex and highly dimensional
measurements of disease, offering deeper understanding of tumor biol-
ogy, including the interaction of the tumor microenvironment with the
tumor. They can help analyze results derived from digital pathology
multiplex platforms that measure multiple analytes in a single sample,
such as gene expression at the protein (IHC, immunofluorescence, or
imaging mass cytometry) and mRNA (bulk or single-cell RNA sequen-
cing) levels. AI/ML tools are increasingly employed for the character-
ization of individual cells using protein, DNA, RNA, and metabolite
analysis to pinpoint single-nucleotide mutations70–73 and for the inves-
tigation of epigenomic phenomena such as DNA methylome74–76, ChIP-
seq analysis, and chromatin accessibility data77,78.

Applying AI algorithms, various tissue types can be classified based on
their spatial characteristics (texture, shape, and color). The spatial dis-
tribution of cancer and neighboring cells can be combined with other
clinicopathological data to establish prognostic and predictive algorithms.
For instance, imagingmass cytometrywas applied to evaluate the tumor and
immunological landscape of tissue samples from 416 patients with NSCLC
and to assess a prognostic model79. Investigators demonstrated that CNN-
based spatial analysis of immune lineages and activation status identified
five markers (CD14, CD16, CD94, αSMA, and CD117) that correlated
with OS79.

In another study, imaging mass cytometry-labeled brain tumor biop-
sies were used to create high-dimensional maps of the brain tumor
microenvironment80. CNN algorithms enabled fully automated high-
throughput segmentation and identification of individual cells across
diverse tissues. Differences in the tumor immune landscapes between
patients with high-grade glioma and brainmetastasis were observed. Spatial
cellular neighborhoods (CNs) that were associated with OS were identified
in patients with glioblastoma. Furthermore, CNs enriched in M1-like
monocyte-derived macrophages were associated with improved OS, high-
lighting the value of spatial cellular relationships and showing the com-
plexity of tumorCNs80. Others usedmultiplexed ion beam imaging by time-
of-flight (MIBI-TOF) with a CNN segmentation tool to evaluate in situ
expression of 36 immune-related proteins in patients with triple-negative
breast cancer and to define the tumor-immune microenvironment,
including identification of CNs81.
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Other researchers developed a weakly supervised (e.g., not requiring
manual expert annotation) DL framework to identify tumor-immune
interrelations and CNs and to predict which patients with low-risk early-
stage endometrial cancer have a higher risk of recurrence82. Using multi-
plexed immunofluorescence of tissue microarrays from tumor samples for
the simultaneous visualization and quantification of CD68+macrophages,
CD8+ T cells, FOXP3+ regulatory T cells, PD-L1/PD-1 protein expres-
sion, and tumor cells, they trained and validated a multilevel interpretable
DL framework (using a CNN for patch feature extraction, a graph neural
network to capture CNs and tissue areas, and a multilayer perceptron for
recurrence risk classification) to predict the risk of recurrence. This model
achieved an AUROC of 0.90, and predictions resulted in concordance for
96.8%of cases. The authors concluded that themodel could assess the riskof
recurrence in this study population, outperforming current prognostic
factors, including molecular subtyping82.

Another promising approach combines AI-driven image analysis of
cellular phenotypes with automated single-cell or single-nucleus laser
microdissection and ultra-high-sensitivity mass spectrometry. This
approach links protein abundance to cellular and subcellular phenotypes
while preserving spatial context, offering the potential to elucidate pathways
that change in a spatial manner as cancer progresses83.

In addition, RNA sequencing (RNAseq) plays a crucial role in multi-
plex analyses, providing a comprehensive view of gene expression profiles
within the tumor microenvironment. The integration of RNAseq data with
AI/ML tools allows for the identification of novel biomarkers and gene
signatures that are pivotal for understanding tumor biology and patient
outcomes. Investigators have used an autoencoder, an unsupervised DL
methodology that utilizes input data to create representative features, to
regenerate output data and integrate DNA methylation, RNAseq, and
miRNAseq data from patients with colorectal cancer84. This approach
enabled the identification of a subgroup of patients with improved OS.
Another studyhighlighted that the clustering algorithms applied toRNAseq
data can uncover distinct gene expression patterns that correlate with spe-
cific tumor characteristics, thereby facilitating the identification of potential
therapeutic targets85. This synergy between RNAseq andAI-driven analyses
not only enhances the characterization of tumor-immune interactions but
also supports the development of prognosticmodels that canpredict patient
responses to therapies. By leveraging the high dimensionality of RNAseq
data in conjunction with spatial and multiplex imaging techniques,
researchers can gain deeper insights into the complex interplay between
tumor cells and their microenvironment, ultimately advancing precision
medicine approaches in oncology.

