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Understanding contraceptive switching
rationales from real world clinical notes
using large language models
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Understanding reasons for treatment switching is of significant medical interest, but these factors are
often only found in unstructured clinical notes and can be difficult to extract. We evaluated the zero-
shot abilities of GPT-4 and eight other open-source large language models (LLMs) to extract
contraceptive switching information from 1964 clinical notes derived from the UCSF Information
Commons dataset. GPT-4 extracted the contraceptives started and stopped at each switch with
microF1 scores of 0.85 and 0.88, respectively, compared to 0.81 and 0.88 for the best open-source
model.When evaluated by clinical experts, GPT-4 extracted reasons for switchingwith an accuracy of
91.4% (2.2% hallucination rate). Transformer-based topic modeling identified patient preference,
adverse events, and insurance coverage as key reasons. These findings demonstrate the value of
LLMs in identifying complex treatment factors and provide insights into reasons for contraceptive
switching in real-world settings.

Prescription contraceptives play a critical role in supporting women’s
reproductive health and patients may switch between several contra-
ceptives throughout their health trajectories1–3. With many contra-
ceptive options available, understanding the factors driving selection
and switching can provide data to inform patient-provider decision
making. Contraceptives may vary by active ingredient4 with each
contraceptive group producing unique adverse event profiles that may
contribute to clinical decision making2,5. In addition, several other
factors, including personal preference, cost, availability, comorbidities
and clinical constraints, may contribute to a patient’s decision to start,
stop, or switch contraceptives6. With nearly 50 million women in the
United States using contraceptives7, understanding the factors that
drive contraceptives selection and switching is of significant
interest4,7,8.

After a medication is prescribed, patients may elect to switch
treatments for reasons related to efficacy, side effects, costs, access, or
personal preference9–12. Contraceptive switching is common - 44% of
women starting a contraceptive discontinued its use within 1 year, with

76% resuming use of the same or another contraceptive within
3 months13. However, the reasons behind treatment switches are often
documented only in clinical notes, making them difficult to analyze at
scale. Manual annotation to create datasets is time-consuming and
expensive14–16, particularly for complex clinical text, and the develop-
ment of machine learning models to automate this information
extraction remains a challenging task17.

Recently, the development of general large language models
(LLMs) has shown significant promise in being able to extract medi-
cation information without the need for manually annotated training
data (“zero-shot extraction”)18–20. Despite concerns including factually
incorrect information, clinicians and researchers remain optimistic
that these computational advances can translate to clinically-
meaningful use cases21–24. Here, we evaluate the ability of GPT-4 to
extract reasons for contraceptive selection strategies. These extracted
values were used to understand differences in reasons for switching
between patient populations using clinical notes from a large academic
medical center.
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Results
Patient cohort
We selected a contraceptive patient cohort using the UCSF Information
Commons dataset25, which contained 133,778 documented medication
orders for contraceptives. Condoms and emergency contraceptives orders
were removed, as were any prescriptions without start dates. The remaining
cohort of 37,834 patients had a total of 100,593 relevant medication orders
for an intrauterine, oral, intravaginal, subdermal, transdermal, or injectable
contraceptive. We removed 5594 patients who did not have any follow up
encounters at least 6months after the last contraceptive order and further
filtered out 11,916 orders without associated clinical notes. Finally, we
removed 53,125 duplicatemedication orders, leaving a contraceptive cohort
consisting of 39,712 medication orders across 20,274 unique patients
(Fig. 1a).

Among this contraceptive cohort, 1515 (7.6%) patients experienced a
total of 1964 contraceptive switches.Compared to patientswhodidnot have
a contraceptive switch and had demographic information available
(n = 15,907), patients with contraceptive switches tended to be younger,
with a mean age of 25.9 years (SD: 7.7) compared to 29.1 years (SD: 8.4,
p < 0.001, Table 1). The mean time to a patient’s first contraceptive switch
was 39.1months (SD: 32.0months). Therewas also a statistically significant
difference in the proportion of patients with and without contraceptive
switches by patient race/ethnicity (p < 0.001). The largest difference
occurred in patients with a race/ethnicity listed as “Black or African
American,” with 19.3% of such patients having a contraceptive switch
compared to 8.2% without. There was also a higher proportion of patients
with a contraceptive switch identifying as “Latinx” (19.3%) compared to the
proportion of “Latinx” patients without contraceptive switches (15.1%).
“White” (33.0%) or “Asian” (16.0%) patients had lower rates of contra-
ceptive switching in this cohort compared to the same groups without
switches, with 45.1% of patients without contraceptive switches identifying
as “White” and 20.3% identifying as “Asian.”

