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Genomic language models could
transform medicine but not yet
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Recently, a genomic language model (gLM) with
40 billion parameters known as Evo2 has reached
the same scale as the most powerful text large
language models (LLMs). gLMs have been
emerging as powerful tools to decode DNA
sequences over the last five years. This article
examines the emergence of gLMs and highlights
Evo2 as amilestone in genomic languagemodeling,
assessing both the scientific promise of gLMs and
the practical challenges facing their implementation
in medicine.

In February 2025, researchers announced Evo2, a genome language model
(gLM) trained on over 128,000 genomes, encompassing over 9.3 trillion
DNA base pairs1. This computational scale matches leading text-based
LLMs, representing a significant milestone for genomic AI2. Unlike protein
language models, which train to understand the 2% of human DNA that is
encoded into amino acids and folded into proteins, gLMs train to under-
stand the entire genome3. This largely consists of understanding the role of
the remaining 98% of human DNA that is non-coding. Non-coding DNA
contains crucial regulatory elements that coordinate gene expression across
different cell types and developmental stages4, and the precise mechanisms
governing this regulation are increasingly being unraveled. This field of
study is known as regulatory genomics4, and gLMs have emerged as pro-
mising tools to study it. The introduction of Evo2 represents both important
progress for the field and highlights critical questions about what these
models learn and how theymight be applied. This article examines gLMs in
the context of Evo2, highlighting their potential for biological research and
medicine while exploring the technical barriers and ethical challenges—
from data privacy to dual-use risks—that will shape their clinical future.

Training of gLMs
Pre-training is an initial learning phase, where gLMs are trained on large
amounts of DNA sequence data, to learn the underlying patterns and
grammar of the genome. Just as human language grammar provides rules
for constructing meaningful sentences, genomic grammar consists of pat-
terns and rules that govern how DNA sequences are shaped by evolution.
gLM pre-training is typically self-supervised, meaning it is done on data
without labels, and usually as a reconstruction task. A reconstruction task
requires themodel to learn to “fill in”missing parts of the input data, where
success is measured by how accurately the model reconstructs the original
sequence. TheEvo2model trains to predict the next nucleotide in a genomic
sequence, the same way LLMs train to predict the next words in a sentence.

To reconstruct missing genomic data, gLMs like Evo2 compress genomic
information into learned representations that potentially capture the
semantic information within DNA sequences. Once learned during pre-
training, these representations can be leveraged during a second phase of
training known as fine-tuning. Fine-tuning is typically done on smaller,
well-curated, and labeled datasets for specific biologically relevant tasks like
predicting regulatory elements (regions involved in coordinating gene
expression), segmenting genomic regions (locating the boundaries of
functional regulatory elements), and more5. This is a departure from con-
ventional genomic machine learning approaches, which have traditionally
relied on supervised learning with task-specific labeled datasets (such as
experimental assay data), whereas gLMs aim to learn universal genomic
representations that can be adapted across multiple tasks through
finetuning5.

The current paradigm for training gLMs involves unsupervised pre-
training on as many diverse species’ genomes as possible, since the func-
tional importance of DNA sequences for genes and gene regulation is
conserved across evolution6,7. Evo2 dramatically extends this approach by
training on over 128,000 genomes, compared to the previous largest model
that trained on 850 genomes6. This evolutionary conservation helps provide
recurrent signals from conserved sequence amidst noise from non-
conserved sequence, as researchers still debate how much of the non-
conserved genome contributes to gene regulation8. Large sections of the
genome contain long repetitive sequences with unknown functional sig-
nificance for gene regulation. Recent gLMs, including Evo2, increase the
focus on sequences relevant for gene regulation by employing weighted loss
schemes that reduce the contribution of repetitive elements during training,
which improves overall performance for related tasks9.

Another trend in gLM modeling has been increasing model context
size, which is the length of DNA sequences amodel can ‘see’ at once. This is
an effort to model long-range interactions in the genome, and potentially
even model the entire human genome at once. Evo2 specifically adopts an
architecture that radically increases its context size compared tomost gLMs;
handling sequences up to 1 million nucleotides long. While an impressive
advancement, this still falls short of the context required for whole human
chromosomes, which can span hundreds of millions of nucleotides.
Moreover, there exists a trade-off between context length and interpret-
ability; Evo2’s complex architecture enables its large context window but
makes the model more difficult to interpret compared to simpler models
with shorter contexts (Table 1).

