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Clinical practice is currently guidedby studies that averageover patient outcomes. Thismaynot be the
best approach, as different patients may have different treatment responses. Here we extend a
method for simulating clinical trials to identify optimal treatments for each patient, andwe illustrate this
approach in the context of Crohn’s disease. Using the data from 15 randomized trials (N = 5703), we
used statistical hypothesis testing to identify seven subgroups with distinct responses to three
different drug classes. The largest subgroup consisted of patientswith equivocal responses to all drug
classes,whereas the second largest showed superioritywith anti-TNFs.Wealso identified a subgroup
ofwomen over 50with superior responses to anti-IL-12/23s. Interestingly, this group appeared under-
represented in the trials (2%) compared to patients at the University of California (25%). Overall, these
results underscore the importance of studying personalized medicine, demonstrate the value of
clinical trial data, and provide a roadmap for applying this method broadly across diseases. These
results also highlight the importance of diverse and representative recruitment into clinical trials.

Clinical practice today is guidedby randomized controlled trials (RCTs), the
gold-standard for studying medical interventions. Nonetheless, RCTs have
their limitations. For one, while they are typically used to learn which
interventions are the best on average in study cohorts, they are generally not
designed to identify the best intervention for any given individual. This is a
problem whenever there is significant heterogeneity across patients, as is
common in most diseases.

The concepts of personalized and precisionmedicine have emerged in
recent years as a counterpoint to the current strategy of treating individuals
based on the results of cohort-averaging studies. However, methods for
robustly learning optimal personalized treatments have been sparse, and
concrete illustrations using real clinical data are even more rare. The needs
for analytical innovation and validation in personalized medicine are
especially acute, given 1) the growing expense of conducting RCTs and 2)
the even greater infeasibility of conducting many RCTs in many homo-
genous subgroups, or in the limit, in individual patients.

The importance of learning optimal personalized treatments is well
illustratedbyCrohn’s disease (CD), a gastrointestinal disorder characterized
by diverse phenotypes and treatment responses. Over the last two decades
many drugs have been approved for Crohn’s disease based on placebo-
controlled RCTs. What has generally been unclear is how well these drugs

perform against each other on average, much less how well they perform in
any one patient. Answering the first of these would ideally require head-to-
head RCTs, but their significant expense has resulted in a large evi-
dence void.

Networkmeta-analyses (NMAs) have been prioritized to address these
gaps, using summary statistics from historical trials to infer relative effec-
tiveness. A recent NMA in CD found anti-tumor necrosis factor alpha
(anti-TNF) drugs to be most effective at inducing remission, followed by
anti-interleukin-12/23s (anti-IL-12/23s) and anti-integrins1. However,
NMAs have generally not been validated as being predictive of future RCTs,
and require many strong assumptions that do not hold in practice.

Individual participant data meta-analyses (IPDMAs) are the gold
standard for meta-analyses2,3 and offer a unique opportunity to account for
patient heterogeneity and discover subgroups with different treatment
responses. More importantly, this approach can be used to learn true causal
effects. In a recent IPDMA4, we developed and validated a new method for
using historical RCTdata to predict the results of future head-to-head trials.
We showed that this method (sequential regression and simulation; SRS)
works even in the presence of significant inter-trial heterogeneity, and
validated its use by correctly predicting the results of SEAVUE5, a recent trial
of adalimumab versus ustekinumab for CD.
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Here we extend this validated approach to its logical next step on the
road to personalizedmedicine. Briefly, we used SRS to simulatemany head-
to-head trials on virtual cohorts of digital twins, and we looked for differ-
ences in potential efficacy. We used these findings to motivate a broader
assessment of how personalized treatment choices can lead to better out-
comes compared to general rules.