Switching differed significantly by the first contraceptive prescribed,
with the highest rates of switching following initial prescription of trans-
dermal contraceptives (33.5%) and the lowest rates following initial pre-
scription of intrauterine (5.1%) and oral (6.3%) contraceptives. The most
common switch occurred in patients who were on oral contraceptives and
switched to intravaginal contraceptives (n = 205, n = 10.5%). The least

common switch occurred from intrauterine to injectable contraceptives
(n = 6, 0.31%, Supplementary Table 4).

Human evaluation of GPT4 extraction of contraceptive switching
Prompt evaluationwas performed on a held out set consisting of notes from
5% of patients (n = 93 clinical notes), and evaluated against annotations
from a clinical reviewer (Fig. 1b). There was no significant difference in
performance across the six prompts used to extract contraceptive infor-
mation using zero-shot GPT-4, with micro F1 scores ranging from 0.817 to
0.849 (mean = 0.827, SD: 0.012) for extraction of contraceptive started, and
0.827 to 0.881 (mean = 0.854, SD: 0.020) for extraction of contraceptive
stopped (Fig. 2a, b). The best prompt for medication stopping extraction
used the specialist system configuration and default prompt. Reasons
extracted by this prompt were also evaluated by a clinical reviewer for both
accuracy and rate of hallucination. Human evaluation showed that GPT-4
was capable of extracting these reasons with 91.4% accuracy and without
hallucination 97.8% of the time (n = 93, Fig. 2c). Given the high accuracy
and minimal hallucination of this prompt for extracting information about
contraceptive stopping and reasons for stopping on the development
dataset, this prompt was selected to extract contraceptive information from
the remaining clinical notes.

The performance of this prompt was also tested in several open source
language models (Gemma-7B-it26, Gemma2-9B-it27, Meta-Llama-3-8B-
Instruct28,29, Meta-Llama-3.1-8B-Instruct30, Starling-7B-alpha31, Starling-
7B-beta32), including two further trained on biomedical text (BioMistral-
7B33, JSL-MedMNX-7B-SFT34). Of these models, Gemma2-9B-it showed
the best performance with the highest microF1 scores for both medication
start (0.806) and stop (0.882) extraction (Supplementary Table 8).

GPT-4 contraceptive switching information extraction outper-
forms baseline models
Zero-shot GPT-4 performance using the best prompt was also compared to
baseline models trained on different proportions silver-standard labels
derived from structured data. GPT-4 outperformed all baseline models,
regardless of the proportion of training data used for baseline models
(Fig. 3), with micro F1 scores of 0.828 and 0.439 on contraceptive start and
stop extraction, respectively. The next bestmodelwas random forest trained
on TF-IDF representations, with a 0.714 (SD: 0.024) score on medication

Fig. 1 | Study overview. aWe selected a contraceptive patient cohort from theUCSF
Information Commons dataset. Among 20,274 patients with unique contraceptive
prescriptions and associated clinical notes, 1515 (7.6%) patients experienced a total

of 1964 total contraceptive switches. b Study overview to assess the ability for GPT4
to extract contraceptive switching values from clinical notes, and to identify key
reasons for switching using unsupervised clustering methods.
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start and 0.424 (SD: 0.009) onmedication stopping. The cost for running all
GPT-4 values, including prompt development and inference for the test set
was $78.40basedona cost of $0.03per 1000 input tokens and$0.06per1000
output tokens.

Concordance between silver-standard labels and human annotations
available showed a Cohen’s Kappa coefficient of 0.585 for medication
starting labels and 0.217 for contraceptive stopping (n = 93). When we
removed notes without relevant contraceptives, determined by the human
evaluator, concordance between these two methods increased to 0.960 for
contraceptives started and0.644 for contraceptives stopped (Supplementary
Table 5).