The biological and clinical relevance of gLMs
Pre-training gLMs has immense potential for biology through what
researchers call ‘zero-shot’ performance—a model’s ability to perform well
on tasks it wasn’t explicitly trained for. Strong zero-shot performance
indicates the model has learned fundamental principles about genomic
structure that generalize to new scenarios. When a gLM pretrains in a self-
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supervised manner, it enhances its ability to uncover novel biology inde-
pendent of pre-existing human annotations and expectations. Potentially,
this means gLMs with strong self-supervised zero-shot performance have
uncovered new regulatory grammar within the genome—grammar that we
can learn from. Uncovering novel genomic grammar would advance our
understanding of human disease and transform personalized care across all
aspects of medicine. Given that almost all the leading causes of death/
disability in the world have an important genetic component10, it is likely
that in the future, gLMs could help clinicians estimate the risks of whether a
patient will develop these diseases, years before their onset, and implement
appropriate personalized preventive strategies.

Challenges and opportunities in the clinical adoption
of gLMs
Despite Evo2’s impressive scale and capabilities, fundamental questions
remain about what these models are learning. A critical challenge is deter-
mining whether gLMs learn contextual relationships within genomic
sequences or simply memorize patterns from training. This evaluation
challenge is compounded by two factors: the relianceon simple benchmarks
for evaluation and the multi-species training approach. While training on
diverse species helps Evo2 and similar models identify functionally
important sequences, it also makes it difficult to distinguish between true
understanding and recall of evolutionarily similar sequences at predic-
tion time.

Understanding vs memorization. Many gLMs report success on simple
benchmarking tasks that fail to capture the complexity of genomic
regulation11,12. These benchmarks, such as distinguishing real genomic
sequences from randomly generated ones, are used primarily because
they’re computationally tractable and provide clear evaluationmetrics, but
they do not reflect the true challenges of interpreting regulatory grammar
and frequently are driven by DNA sequence motifs which can be learned
without theneed tograsp larger context.Designingbiologicallymeaningful
benchmarks is challenging, as ground truth labels are often only available
in small datasets insufficient formodel training. Consequently, researchers
generate datasets from less well-validated data and provide synthetic
random sequences as controls to avoid introducing confounding genomic

signals. However, this approach often fails to test models on the complex
regulatory patterns they are ultimately intended to discover.

Research on earlier gLMs like DNABERT13 revealed they primarily
learned sequence patterns through recalling training data rather than
understanding deeper contextual relationships14. Similarly, the GROVER
model, recently described by Sanabria and colleagues (2024), demonstrated
that gLMs initially learn token frequencies15, whichmay inhibit their ability
to capture complex contextual relationships in genomic data. Sanabria and
colleagues15 additionally showed that even a simplemodel focusing solely on
token frequencies performs well on many benchmarking tasks, supporting
the idea that current evaluation methods lack robustness.

Generation capabilities and their limitations. Evaluation challenges
extend beyond fine-tuned tasks to the pre-trained capabilities of gLMs.
Evo2 is pretrained on next nucleotide prediction, which enables it to
generate novel genomic sequences without further training. With its
impressive 1 million base pair context window, Evo2 can theoretically
generate entire prokaryotic and simple eukaryotic genomes1. As of now,
generation-evaluation primarily measures the statistical properties of
generated sequences as compared to real genomes using bioinformatic
tools, rather than assessing their biological viability or function. Impor-
tantly, none of Evo2’s generated genomes have been synthesized in a
laboratory and tested for viability in living cells. Furthermore, many eva-
luations of Evo2’s generation capabilities resemble recall tests that poten-
tially measure the model’s ability to reproduce sequences that are
evolutionarily similar to those in its massive training dataset, rather than
demonstrating genuine understanding of genomic grammar.

While these evaluation challenges raise questions about currentmodel
capabilities, theydon’t diminish gLM'spotential.Ultimately, Evo2 andother
gLMs’ generation capabilities are likely to be adopted by biologists first for
research purposes before transitioning to clinical applications. This is partly
because these generated sequences require more rigorous evaluation, but
also because they offer valuable opportunities to explore DNA beyond
known sequences. Synthetic sequences provide expanded datasets for test-
ing hypotheses of genomic regulation and could potentially accelerate the
developmentof newdrugs/therapies throughcomputational designofDNA
sequences with desired biological functions.

Table 1 | Comparison of recent gLMs with multi-species and single-species training approaches

Model Parameters Sequence length (in bp) Genomes trained on Human genome included Training type