In summary, advanced multiplex imaging technologies coupled with
AI analytics enable a deepened understanding of tumor-immune interac-
tions in the tumormicroenvironment andmay enable thediscoveryof novel
biomarkers and therapeutic targets.

Digital radiology (radiomics)
In the past decade, the field of medical image analysis has grown expo-
nentially, with an increased number of pattern recognition tools and larger
data sets. Radiomics refers to the high-throughput mining of quantitative
image features from standard-of-care medical imaging that enables data to
be extracted and applied within clinical decision support systems to identify
complex patterns and trends for improving diagnostic, prognostic, and
predictive accuracy86. This approach expands the utility of radiologic data
beyond medical images that are simply visual aids for human
interpretation82.

Digital medical images are converted into mineable high-dimensional
quantitative data in a matrix format where each element, known as a voxel,
corresponds to a small section of the body. These voxels contain x-ray
attenuation values directly proportional to the density of the material being
scanned, with a total range ofmore than 4096 intensities, while only a small
fraction of these intensities can be perceived by humans. The limited dis-
criminatory capacity of the human eye suggests the potential for DL
methods87. Quantitative radiomic features, measured or mathematically

transformed, representing intensity, geometry, and texture may reflect
aspects of the tumor phenotype and microenvironment that can predict
clinical outcomes and support clinical decisions.

Image segmentation involves partitioning an image into meaningful
regions, which is essential for accurately identifying tumors and organs at
risk in radiation oncology. Accurate segmentation is crucial for treatment
planning, as it directly impacts the precision of radiation delivery. Tradi-
tional manual segmentation is not only time-consuming but also prone to
inter-observer variability, which can lead to inconsistent results.

For instance, the BRATS (Brain Tumor Segmentation) challenge, an
annual international competition focusedonbrain tumor segmentation, has
been instrumental in driving advancements in this field. This challenge
encourages the development of innovative segmentation algorithms and
fosters collaboration among researchers, leading to improved methodolo-
gies and performance benchmarks. A research group introduces a weakly
supervised approach to pan-cancer segmentation, showcasing the potential
of AI/ML to tackle complex segmentation tasks, even with limited
annotation88. Their method leverages slide-level annotations to train seg-
mentationmodels, demonstrating that effective tumor segmentation can be
achievedwithout extensive pixel-level labeling,which is often abottleneck in
clinical practice88. Many investigators have reported on segmentation
algorithms for various organs, such as the liver89, brain90, pancreas91, and
prostate92,93. Guidelines for the development, clinical validation, and
reporting of AI models in radiation therapy have been developed by the
European Society for Therapeutic Radiation Oncology and the American
Association of Physics in Medicine for the standardization of this
approach94.

Investigators used statistics and ML (Least Absolute Shrinkage and
Selection Operator) to develop a radiomic model to predict TIL density, as
determined from AI-powered analysis of H&E-stained WSIs, using the
same technology as previously described67, and baseline CT imaging from a
training cohort of 220 patients with NSCLC treated with immunotherapy95.
The final ML-based TIL-prediction model included only two features, both
indicative of intralesional textureheterogeneity, anddemonstrated that high
predictedTILdensity ( ≥median)was associatedwith longerPFS compared
to low predictedTIL density (median, 4.0months vs. 2.1months, p = 0.002)
when applied to a 294-patient validation cohort. TIL density was sig-
nificantly associated with PFS independent of PD-L1 status, and patients
with high TIL density and high PD-L1 (TPS ≥ 50%) had the longest PFS
compared with patients with low TIL density and/or PD-L1 TPS95.