Identification of reasons for contraceptive switching
Unsupervised BERTopic topic modeling of extracted reasons for stopping
across the full dataset identified19 topics,whichweremanually grouped into
10 cohesive topics (Supplementary Table 6). Excluding the 1136 notes that
did not contain a relevant reason (topic 0, Supplementary Table 7), themost
frequently occurring topics contained terms related to spotting and irregular
bleeding (topic 1, n = 272), desire to switch contraceptives (topic 2), and
forgetting to take daily pills (topic 3, n = 272). Topics 4 (n = 68), 6 (n = 21),
and 7 (n = 21) described other adverse events of contraceptive use, including
irritation and rash,weight gain andmood changes, and irregularmenses and
pain. Topic 5 (n = 31) related to IUD malpositioning and removal, and
topic 9 (n = 12) related to implant removal. Finally, topic 8 included terms
related to insurance coverage (Fig. 4a).

Topic clusters of reasons for switchingwere analyzed for enrichment in
patient subsets stratified by race/ethnicity and age, both of which have been
shown to be associated with differences in contraceptive selection2,5,35.
Weight gain andmood change (topic 6) were enriched in patients who self-
reported as being “Latinx” or “Other”, and were less prevalent in patients

self-reporting as “Black or African American”. Topic 9 (Implant removal)
was enriched in patients who self-reported a race/ethnicity of “Asian”, and
topic 8 (insurance coverage) was enriched in patients of “Black or African
American”, “Latinx”, or “Multi-Race/Ethnicity” race/ethnicity (Fig. 4b).
When stratified by age,we found that patients in the “<21” age group tended
to show enrichment in topic 8 (Insurance coverage) while patients in the
“40+ ” age group were more likely to switch based on reasons in topic 6
(Weight gain and mood changes, Supplementary Fig. 1).

Discussion
We demonstrated that large language models can accurately extract treat-
ment switching rationales from associated clinical notes with clear impli-
cations for better understanding of patient care. In the task of treatment
switches, GPT-4 performance, evaluated by both gold-standard manual
annotation and automated analysis, was stable between six different
prompts. We further showed that the vast majority of reasons for contra-
ceptive switching extracted by GPT-4 were correct, with minimal halluci-
nations. Finally, we uncovered latent contraceptive-specific reasons for
switching medications by clustering embeddings derived from GPT-4
extracted values.

While switching contraceptives is not inherently negative, under-
standing the rationales behind these clinical decisions is crucial to closing
potential gaps in care. Topic clusters ranged from treatment failure to
patient preference, as well as adverse events and insurance reasons. We
showed that insurance coverage as a reason for switchingdisproportionately
affected patients identifying as “Latinx” or “Black or African American”
while switching due to IUD misplacement was enriched in patients iden-
tifying as “White” or “Asian”. Additionally, we showed that weight gain and
mood changes as reasons for switchingwere enriched in patient populations
who self-reported their race/ethnicity as “Latinx” or “Other”. A previous
study of weight gain with progestin-only contraceptive use also found that
only patients who reported their race as “Black” showed statistically sig-
nificant weight gain over 12months36, but did not provide “Latinx” as a
category for race and did not look at discontinuation rates. These and our
findings prompt the need for further investigation of weight gain with
contraceptive use in diverse populations to better understand the factors
driving contraceptive usage and switching. Other future work could
investigate similar patterns in other conditions and medication treatment
protocols, as well as how switchingmay differ in patients stratified by other
factors, such as income or insurance status, which were not considered here
due to sparsity in the dataset.

The implications of our work on clinical research and practice are
threefold. First, ourfindings can increase clinicians’ awareness of the diverse
reasons for treatment switching, ranging from patient preferences and
adverse events to insurance coverage issues. While the extracted rationales
are not necessarily causal, this enhancedunderstandingmayhelphealthcare
providers better anticipate potential challenges with contraceptive usage.
Second, by recognizing these factors in advance, clinicians may be able to
improve their initial treatment selection process, potentially reducing the
frequency of switches and enhancing patient satisfaction. Lastly, this
knowledge can be used to set more accurate expectations for patients. By
incorporating these insights into clinical practice, healthcare providers can
optimize contraceptivemanagement, leading to improvedpatient outcomes
and experiences.