Results
Cohort characteristics
See Fig. 1 for an overview of this study. Our cohort consisted of 5703
participants, drawn from fifteen trials of all FDA-approved biologics as of
20196–19 (Supplementary Information). These biologics corresponded to
three drug classes: anti-TNFs, anti-IL-12/23 s, and anti-integrins. The
members of our cohort were generally similar in their univariate char-
acteristics across trials and eligibility criteria (Table 1; Supplementary
Table 1). One exception to this pertained to the history of anti-TNF expo-
sure, which affected 16%, 56%, and 74%, of the anti-TNF, anti-Integrin, and
anti-IL-12/23 cohorts respectively. This variable, and all other variables
listed in Table 1, were used in regression models to control potential biases
that otherwise could result from a naïve pooling of cohorts.

Placebo model
To address the potential bias that could result from a naive pooling of
subjects across trials, we used sequential regression and simulation (SRS) to
normalize the data and analytically separate the drug-attributable compo-
nent of the patient response from the placebo effect4. SRS uses nested linear
mixed-effectsmodels to estimate the associationbetweenbaseline covariates
and outcomes. Prior applications of SRS toCrohn’s disease have shown that

this model class performs similarly to that of non-parametric machine
learning models4.

We began by modeling the placebo response, using the subset of the
participants who were assigned to receive placebo (N = 1621). Wemodeled
their week 6 response as a function of all captured covariates and study year
(fixedeffects) aswell as trial of origin (randomeffect). Thismodelwashighly
significant (p < 0.001; Table 2), consistent with the placebo effect being at
least partially predictable.

We identified six statistically significant predictors. The coefficient
for the study year was negative, suggesting a reduction in measured
placebo effects over time. History of anti-TNF use was associated with
27 points less of a placebo effect, consistent with prior studies. Baseline
CDAI was also a significant predictor: every 100 points of a higher
baseline CDAI (restricted by trial eligibility criteria to fall between 220
and 450) was associated with 33 points more spontaneous improve-
ment after 6 weeks. This was consistent with regression to the mean.
Age and c-reactive protein (CRP) were also significant albeit with small
effects. Most of the explainable variation in the placebo effect was
accounted for by these explicitly captured clinical factors and study
year; only 1% of the total variation was attributable to other non-
specific heterogeneity across the included trials.

Drug class models
We used the placebo model to calculate the mean placebo-attributable
response for eachparticipant assigned to receive active treatment (N = 4082)
and subtract this from their observed response, leaving behind the drug-
attributable reduction in CDAI. We then used the residuals to fit three
additional mixed effects models, one per drug class.
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Fig. 1 | Overview. a Clinical trials were found using clinicaltrials.gov and sought for
retrieval on the YODA and Vivli platforms. Individual participant data (IPD) from
trials that collected CDAI scores at week 6 visits were then aggregated and har-
monized. b Using sequential regression and simulation, a method for normalizing
clinical trial data against a common placebo rate, a placebo-attributable model and
three drug-attributable models - anti-integrin, anti-interleukin-12/23 and anti-TNF
- were developed. Disease activity reduction was partitioned into placebo-
attributable (square) and drug-attributable (circle) effects based on baseline cov-
ariates (age, sex, BMI, etc.). IPD (solid lines) were used to predict or simulate data

(dashed lines). cThe drug-attributablemodels were utilized to simulate patient-level
outcomes post-treatment (counterfactuals). Pairwise t-tests (p < 0.05) were con-
ducted to compare and rank themean responses for all drug classes - anti-integrin vs
anti-interleukin-12/23, anti-integrin vs anti-TNF, and anti-interleukin-12/23 vs
anti-TNF - and assign patients into one of seven subgroup memberships
(see Table 3). d Lastly, the models were re-packaged into a prototype decision
support tool that uses manual inputs and optionally, OMOP-formatted data, to
recommend treatments for individual patients.
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The drug classmodels were significant (p < 0.01 for all; Table 2).We
identified ten predictors across drug classes. Efficacious responses to
IL12/23s were positively associated history of anti-TNF use (28 addi-
tional points of CDAI reduction) and steroid use (20 additional points).
Elevated CRP was associated with a positive response to IL12/23 s,
whereas elevated body mass index (BMI) was associated with a negative
response. For the anti-integrin class, each decade of life was associated
with 5 points less of a response on the CDAI. Lastly, for the anti-TNF
class, we identified three additional predictors of efficacy beyond the
intercept term. Elevations in baseline CDAI and CRP were associated
with increased efficacy, whereas age was inversely associated (12 points
less of CDAI reduction for each decade).