In addition, radiomics has been used to predict immunotherapy
outcomes96. For instance, investigators have evaluated CT imaging data
from 54 patients with hepatocellular carcinoma treated with immu-
notherapy using nine ML and two ensemble learning techniques to con-
struct predictive models97. The models were validated in an external set
comprising 29 patients; selected ML models were shown to accurately
predict the short-term efficacy of immunotherapy in patients with hepa-
tocellular carcinoma97. Other investigators used radiological images anno-
tated with clinical and outcome data from 2552 patients to develop ML
models to predict OS in patients with head and neck cancer and validate the
models in three external cohorts comprising 873 patients98. Among 12
different models, one achieved the highest prognostic accuracy using
multitask learning on clinical data and tumor volume. However, the results
demonstrated significant decreases inmodel performance, and could not be
validated in the external datasets98.

Other investigators constructed andvalidateda sub-regional radiomics
model based on a support vector machine algorithm using 1896 features
from each tumor sub-region, (5688 features per sample) from 264 patients
with NSCLC99. In the validation set, the model demonstrated improved
accuracy in predicting immunotherapy response compared to conventional
radiomics, tumor mutational burden (TMB), or PD-L199.

In another study, an ML (random forest) prognostic radiomic model
was developed using CT images from patients with advanced melanoma
whoparticipated in pembrolizumabmulticenter clinical trials100. Themodel
achieved a highAUC forOS estimation in the validation set, suggesting that
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this tool could be used for clinical decisions100. Based on radiomics features,
other investigators used pre-operative CT images from 127 patients with
NSCLC from TCGA to construct a TMB prediction model101. Three
radiomics features (flatness [shape of original feature], autocorrelation
[GLCM], and minimum [first order of wavelet features]) were found to be
associated with TMB levels and were significantly different between the
high- and low-TMB groups101.

Additional ML radiomics models have been developed to identify
patients who may benefit from immunotherapy (e.g., patients with mela-
noma, NSCLC, or breast cancer)100–102. The above examples employed ML
techniques to assist in the analysis of non-ML-derived, classical, “hand-
crafted” (i.e., human-defined) radiomic features. Recent investigations
employing CNNs for DL of features may outperform approaches using
handcrafted radiomic features103,104. For example, transformers and novel
architecture methodologies have shown promising results in improving
feature extraction and diagnostic accuracy in medical imaging tasks105,106.

An ML model trained on dual-energy CT radiomics (DECT) was
shown to be superior to standard CT imaging and enabled quantification of
iodine and fat concentrations in lesions, in addition to visual inspection107.
The application of DECT to an ML-based radiomics model significantly
improved immunotherapy response prediction for patients with stage IV
melanoma compared to standard CT imaging107.

The application of AI/ML algorithms has been shown to improve or
surpass the performance of physicians in cancer diagnosis and staging108–110.
In one study, an AI model trained on 506 CT images exhibited better
diagnostic accuracy in distinguishing benign vs. malignant pulmonary
nodules compared to different groups of physicians108. In another study, an
AI-based model developed and validated on 170,230 mammography ima-
ges demonstrated higher diagnostic performance in terms of breast cancer
detection compared to radiologists109. However, with the addition of AI, the
performance of radiologists significantly improved.

In summary, use of AI/ML techniques in radiomics analysis can
transformmedical imaging data into quantifiable variables thatmay be used
as noninvasive prognostic and predictive biomarkers for response to
treatment, overcoming the limitations of tissue-based analysis for clinical
decision-making. However, these preliminary data warrant validation in
larger patient cohorts.

Challenges regarding theuseofAI/ML techniques in radiomics include
the following: lack of prospective analyses of imagingdata; lack of evaluation
of radiomics within prospective clinical trials or standardized and homo-
geneous frameworks; a limited number of studies with independent vali-
dation of the results and their interpretability; and a lack of training and
knowledge of physicians on radiomics. Data reproducibility across different
datasets is hindered by various methodological approaches, including
variability in imaging protocols among different hospitals, heterogeneity in
patient populations, preprocessing (image normalization, noise reduction,
and image segmentation), feature selection, and model training111. Devel-
oping multicenter studies assessing the standardization of protocols and
workflows in medical imaging is important to ensure reproducibility and
applicability across institutions.