While our study results highlight recent medical concerns regarding
financial barriers to contraceptive access and socioeconomic inequities in
reproductive health5,8,37, there are several limitations to consider.Ourdataset
is limited by sample size for contraceptive switching prediction and is
derived from a large, academicmedical center, whichmay introduce bias in
the typesof patients or contraceptives captured.We also assume that clinical
notes contain information on all medications ordered at the same or pre-
vious encounters, but some medications may not be discussed or docu-
mented. This is reflected in poor concordance between structured data
labels and human evaluation, particularly for medication stopping values.
Somecontraceptives are also intended for longer-termuse,whichmay affect

Table 1 | Contraceptive prescription cohort demographics

Contraceptive
switch (n = 1515)

No switch
(n = 15,907)

Significance
Proportion

Mean age (SD) 25.9 years (7.7) 29.1 years
(8.4)

p < 0.001

Race/Ethnicity (%) Missing (n = 32) Missing
(n = 815)

p < 0.001

White 490 (33.0%) 6813 (45.1%)

Latinx 286 (19.3%) 2281 (15.1%)

Black or African
American

286 (19.3%) 1237 (8.2%)

Asian 237 (16.0%) 3071 (20.3%)

Other 115 (7.8%) 1224 (8.1%)

Multi-Race/
Ethnicity

69 (4.7%) 466 (3.1%)

Preferred
Language (%)

Missing (n = 5) p < 0.001

English 1474 (97.3%) 15405 (96.9%)

Spanish 14 (0.9%) 281 (1.8%)

Other 27 (1.8%) 216 (1.4%)

First prescribed
contraceptive, (%)

p < 0.001

Implant 160 (10.6) 799 (5.0) 20.0%

Injectable 199 (13.1) 853 (5.4) 23.3%

Intrauterine 64 (4.2) 1266 (8.0) 5.1%

Intravaginal 244 (16.1) 1935 (12.2) 12.6%

Oral 661 (43.6) 10496 (66.0) 6.3%

Transdermal 187 (12.3) 558 (3.5) 33.5%

Demographic information from all patients with contraceptive medication prescriptions. Patients
are stratified intogroupswith andwithout contraceptivemodality switching.Significance is reported
between patients with and without contraceptive switching.
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time to switching. Additionally, because the de-identification process is not
perfect, manual review of some notes identified several medication names
that were inappropriately redacted. This was particularly prevalent among
contraceptive brand names that resemble common patient names (eg.

“Camila”38 or “Heather”39) that are deliberately redacted.Another limitation
is that the medical history of each patient is not static per patient, and
confounding diagnoses or other relevant medical history were not con-
sidered in this analysis. This study also grouped together contraceptives by
modality and analyzing switching within modalities could provide ample
grounds for future work. Additionally, while this study surfaces associations
between specific demographic subpopulations and contraceptive switching
reasons, causal analyses and interventional approaches to address such
disparities will require further study.

Finally, although LLMs demonstrate great promise and perfor-
mance on many key clinical tasks21,40,41, another key limitation of our
work surrounds the nature of LLMs, which can lack transparency about
training data, model development, and evaluation. There is little public
information provided about GPT4’s training data, approach, or model
architecture. As a result, we refrain frommaking conclusions about why
LLMs like the GPT-4model produce certain results, and focus instead on
evaluating overall performance and insights that can be derived from
extraction of information from clinical notes. Additionally, although
LLMs offer human-like input and output, the decision making processes
of the models lack meaningful interpretability, which is of significant
importance to clinical care. Our work’s impact on clinical practice and
public health should be considered through the lens of these limitations
and concerns.

In conclusion, this study reveals differences in the reasons behind
contraceptive switching using information extracted from clinical notes
with a large language model. We showed that specific underserved
demographic groups are more likely to switch due to issues like insur-
ance coverage limitations or adverse events, going beyond information
only captured in structured medical record data. While our under-
standing of reasons for contraceptive switching will require external
validation, the computational approach developed here enables a data-
driven understanding of what drives treatment decisions and where
disparities may exist. More broadly, these methods can unlock patient

Fig. 3 | GPT-4 performance compared to baseline. Following prompt evaluation,
GPT-4 performance on the remaining test set was also compared to baseline model
performance for extraction of contraceptive (a) started and b stopped. Silver-
standard labels from structured data were used for training and evaluation of
baseline models, and for evaluation of zero-shot GPT-4.

Fig. 2 | Development of prompt to extract contraceptive switching information.
GPT4-extracted values for contraceptive class (a) started and b stopped compared to
human annotation (n = 93). c Human evaluation was also performed to assess

whether GPT-4 extracted reasons for contraceptive switching was accurate, and
contained only information specifically mentioned in the associated clinical note
(not hallucination).
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perspectives and values,moving towardsmore patient-centered care. As
we apply larger and more complex models to healthcare data, we must
intentionally use these methods to better understand heterogeneous
patient populations.