To help improve the efficiency of future trials, we compared sig-
nificant coefficients identified in the placebo and active treatment
models. Five coefficients had opposite effects: age, BMI, CRP, history of
anti-TNF use, and ileal involvement (Table 2). These results implied that
young patients with lower BMIs, no prior anti-TNF use, elevated CRP,
and colonic disease would be expected to have the widest margin of
difference between placebo and treatment arms; thus, trials performed in
this group would be expected to have the greatest statistical power to
detect evidence of efficacy. This result underscored the value of separ-
ating placebo- and drug-attributable effects using separate regression
models; a regression model lacking these implied interaction terms
would have missed these findings.

Subgroups
We simulated potential outcomes for all participants under each drug class
and performed pairwise t-tests to rank-order treatment preferences and
define subgroups. We identified seven subgroups (Table 3). The largest
subgroup (55%, N = 3142) consisted of patients who didn’t appear to have
selective efficacy with any one drug class. The next largest group showed
evidence for an anti-TNFbeing best or tied-for-best (42%,N = 2418). These
results explain prior findings favouring anti-TNFs as being the result of
using “majority vote” statistical methods in a situation where most parti-
cipants “abstain”.

We also identified a subgroup whose responses deviated from the
majority, and thus might be harmed by “one-size-fits-all” treatment
guidelines that are informed by cohort-averaging studies. Specifically, we
identified a subgroup of 139 patients who showed superior efficacy with an
anti-IL-12/23, achieving 40 points greater reduction in the CDAI compared
to the other drug classes (Fig. 2). 50% of these patients were predicted as
achieving clinical response (CDAI reduction of 100 points ormore) at week
6, compared to only 3% with an anti-TNF. This subgroup was pre-
dominantly female, over the age of 50, had a history of anti-TNF exposure,
had relatively lower CDAIs at baseline, and were receiving steroids (Sup-
plementary Table 2).

Given the small size of this subgroup, and the general risk of overfitting
and false discoveries due to multiple hypothesis testing, we repeated the
analysis using 10-fold cross-validation. In each fold, we used 90%of the data
to estimate parameters for the placebo anddrug classmodels, andused these
models to assign held-out patients to subgroups using pairwise t-testing.
This analysis consistently found this anti-IL-12/23 subgroup across all ten
folds, and consistently found a demographic association between this sub-
group and women over 50 (Supplementary Tables 3, 4).

The anti-IL-12/23 subgroup corresponded to only 2% of the overall
trial population. Given this, we wondered if a decision support tool that
selectively recommends this drug class would have anymeasurable value in
clinical practice. Thus, we queried the University of California Health Data
Warehouse, a multicentre database of health records data, to identify
patients who might belong to this subgroup and thus could benefit from a
personalized treatment recommendation tool. We found that 25% of the
patients seen for Crohn’s disease were women over the age of 50 (N = 5647;
2012-2022) (Supplementary Fig. 5). This striking difference in cohort pre-
valence (25%at theUniversity ofCalifornia vs 2% in the trials) suggested the
possibility of implicit selection bias in these trials. Supporting this view, weT
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found Black participants to be significantly underrepresented (2% in the
trials; Supplementary Table 5).

When limiting our queries to the timeframewhen all drug classes were
FDA-approved, we noted that 75% of biologic-exposed women over 50 did
not receive an anti-IL12/23 as their next treatment. This suggested a
potential future role for software-aided treatment optimization.