GPN MSA9 86,000,000 128 100 Yes Multi-species

GPN20 65,612,800* 512 8 No Multi-species

Evo21 40,000,000,000 1,000,000 128,000 Yes Multi-species

Nucleotide transformer6 2,500,000,000 6000 850 Yes Multi-species

DNABERT-221 117,000,000 877 (BPE) 135 Yes Multi-species

DNABERT13 (k = 6) 110,000,000 512 1 Yes Single-genome

HyenaDNA22 1,600,000 1,000,000 1 Yes Single-genome

GROVER15 86,511,201* 2076 (BPE) 1 Yes Single-genome

This table compares eight gLMs based on their number of parameters, training data composition, and sequence handling capabilities. Parameter numbers are taken from the paper where possible, where
indicated by*, themodel's parameter number is calculated from loading theHuggingFacemodel version.Models are categorized by their training approach (multi-species vs single-genome). For sequence
length calculation, measurements are in DNA base pairs (bp). When tokens represent multiple bp, the total input length was calculated by multiplying tokens by bp per token (e.g., nucleotide transformer
uses non-overlapping k-mers where k = 6, so 1000 tokens = 6000 bp). DNABERT-2 and GROVER use Byte Pair Encoding (BPE), which has varying length tokens based on the co-occurrence frequency of
the characters and a pre-defined vocabulary size. Note that DNABERT-2’s sequence length estimation (877) represents approximately 128 tokens at 6.85 bp average per BPE token (calculated from
HuggingFace https://huggingface.co/zhihan1996/DNABERT-2-117M/blob/main/tokenizer.json vocabulary excluding special tokens), and GROVER’s sequence length (2076) represents approximately
510 tokens at 4.07 bp average per BPE token.
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Beyond generation evaluation, some recent gLMs demonstrate
impressive zero-shot performance on predicting the effects of non-coding
variants, of which the best performing ones include GPN-MSA9 and Evo21.
Clinically, this capability could integrate with existing genomic testing
pipelines, flagging potentially pathogenic regulatory variants that current
screening methods miss, particularly for complex or rare disorders with
known genetic components.

Ethical considerations related to the development and
clinical implementation of gLMs
Beyond these technical challenges, Evo2 raises important questions
about the responsible implementation of gLMs. The translation of
gLMs from research to clinical will happen after these models at least
capture known and non-trivial genomic signals (beyond dinucleotide
frequencies), can help formulate novel hypotheses about genomic
function, produce sequences with lab-validated biological functions,
and establish robust performance across diverse genomic contexts and
populations. As these models approach practical application, ethical
considerations become increasingly important.

Evo2’s development involved scaling challenges beyond computa-
tional resources, including careful decisions about which genomic data to
include in the training set. To reduce potentialmisuse, the authors excluded
viral genomes that infect eukaryotic hosts, aiming to prevent the generation
of harmful infectious agents. This risk management and assessment was
achieved through collaboration withmultidisciplinary experts across health
security centers, public health and law schools, andmedicine, health policy,
and biomedical data science departments at major academic institutions16,
setting an important precedent for the field. However, despite removing
viral genomes from the training set, malicious fine-tuning could easily cir-
cumvent this safetymeasure by adapting themodel to design such genomes
with minimal additional data and compute17.

New ethical concerns emerge as gLMs advance, particularly around
privacy and consent, dual-use risks, and access/equity. Currently, the
128,000+ genomes Evo2 trained on are open-source, but once gLMs can
accurately detect clinically relevant DNA variants, they are likely to be
applied in clinical settings on individual human DNA. In that case, these
models will need to be implemented in such a way that individuals can
consent to whole-genome variant-risk screening andmaintain privacy over
both their genetic data and the predictions gLMs make on patient DNA.
Additionally, as these models advance in their ability to generate whole
genomes and potentially new organisms, we must consider dual-use sce-
narios where legitimate research tools could be repurposed for harmful
applications like designing new viral infections as biological weapons.
Furthermore, because it is so difficult to understand how and what these
models learn, misuse of thesemodels due to ignorance is just as, if notmore
dangerous, than repurposing them with malicious intent18. Finally, imple-
menting whole-genome sequencing for entire populations and imple-
menting gLMs to predict on these genomeswill be expensive, due to the size
of large gLMs and the costs of running predictions on them alone. Inte-
grating gLMs into existing medical systems, therefore, may have cost bar-
riers. This could create healthcare systems where advanced, accurate
genomic prediction is available only to higher-income populations, thereby
exacerbating health inequities. Therefore, it would be prudent to consider
AI-based regulatory frameworks, such as the one described by Derraz and
colleagues (2024) in precision oncology, prioritizing human oversight,
patient-centeredness, and comprehensive risk assessments in the develop-
ment/implementationof gLMs19. Beforedeployment, principles ofAI safety,
data privacy, and equity should guide the safe and ethical development of
gLMs20.

Conclusions
The future of gLMs is both promising and uncertain. While they could
transformmedicinebydecoding the genome’s regulatorymechanisms, their
full impacthas yet to be realized.Most of the current evaluation strategies for
gLMs fail to differentiate whether their predictive capabilities are the result
of true genome comprehension or statistical recapitulation of training
sequences. However, gLMs’ current distance from clinical deployment may
be an opportunity, allowing time to establish strategies for their safe and
effective application to improve human health.
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