Methods
Contraceptive switching cohort selection
A contraceptive switching cohort was selected from the UCSF Information
Commons dataset, which contains deidentified structured data and clinical

Fig. 4 | Clustering reasons for contraceptive switching using BERTopic.
aBERTopicmodeling was used to cluster GPT-4 extracted reasons for contraceptive
switching, with nine key topics identified. Top terms for each cluster are shown.

bTopics were assessed for enrichment amongst patient subgroups by race/ethnicity.
Higher enrichment scores indicate higher prevalence of a topic written in notes
within a patient subgroup.
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notes from over 6million patients between 2012–2023. Clinical text notes
were certified as deidentified as previously described25 and are usable by
UCSF researchers as non-human subjects research, determined to be
exempt from further review.

We identified all patients prescribed at least one contraceptive
documented in the structured medication data based on a “therapeutic
class” label. Non-drug contraceptives (e.g diaphragms/cervical caps,
condoms, vaginal pH modulators, and spermicides), progestin and
estrogen-containing agents not used for contraceptive purposes, and
emergency contraceptives were removed (Supplementary Table 1).
The remaining contraceptives were mapped to the following mod-
alities: Oral, Implant, Intrauterine device (IUD), Injection (intra-
muscular or subcutaneous), Transdermal, and Intravaginal based on
regular expression values (Supplementary Table 2). Contraceptives
prescribed without a start date or associated clinical note and duplicate
orders at each encounter date were removed. To filter out short notes
without any relevant information, only clinical notes containing >50
tokens, created using encodings fromOpenAI’s open-source tokenizer
tiktoken42.

The dataset was further filtered to patients with encounters at least
6months after the prescription of the first contraceptive, ensuring those
without a switch weren’t lost to follow-up. Prescriptions were sorted by
documented start date, and encounters that contained a contraceptive
switch were retrieved. A contraceptive switch was defined as a difference in
prescribed contraceptive modalities between consecutive encounters.

Self-reported demographic information on race/ethnicity and pre-
ferred language were extracted from structured data, whichwas also used to
calculate age at date of first contraceptive prescription. This study was
conducted using retrospective, deidentified clinical data and was deter-
mined to be exempt from IRB review. All data were stored or processed on
HIPAA compliant hardware at UCSF or through a HIPAA compliant
Microsoft Azure instance (“UCSF Versa”). No data was transferred or
stored byOpenAI; andOpenAI settingsweremaintained so that no prompt
information would be stored, even temporarily.

Prompt evaluation for extraction of contraceptive selection
strategy
Prompting can have significant effects on the accuracy of large language
models43,44. We tested six prompts (Supplementary Table 3), varying both
system information and output formats, to extract the following informa-
tion: (1) which contraceptive was stopped, (2) which new contraceptive was
started, and (3)why the contraceptive switch occurred. To avoid overfitting,
these six prompts were evaluated on a held-out subset of contraceptive
switching clinical notes from5%of thepatients.Themodel usedwasGPT-4,
with temperature set at 0, maximum response length capped at 500 tokens,
top_p set to 1, andall otherparameters kept asdefault.A zero-shot approach
was used, with no additional information or training data provided outside
of the encounter’s associated clinical note. Resulting values were mapped to
the six contraceptive modalities using regular expression values (Supple-
mentary Table 2). All GPT-4 queries were performed using the “0613”
version of GPT-4 and were run between November 13–15, 2023.

A clinical evaluator (EE) assessed the accuracy of GPT-4 extraction
for contraceptives started and stoppedwithin each note.Micro F1 scores,
which represent the harmonic mean of precision and recall scores, are
reported. The best prompt was selected based on the highest average
score attained across all medications started/stopped determined by
manual evaluation. This prompt was also used to test the performance of
several open-source language models26–34. Greedy sampling, 8-bit
quantization, and a maximum response length of 250 was used for all
open-source models.

For evaluation extracted reasons for GPT-4, the clinical reviewer was
also instructed to identify whether the extracted reason was accurate based
on the clinical note and whether any hallucination occurred, which was
defined as information produced by the language model that could not be
derived from the clinical note.