Molecular medicine
The exponential growth of techniques to assess “omics” data, including
next-generation sequencing (NGS) techniques, has contributed to the
identification of novel prognostic and predictive biomarkers and drug tar-
gets. A challenge in genomic analysis using NGS is the annotation of
molecular alterations and variant calling, e.g., identifying the differences
between the analyte sequence (patient’s sample) and the reference
sequence112. This process is prone to errors, ranging from 0.1% to 10%, and
has important clinical consequences. Variant callers based on ML models
(logistic regression; hiddenMarkovmodels; naïve Bayes classifiers), such as
the Genome Analysis Toolkit, had less than optimal accuracy, even on
short-read sequencing technologies such as Illuminawith 75-250 bases, and
were poorly generalized to the newer long-read NGS technologies, such as
Pacific Biosciences with 15,000 bases and Oxford Nanopore with up to 1

million bases113,114. A major step forward was the implementation of CNNs
in variant calling as exemplified by DeepVariant113. This model out-
performed all other existing tools, winning the highest performance in an
FDA-administered variant calling challenge. Furthermore, this model
performs well on both short-read and long-read whole genome and exome
sequencing technologies and generalizes even to other mammalian
species113.

AI/ML tools have also been used to analyze large-scale epigenomic
datasets to identify patterns associated with specific tumor types115, which
can serve as biomarkers for early detection75, accurate diagnosis116, and
prediction of patient outcomes117. By analyzing large-scale genomic and
epigenomicdata sets,AI canhelpdiscovernovel epigenetic drugs, repurpose
existing drugs, identify potential candidates that target specific epigenetic
modifications118, and develop predictive models with integration of epige-
nomic, clinical, and patient outcomes data70,71.

AI/ML tools have also been used for the analysis of the output of
proteomic measurement techniques. A “sample-to-data” roadmap for
integrating AI/ML throughout the proteomic workflow has been
suggested73. In another study, an AI algorithm was developed to identify
protein interaction networks for individual patients based on their pro-
teomic profiling data119, indicating that interaction networks may be accu-
rately reconstructed, representing an advancement over standard
methods119.

Integrative (multimodal) analyses
Most applications of AI/ML in precision oncology represent “narrow” tasks
using one data modality such as pathology, radiology, or molecular
sequencingdata.However, oncologists integrate all relevant availablemodes
of data when evaluating patients. The task of modality conversion is central
to advancing AI in network medicine applications120–123. Modality conver-
sion involves transforming data from one form to another, which is crucial
for enablingAI tomimichuman-like sensory integrationand interpretation.
One example in the field of radiation therapy is the use of DL tools for the
generationof syntheticCT images frommagnetic resonance images toaid in
radiation therapy planning124. Transformer-based text, vision, and speech
models can facilitate these conversions.Multiomic or panomic technologies
using AI/ML/DL tools may improve the discovery of molecular
biomarkers125. Emerging AI methodologies can drive the progress in net-
work medicine, ultimately improving patient outcomes and uncovering
novel therapeutic targets120,121.

The development of multimodal AI models incorporating all relevant
sources of data—eventually including biosensor (devices that continuously
detect and measure physiologic or environmental parameters to assess
specific biomarkers), social determinants, and environmental data—is
becoming potentially feasible126. Investigators developed a multimodal
classifier to predict response to PD-L1 blockade in patients with NSCLC127

that included the clinical, pathological, radiomic, and genomic character-
istics of 247 patients treated at a single center. Radiomic features were
extracted using classical radiomics techniques; PD-L1 tumor cell expression
was assessed as the standard TPS; a CNNmodel was also used to develop an
automated PD-L1 classifier on digital PD-L1-stained WSIs; and genomic
analysis assessed somatic mutations, copy number alterations, and fusions
in 341-468 genes most associated with cancer and TMB. Clinical data
included neutrophil-to-lymphocyte ratio, pack-years smoking history, age,
albumin, tumor burden, presence of brain and liver metastases, tumor
histology, and scanner parameters. An attention-based DL model was
developed that could account for non-linear relationships across the input
modalities. The model was able to predict objective responses better than
any modality separately or linearly combined and led to enhanced separa-
tion of Kaplan-Meier survival curves (indicating potential as a useful bio-
marker for longer-term outcome). Analysis of the model revealed that all
data modalities (radiomics, genomics, and pathology) contributed to the
prognostic classification success127. Frameworks, such as Prototypical
Information Bottlenecking and Disentangling, were used to address
redundancy issues in multimodal data, thereby improving cancer survival
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predictions128. In summary, the application of AI/ML algorithms to inte-
grated medical multimodal data has great promise and will depend on the
assembly of large, well-annotated, multi-institutional training datasets127.