Since the existenceof this anti-IL-12/23-preferring subgroupwas anew
and potentially testable hypothesis raised by this analysis, we performed a
sample size calculation to determine the feasibility of further validation via a
prospective study. We calculated that a trial with 250 participants in each
armwould have 87%power to show superiority of anti-IL-12/23 s over anti-
TNFs in all patients over the age of 50. If further restricted to just women
over 50, this potential trial was calculated as having 97% power (Supple-
mentary Table 6).

Decision support
To bridge these findings to the clinic we have prototyped a decision support
tool (crohnsrx.org). It uses manual inputs on patient-level features to pro-
duce treatment recommendations (Fig. 3). We have provided additional
guidance to help clinicians interpret the output and avoid incorrectly using
the tool. Examples of incorrect use include: 1) applying the tool to patients

who do not resemble the subjects used to train the model (e.g., don’t ret-
rospectively meet trial eligibility criteria), and 2) using the tool to decide
whether to start combination therapies (e.g., immunomodulators + bio-
logics). The latter was out of scope for this study due to insufficient trial data
to estimate the effect of combination therapies. Guidance on the website
clarifies that immunomodulators are an input in the model, but they are
used to calculate treatment outcomes when these choices have already been
made by the clinician prior to using the model (rather than being recom-
mended by the model).

Sensitivity analyses
Our chosen modeling approach used linear mixed effects models. This
model class has many advantages, including 1) quick inference time
(important for feasible use in clinical practice), 2) interpretability, and 3)
ability to perform post-hoc statistical hypothesis testing (currently not well
developed for machine learning). However, our models lack interactions
and non-linearities, features that could be important in identifying a
patient’s optimal subgroup.

Thus we sought to test the sensitivity of our subgroup analysis to the
choice of model family. In prior work using this dataset4, we evaluated
several model classes and found random forests (RFs) to be the most
accurate at predicting placebo responses, slightly better than the linear
mixed model (cross-validated RMSE of 92.9, vs 93.2). RFs naturally encode
interactions and non-linearities, and thus we repeated the complete sub-
group assignment procedure using this class instead.We found that that the
linearmodelwas 92%concordant in subgroup assignment relative to theRF
model. This high degree of concordance was reassuring, although it also
implies that interactions and non-linearities likely have a role in predicting
treatment responses in Crohn’s disease.

As a final sensitivity analysis, we considered the possibility that users of
our tool may not have all inputs available, and asked to what extent our
method would produce contradictory subgroup assignments. For example,
recommendingdrug class BoverA,when the original subgroup implies that
A is superior toB.We individually ablated three predictors feltmost likely to
be missing in clinical practice: baseline CDAI, CRP, and ileal involvement.
On these assessments, we found that the concordance rate was 100% for
each of these three ablation experiments, relative to the full model. While
these reducedmodels occasionally had less power to resolve differences seen
in the full model, they never identified an ordinal relationship that con-
tradicted the full model.

Table 2 | Linear mixed effect regression models of the reduction in CDAI at week 6

Placebo Anti-IL-12/23 Anti-Integrin Anti-TNF

Predictors Estimate Std.
Error

p-value Estimate Std.
Error

p-value Estimate Std.
Error

p-value Estimate Std.
Error

p-value

Intercept 74.69 9.48 <0.001 22.19 22.01 0.356 36.82 7.34 <0.001 54.96 9.80 <0.001

Year (Centered) −1.96 0.99 0.096 .. .. .. .. .. .. .. .. ..

Baseline CDAI
(Centered)

0.33 0.04 <0.001 −0.03 0.06 0.640 0.02 0.04 0.590 0.11 0.04 0.002

Age (Centered) 0.41 0.18 0.025 0.30 0.30 0.313 −0.54 0.19 0.004 −1.23 0.18 <0.001

BMI (Centered) 0.72 0.43 0.098 −1.69 0.75 0.024 −0.35 0.39 0.380 −0.19 0.44 0.660

CRP (mg/L)
(Centered)