Comparison of GPT-4 contraceptive information extraction to
baseline models
The best prompt selected from the development dataset was applied to the
remaining 95% “test set” of the contraceptive switching cohort using the
same GPT-4 setup. We compared our LLM-based methods against several
traditional machine learning techniques, including logistic regression,
random forest, and BERT-style models. Since human clinical annotations
were not available for this larger dataset, weak labels from structured data,
specifically which contraceptives were started and stopped at the associated
clinical encounter, were used for training and evaluation in each of these
models. Structured data may not reflect the contents of clinical notes if
patients are prescribed contraceptives at a different facility or stop dates are
not documented, so we compared these silver-standard labels to human
annotation for the 93 clinical notes in the prompt evaluation set using
Cohen’s Kappa coefficient to assess reliability between the two sources.

Two sets of logistic regression and random forest models were devel-
oped using either bag-of-words and term-frequency inverse document
frequency (TF-IDF)45 text representations. Multiclass classification was
performed, withmodels predicting themodality of contraceptives started or
stopped (oral, IUD, subdermal, intravaginal, injection, transdermal). We
performed 5-fold cross validation using a 70/10/20 split between train,
validation, and test data. Due to differences in training sizes between
baselinemodels andGPT-4, this split is independent of the previous prompt
evaluation and GPT-4 test sets. Hyperparameter tuning was performed
using a grid search of varying regularization values (C = [0.01, 0.1, 1, 10, 100,
1000]) for logistic regression and both number of estimators andmax depth
for random forest (n_estimators = [50, 100, 250, 500], max_depth = [20,
50, 100]).

The UCSF-BERT model46 trained on a large corpus of clinical notes
was also used as a baseline. Again, we performed 5-fold cross validation
using a 70/10/20 split. Hyperparameter tuning was performed using
Optuna47, and both learning rate and weight decay were varied (learning
rate = (1e-5, 5e-5), weight decay = (4e-5, 0.01)). Models were trained for 5
epochs, with early stopping. To accommodate for the 512 maximum token
length allowed by UCSF BERT, a sliding window was used with final pre-
diction selected by majority vote across all windows.

To simulate few-shot learning, we trained each of the baseline models
on random subsamples of 100%, 50%, 25%, 10%, 5%, and 1%of the training
data.Micro-averaged F1 scores are reported for eachmodel on the held-out
test set.

Unsupervised clustering of extracted reasons for contraceptive
switching
GPT-4was also used to extract reasons for contraceptive switching from the
test set using the best prompt. To identify key reasons for medication
switching, we applied BERTopic, a topic modeling method that clusters
document embeddings, to all reasons extracted from both the prompt
evaluation and test sets. The UCSF-BERT model was used to generate
embeddings from the list of extracted reasons and embeddings were clus-
tered by BERTopic45. Briefly, dimensionality reduction was applied to the
embeddings using Uniform Manifold Approximation and Projection48

(UMAP), with 5 components and 3 neighbors with euclidean distance
metrics. HDBSCAN49 was used to cluster reduced embeddings, with the
number of topics dynamically chosen by the algorithmusing “auto” settings
for nr_topics parameter, and TF-IDF used to identify key terms from each
cluster. All other default parameters were used. Topics were manually
reviewed and similar topics based on the top 10most frequent terms in each
topic were grouped together.

Subgroup analysis was performed to understand whether topics were
associated with specific patient demographics. Adapting from previous
enrichment methods50, we used topic probabilities assigned to each docu-
ment by the BERTopicmodel to calculate a weighted enrichment score that
describes the relative contribution of each topic to patient subsets. Specifi-

cally, enrichment scores were calculated as θk;j ¼
qn;k � yn;jPN

n¼1
qn;k �

PN

n¼1
yn;j
, where
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q(n,k) describes the weight of each topic k for note n, and y(n,j) are the
patient subsets assigned to each note. The scores were normalized by total
topic weight, as well as by number of patients in each subset, and reported
scores were log transformed. The same analysis was performed for patients
stratified by age group, which were split into categories “<21”, “21–30”,
“31–40”, and “40+ ”.

Statistics
Wepresentmeans and standard deviations for continuous distribution, and
utilize two-sided t-tests to analyze differences in continuous distributions.
To evaluate differences in categorical data, Chi-square tests were applied.
Statistical analyses were conducted using the SciPy package51, and a p-value
<0.05 was used to indicate statistical significance.

Data availability
Clinical notes from this study arenotpublicly available, except for a subset of
GPT4 extracted reasons for contraceptive switching from clinical notes.

Code availability
All code to reproduce the methods described here are made available at
https://github.com/BMiao10/contraceptive-switching.
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