Large language models and generative AI
Many useful applications in the field may result from AI advances in NLP,
especially with the development of LLMs. The advent of LLMs with a user
interface, which enables communication between the AI system and a
human using natural language, has facilitated the emergence of “generative”
AI, i.e., technology that can generate text, images, or other data (video,
sound) based on features learned from input training data129.

After training on big data, LLMs can perform various tasks, including
summarization, translation, text completion, and imaginative writing130.
LLMs have been leveraged to facilitate decision support for patients with
cancer131–135. A panel of clinicians evaluated the responses of Almanac, an
LLMaugmentedwith retrieval capabilities from curatedmedical sources, to
clinical questions including medical guidelines and treatment
recommendations134. Almanac’s responses to 314 clinical questions were
better than the other LLMs (ChatGPT-4, Bing, and Gemini) that were not
augmented with medical data134.

The use of Med-PaLM Multimodal, a multimodal generative LLM
finetuned on medical data, was associated with high performance across
diverse tasks including responses to medical questions, interpretation of
mammography and dermatology images, radiology report generation and
summarization, and genomic variant calling. The application of this mul-
timodal LLM indicates the potential for the broader use of medical AI
systems136.

Other applications of LLMs include mining of EHRs to identify
clinically relevant data, such as treatment-related adverse events, and to
support insurance reimbursement137. TheLLMGatorTronwas successful in
recognizing adverse events attributed to certain drugs137. If validated, this
approach may improve patient care138.

However, the application of LLMs should be interpreted with caution
because it is associated with challenges. One example is the poor perfor-
mance of an LLM chatbot (ChatGPT) in terms of providing treatment
recommendations concordant with NCCN guidelines139. High rates of
discordant responses and “hallucinations” (e.g., responses not related to any
recommended treatment) were identified in 13 (12.5%) of 104 ChatGPT
outputs. These “hallucinations” have been previously described as a critical
issue with AI chatbots140. Other challenges related to the use of LLMs are
accountability, research integrity, and data security. In summary, LLMs
cannot be incorporated into clinical practice at this time. Thorough clinical
validation using stringent criteria is required fromdevelopers to ensure high
rates of accuracy in terms of generative AI predictions and responses, and
clinicians should be aware of their limitations.

FDA-approved AI/ML-enabled medical devices
As of December 20, 2024, the FDA has approved 1016 AI/ML-enabled
medical devices that are authorized for marketing in the United States141.
Specific examples where AI has successfully impacted clinical outcomes,
underscoring the real-world applicability, are listed in Table 2.

Ethical and regulatory aspects of AI deployment in precision
oncology
The rapid evolution of AI in precision oncology necessitates thorough
ethical and regulatory considerations related to biases associated with data,
model transparency, and accountability.

Data bias. One of the major concerns is data bias, as AI models were
often trainedwith non-representative or biased datasets142. Unintentional
existing biases within the healthcare systemmay contribute to treatment
inequities among marginalized racial and ethnic groups if the training
data do not adequately represent these populations143. Biases in health-
care research and public health databases maymislead AI outputs, which

may negatively affect treatment recommendations and patient
outcomes144,145.

Model transparencyand trust. The complexity ofAI algorithms is often
associated with lack of transparency, which may result in healthcare
professionals feeling uncertain about the reliability of AI applications146.
Clinicians may hesitate to rely on AI recommendations due to the “black
box” nature of many models147,148. Explainable AI (XAI) methods are
essential for building trust in AI recommendations, helping users to
understand the reasoning behind the suggestions, providing transpar-
ency, and boosting confidence in the decisions made149,150.