−0.22 0.10 0.022 0.48 0.16 0.002 0.12 0.09 0.196 0.35 0.08 <0.001

History of Anti-
TNF Use

−27.31 5.24 <0.001 28.00 12.06 0.021 1.66 4.49 0.712 7.03 6.09 0.249

Sex: Male 2.22 4.42 0.616 −6.41 7.74 0.408 -4.03 4.32 0.351 0.68 4.16 0.871

Steroid Use 0.32 4.44 0.943 19.82 7.60 0.009 4.97 4.32 0.251 −1.69 4.30 0.694

Immunomod. Use −1.74 4.69 0.711 0.54 8.28 0.948 −4.35 4.54 0.338 −1.70 4.55 0.708

Ileal Disease 4.88 5.05 0.333 −9.14 9.64 0.344 −8.15 4.97 0.102 −7.29 4.58 0.111

We fit a total of four linear mixed-effects regression models: one placebomodel and three nested models of the drug class-attributable response. Rows correspond to the fixed effect parameters of each
model, and columns correspond to the estimated coefficients, standard errors, and Wald test p-values with bolding corresponding to significance at the 0.05 level. Year was not used for the drug class
models due to insufficient variation (few trials per drug class, clustered together in calendar time).

Table 3 | Treatment subgroups

Drug Class Preference Subgroup N (%)

Anti-TNF TNF > (IL = INT) 2021 (35)

TNF > INT > IL 43 (0.8)

Anti-TNF, Anti-Interleukin-
12/23

(IL = TNF) > INT 354 (6)

Anti-Interleukin-12/23 IL > (TNF = INT) 138 (2.5)

IL > TNF > INT 1 (0.02)

Other (TNF = INT) > IL 4 (0.07)

No Preference (TNF = IL = INT) 3142 (55)

The finalized mixed effects models were used to simulate counterfactual outcomes under all
possible treatment scenarios. The modeled outcomes and the associated uncertainties in these
outcomeswere used to perform pairwise t-testing to assess evidence for rank-ordered preferences
across drug classes. Distinct patterns of rank-orderings were used to establish membership in one
of 6 subgroups. Subjects without sufficient statistical evidence (alpha = 0.05) of a more efficacious
response to any one drug class were placed into a 7th category (no preference). TNF = anti-tumor
necrosis factor, IL = anti-interleukin-12/23, INT = anti-integrin.

https://doi.org/10.1038/s41746-025-01627-w Article

npj Digital Medicine |           (2025) 8:327 4

http://crohnsrx.org
www.nature.com/npjdigitalmed


Discussion
Here we demonstrate a new method for using historical RCT data to learn
the best treatment choices for individual patients. Althoughwe illustrate this
concept specifically in the context of Crohn’s disease and on the outcome of
efficacy, the approach is generalizable andapplies tootherdiseases andother
outcomemeasures like safety. Our approach demonstrates the tremendous
value contained within historical RCT data, data that was previously inac-
cessible but is now generally available for secondary re-use. Our illustration
of Crohn’s disease concretely demonstrates how widespread the hetero-
geneity in treatment effects appear to be in this disease and probably many
others. It also illustrates the potential harms of “one-size fits all” clinical
evidence, as well as the distortions that can result from biased recruitment
into RCTs. Overall this work offers an important tool to researchers in the
fields of personalized and precision medicine.

Our study also uncovers many findings of basic and practical sig-
nificance to the CD research community, starting with the result that the
wide variability in observed responses to CD treatments is partially pre-
dictable from standardly captured features. Other implications of our study
include: 1) some women over 50 should likely receive anti-IL-12/23s s line
after failing to respond to an anti-TNF and, 2) many patients may not have
superior induction efficacy with any of the three drug classes studied here,
irrespective of prior-TNF exposure, and other treatment selection criteria
should be used (safety, tolerability, cost).We did not identify any subgroups
who should be recommended anti-IL12-23s first-line, nor did we find any
subgroups with preferential efficacy to anti-Integrins. Rather than

proposing specific revisions to clinical guidelines and decision trees, our
study generally implies that integrated decision support tools can help
clinicians select better treatments for individual patients. Other notable
findings include 1) evidence of implicit selection bias impacting registra-
tional trials, and 2) combinations of features that predict placebo and drug-
class responses, which could be used to designmore efficient clinical trials in
the future.

Our work builds on previous evidence synthesis efforts in CD, parti-
cularly NMAs1,20. Recent NMAs have found that anti-TNF drugs appear to
be the most efficacious drug for inducing clinical remission, irrespective of
prior biologic exposure1. Although we used a similar set of trials as that
study,we came to a slightly different conclusion:most of the subjects in these
trials do not appear to preferentially benefit from any of three currently
approved drug classes. Instead, we found that patients favouring anti-TNFs
were actually in the minority, albeit a large one (42%). This apparent con-
tradiction can be understood as the result of an “ecological fallacy”, where
one incorrectly deduces that a cohort-averaged effect also applies to each
member of the cohort. An apt analogy would be of an election where the
majority abstains, and the next largest constituency “votes” for an anti-TNF.

Thus, our findings are in fact consistent with prior NMAs that instead
rely on aggregate statistics from trials. However, these findings more gen-
erally suggest that the field of evidence synthesis must increasingly embrace
IPD to generate results that are more precise and less susceptible to mis-
interpretation. Methods such as SRS can add additional credibility and
reduce the dependence on strong homogeneity assumptions implicit in
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traditional pooled analyses of IPD. Thismethod also enables deeper insights
into the overall patient response as the result of two distinguishable effects:
placebo-attributable and drug-attributable. The predictors of the placebo
effect that we identified here were consistent with the prior literature21. Yet
we identified more predictors than have previously been reported, likely

because our method implicitly accounts for drug-by-effect interactions that
are often unmodeled in one-step IPD meta-analyses2,3. The value of these
findings, beyond that of scientific interest into how clinical features reflect
treatment susceptibility, is also practical. Our results suggest ways to design
clinical trialswith greater power.Another important but unexpectedfinding

Fig. 3 | Treatment recommendation dashboard. Example user interface and output of R Shiny treatment recommendation dashboard.

https://doi.org/10.1038/s41746-025-01627-w Article

npj Digital Medicine |           (2025) 8:327 6

www.nature.com/npjdigitalmed


is evidence of implicit selection bias in Crohn’s RCTs. Some degree of
selection bias is to be expected of all trials insofar as they contain additional
inclusion and exclusion criteria that are not a requirement for receiving
clinical care. Indeed, we and others have observed this in the context of
comparing RCT- and real-world cohorts22–24. What has been unclear,
however, is the extent towhich these biasesmaydistort treatment outcomes.
We identified a subgroup of anti-IL-12/23-preferring patients, mostly
women over 50, that represented a miniscule fraction of trial subjects (2%).
Yet, the typical prevalence of these patients as seen across 6 medical centers
at the University of California suggests that as many as 25% of patients fall
into this demographic.Of course, gender, older age, and race are not explicit
exclusionary criteria in these registrational trials. Thus, it appears that these
patients are systematically being under-enrolled. Future studies are needed
to determine if this is the result of patient preferences, provider biases, or
other factors.

Tomake ourfindingsmore accessible and to solicit early user feedback,
we have prototyped a clinical decision support tool (crohnsrx.org). This tool
is recommended for patients who generally resemble the subjects in the
corresponding trials, particularly in terms of inclusion and exclusion cri-
teria. Prospective validation of this decision support tool is forthcoming.

Of note, while this tool predicts treatment outcomes for the three drug
classesmodeledhere, it cannot be used to estimate the causal effects of using
concomitant immunomodulators or steroids. This was due to insufficient
data on combination therapies to informourmodels, with only 169 subjects
in SONIC randomized to the combination of infliximab and azathioprine.
Many trials contained patients who were already on immunomodulators at
baseline, presumably reflecting a clinical history that predated their parti-
cipation (e.g., severity of disease course). Given the lack of historical data
that could explain these choices, this potential for confounding bias could
not be analytically addressed here. Future work is needed to address these
questions of combination therapies, incorporate data from trials of newer
drugs, and further develop our prototype into an EHR-embedded tool that
supports seamless, timely, and trustworthy recommendations at the point
of care.