Accuracy and reliability. The development of clinical decision support
systems is ongoing, and these systems cannot yet be utilized because of
the inaccuracy and unreliability of AI predictions147,148. Rigorous clinical
validation, standardization, and real-world testing are essential before
deployment. Transparency about model limitations and monitoring of
performance post-deployment are critical to maintaining clinical safety.

Accountability. As AI systems become integrated into healthcare, issues
regarding accountability and liability that may adversely affect a patient’s
health should be addressed. A clear guideline that delineates the
responsibilities of AI developers, healthcare providers, and institutions is
necessary151. Effective post-market surveillance mechanisms to monitor
the performance of AI systems after deployment and ensure that they
continue to operate within ethical and clinical standards should be
implemented by the regulatory agencies152.

Data privacy and ethical use. AI systems require extensive patient data,
raising privacy and ethical concerns regarding consent, ownership, and
secondary use147,153. Transparent policies governing how patient data are
collected, stored, and shared that align with regulations such as the
General Data Protection Regulation (GDPR) and the Health Insurance
Portability and Accountability Act (HIPAA) are essential to ensure
ethical standards and respect for patient rights147,153. As the field evolves,
continuous collaboration among stakeholders, including ethicists, leg-
islators, andmedical practitioners, is necessary to advance the ethical and
effective integration of AI in healthcare. Harmonization of policy and
practice are essential components of the implementation of AI/ML in the
clinical workflow.

Data privacy and inter-institutional collaboration in AI-driven
oncology
The advancement of AI applications in oncology requires extensive, diverse
datasets for model training and validation. However, sharing sensitive
patient data across institutions presents significant privacy, regulatory, and
ethical challenges. The data that was once a byproduct of clinical research is
increasingly becoming a resource154. Data management includes ensuring
the safety, accessibility, andaccuracyof thedata.Guidelines andprocesses to
access and curate data and alignment with regulatory and compliance
departments are essential elements of data management155.

Federated learning (FL) has emerged as a transformative solution that
enables multi-institutional collaboration without compromising patient
privacy. This approach allows AI models to be trained across multiple
institutions while keeping patient data securely within their original
locations156. In FL, instead of centralizing data, the training algorithm travels
to each institution’s secure environment, learns from local data, and only
shares model parameters rather than raw patient information156,157.

A critical component of successful multi-institutional collaboration is
data harmonization. Modern platforms implement standardized clinical
data harmonization pipelines that enable FL including Fast Healthcare
Interoperability Resources standards and automated data transformation
workflows158. Furthermore, FL architectures are designed to comply with
major privacy regulations, includingGDPR andHIPAA, ensuring that data
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remain within institutional boundaries and that there is no direct sharing of
protected health information156,157.

This privacy-preserving approach to multi-institutional collaboration
represents a paradigm shift in how healthcare data can be utilized for
researchwhilemaintaining the highest standards of patient privacy anddata
security. This is especially important for the future of AI in oncology to
ensure that training datasets are large, diverse, and inclusive of low-
frequency “rare” cancers, thereby ensuring generalizability and clinical
utility.

Future directions and emerging trends
Biosensors are devices or platforms that continuously detect and measure
physiologic or environmental parameters to assess specific biomarkers
associated with diverse diseases, including cancer. They comprise a biolo-
gical sensing component and a transducer responsible for converting the
identified signal into a quantifiable output. The combination of AI/MLwith
biosensors for the real-time continuous monitoring of physiologic para-
meters may provide new clinically relevant insights into the early diagnosis,
prognosis, and treatment of cancer. AI-based biosensors are being evaluated
in diverse tumor types to improve early detection159–162, diagnosis163–165 and
treatment outcomes166,167; and they should be further validated in large
studies. In addition, several biosensors continuously measure parameters
including metabolites of glucose or lactate, electrolytes, skin temperature,
and cortisol levels using microneedle patches, smart textiles, wristbands,
and/or electronic epidermal tattoos168. Biosensors offer real-time monitor-
ing of various functions/laboratory tests to individuals, who may control
them and therefore decrease the risk of cancer-associated factors, including
diabetes, hypertension, and lack of exercise.

Simple AI models are commonly more transparent, but less accurate,
than complexones. In contrast, complexmodels (i.e., CNNs) achieve higher
accuracybut often lack interpretability.Asmentioned earlier, explainableAI
(XAI)150 aims to make AI-based predictions more transparent169,170, inter-
pretable, and trustworthy in cancer care. XAI can reveal potential biases in
AI-based predictions, strengthening their credibility. The enhanced trans-
parency of XAI algorithms may facilitate their application in clinical
decision-making and real-world clinical scenarios171.

Discussion
The field of precision oncology may benefit greatly from the integration of
AI/ML because these techniques offer a promising avenue by which to
comprehend the complexity of tumor biology. Owing to the convergence of
advanced AI/ML/DL data analytical techniques (software), computer
hardware computational advances, high-bandwidth and cloud computing
infrastructures, and innovative advanced therapeutics, we are currently at a
“sea change” transition point in oncology (Fig. 2). By analyzing multi-
dimensional -omics data, spatial pathology, and radiomics data, these
technologies enable a deeper understanding of the intricate molecular
pathways within tumors, aiding in the identification of critical nodes within
the tumor’s biology to optimize treatment selection. However, as other
investigators have reported, “deployment of medical AI systems in routine
clinical care presents an important yet largely unfulfilled opportunity”172.
The applications of AI/ML in precision oncology are extensive and include
the generation of synthetic data, e.g., digital twins, in order to provide the
necessary information to design or expedite the conduct of clinical trials.
Digital twins hold the promise of accelerating scientific discoveries and can
be an important tool for decision-making based on the synergistic combi-
nation ofmodels anddata173. TheNationalAcademyof Scienceshas defined
a digital twin as a set of virtual information constructs that mimics the
structure, context, andbehavior of a natural, engineered, or social system (or
system-of-systems), is dynamically updatedwithdata from its physical twin,
has a predictive capability, and informs decisions that realize value. The
bidirectional interaction between the virtual digital twins and the physical
real patients is central to the digital twin approach173. Currently, many
operational and technical challenges remain related to data technology,
engineering, and storage; algorithm development and structures; and otherT
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elements of the data and analytical pipeline. The digitization of slides,
reporting of results, and generation of new codes to submit to payers are
ongoing themes that should be validated in precision oncology.

One challenge is ensuring the quality and quantity of the data.
Guidelines to standardize data structure have been developed, such as the
“FAIR” data principles, which stipulate that data must be findable (have
adequate metadata and a persistent identifier), accessible (data and meta-
data are understandable to humans and machines and are deposited in a
trusted repository), interoperable (metadata use a shared and broadly
applicable machine language), and reusable (data have clear usage licenses,
adhere to confidentiality standards, and provide accurate information on
provenance)174.

Models built on training data may not reflect the underlying hetero-
geneity of the patient population because they were derived from a specific
patient subpopulation, non- representative of the overall population,
therefore leading to biased output and limited generalizability. For example,
a foundation model trained on data derived from a specific patient popu-
lation may not apply to patients with different ethnic, cultural, socio-eco-
nomic, and medical practice standards175. To ensure that highly predictive
AI/ML tools are developed, there is an urgent need to share data, which is a
major challenge for institutions that have traditionally considered their data
as proprietary.

Anothermajor hurdle in the ongoing application of AI/ML in practice
is the seamless integration of this technology in the existing clinical work-
flow of patient care. Although HIPAA-compliant generative AI can be
seamlessly integrated into EHRs, personalizing responses to patient mes-
sages, streamlining handoff summaries, and providing up-to-date insights
for the physicians, these efficiency tools are not routinely used176. Further-
more, AI-enabled clinical decision support systems are too early in their
development to be used. Significant work is needed to overcome barriers to
AI integration associated with the cost, effort, and natural resistance to
change. Data repositories are controlled by individual departments or
institutions and cannot be accessed by other departments or institutions,
thus hampering system interoperability177,178. Significant time and effort are
required to educate EHR users to incorporate AI/ML technology in the
clinical workflow without disruption, particularly when real-time decision-
making is required179,180. Other barriers include the significant cost to pur-
chase, personalize for each institution, and maintain AI/ML software.
Finally, the adoption of AI-based tools should not jeopardize patient safety

or the wellbeing of hospital employees, who should not have to work
overtime to ensure the smooth operation of the clinical workflow.

Significant resources are required to convert conventional pathology to
a fully digital format, with significant costs associated with digitization and
data storage and analysis. This transformation requires a significant cam-
paign of education and training for its successful implementation. Addi-
tionally, there is generally an inherent impediment to the adoption of new
technologies, including AI/ML. The complexity of learning a new science
and applying this to the practice of medical oncology represents an enor-
mous challenge for oncologists because computer science has not been a
part of their training. Collaboration with scientists who develop AI/ML
technologies and harmonization of policy and practice will be required for
the integration of these new disciplines and technologies in clinical practice.
Currently, formal educational programs on AI in oncology are lacking181.
However, several courses on the application of AI are being organized to
provide basic knowledge about this rapidly developing field182,183. Their aim
is to educate clinicians to understand basic principles of AI, interpret AI-
generated data, recognize the limitations of AI, and effectively utilize
advanced tools for both clinical and research purposes. The development of
user-friendly comprehensive training programs focusing on the integration
of AI into clinical practice will be critical for the future of oncology care.

Standardization in applying AI/ML in oncology and adaptation to the
new AI/ML-driven changes will be prolonged unless the current reimbur-
sement models prioritize rapid implementation of these transformational
technologies in oncology practice.

As a result of these challenges, very few clinical trials in oncology have
been conducted with the prospective use of suchmodels, althoughmultiple
articles have been published regarding the availability of this technology.
Currently, the main use of AI/ML technology in precision oncology is
associated with image analysis to identify radiomic features, pathologic
characteristics, and other signatures/biomarkers associated with clinical
outcomes. However, for the use of AI as an intelligent “agent” or medical
assistant to becomepossible, development of relevant benchmarks to ensure
performance under real-world conditions will be necessary184.

To minimize resistance to its adoption, the transition to AI-enabled
clinical practice should occur efficiently and smoothly. Strategies to reduce
resistance from healthcare professionals and institutions include the
involvement of all stakeholders (including physicians) in the planning,
decision-making, and implementation processes; incorporation of AI in

Fig. 2 | Convergence of innovations in artificial intelligence analytical techniques.
New modalities for deep measurement of disease and precision oncology ther-
apeutics represent a potential “sea change” transition point for precision oncology.
The first “wave” included the development of symbolic artificial intelligence tools
(1997, Deep Blue expert system beat Kasparov in chess; 2011,Watson expert system
won Jeopardy). These advances were followed by the second “wave”, e.g., the

development of deep learning tools (2012, ImageNet; 2016, AlphaGo beat Lee Sedol
in GO). The third “wave” included the transformers (2018, GPT; 2020, AlphaFold2;
2022, ChatGPT, DALL-E). Simultaneously, starting in 1997, significant advances
were made in biomarker innovation that enabled an improved understanding of
tumor biology in parallel with accelerated drug development that involved targeted
therapy and immunotherapy. “Created with BioRender.com”.
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routine insurance coverage; clinician training; and continued support to
minimize concerns regarding the use of AI/ML tools. The feasibility and
effectiveness of AI applications should be continuously assessed. Feedback
and experience with AI tools will optimize their use in clinical practice. AI-
enabled specific projects may help build trust and reduce physician
burnout185. Finally, patient education regarding the use of AI may increase
their engagement and trust in AI-tools, enhancing the application of AI in
clinical practice.

The next layer of advances in AI may include the merging of the
symbolic and the DL models in order to combine the benefits of both
approaches, i.e., neuro-symbolic AI186. This will allow both the benefits of
the neural networks and the available structured knowledge regarding
tumor biology to be merged into a more explainable, high-performance
technology.

In conclusion, considering a patient’s individual characteristics and the
role of multiplex, multi-omics analyses, AI-driven decision support tools
will optimize treatment strategies and clinical trial enrollment, leading to
better outcomes, accelerating drug development, and advancing the stan-
dard of care. However, current data can be best categorized as early “proof-
of-concept” evidence. To favorably impact standard of care, these AI/ML
models must go through the prospective, multicentric, large sample size
demonstration of clinical validity, clinical utility, and real-world usability
that is required of all new technologies, diagnostics, or therapies.
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