Strengths of this work include the strength and quality of the under-
lying data, the use of multiple methods (e.g., SRS, statistical hypothesis
testing, cross-validation) to reduce bias, and several findings that advance
the study of personalized medicine.

We acknowledge several limitations. This was a post-hoc analysis of
randomized trials, and we cannot completely exclude residual biases. Pro-
spective studiesmay increase confidence in thesefindings, particularly given
apparent selection biases that could affect the application of trial-based
insights topractice.Therewere several variables thatwewanted to include in
our models such as primary vs secondary loss of response to anti-TNFs,
race/ethnicity, and comorbidities. Unfortunately, these data were not well-
captured across the trials. We used linear models for this study, given their
strengths (interpretability, inference, computational efficiency) as well as
our findings that they produce similar results to random forests that model
interactions. However, future studies using larger datasets and more model
classes could revisit this choice, given the potential to discover new inter-
actions with scientific and clinical importance. Our models collapsed
multiple drugs into single drug classes to maximize statistical power. For
example, we included certolizumab-related data to inform the anti-TNF
drug class model, even though guidelines suggest that it may not be as
effective as other TNFs25. Of note though, prior goodness of fit testing of
drug-level models versus that of drug-class models showed no significant
differences4. We were unable to include recently approved therapies due to
restrictions on data access from trial sponsors, and this study was unable to
assess combination treatments or inform treatment sequencing beyond the
inductionphase. Lastly, this studyprovides themost direct evidence for real-
world patients who resemble trial subjects, both in explicit and implicit
eligibility criteria. Future work is needed to confirm and extend these results
to broader patient populations.

In conclusion, we performed an IPDmeta-analysis of RCTs inCrohn’s
disease. We identified multiple subgroups with different preferential

responses to different drug classes, including one subgroup of women over
50 who may respond favorably to anti-IL-12/23 s after a trial of anti-TNFs.
We uncovered potential evidence of selection bias in clinical trials and
suggested ways to improve the efficiency and equity of these gold-standard
studies. Lastly, we developed a prototype decision support tool to help
improve treatment selection and patient outcomes for Crohn’s disease.
Overall, we hope that this work will inspire additional investigations of
personalizedmedicine across a wide range of diseases, utilizing the power of
patient-level data captured over decades of clinical trials.

Methods
Ethics
This study was approved by the University of California, San Francisco
Institutional Review Board (IRB). The need for informed consent was
waived by the IRB as this study used deidentified data alone. The study and
associated protocol were pre-registered on PROSPERO (#157827).

Data access
In June 2019weperformed a search of clinicaltrials.gov to identify candidate
studies to include in this planned meta-analysis. We identified 90 studies
that were annotated as being completed, phase 2-4, randomized, double-
blinded, interventional trials of treatments for Crohn’s disease at the FDA-
approved route, dose, and frequency. We manually confirmed 16 trials as
meeting these criteria6–19. To ensure comparability of the included cohorts
and outcomes, we reviewed the major inclusion and exclusion criteria of all
studies and confirmed that the Crohn’s Disease Activity Index (CDAI) had
been captured at week six relative to treatment initiation. We also used the
Cochrane Risk of Bias 2 tool to ensure that all included studies were at a low
risk of bias (Supplementary Information). Following inquiries with the
sponsors of these trials, we successfully obtained access to the IPD for
15 studies (N = 5703).These studieswere conductedbetween1999and2015
and corresponded to all six FDA-approvedbiologics as of 2019.All sponsors
and data sharing partners agreed to place their data on a common, secure
computing platform (Vivli) to facilitate downstream analysis.

Quality control, harmonization, missing data
We performed extensive quality control evaluations of the included trials
and data. This included confirming our ability to reproduce published
statistics on the trial cohorts at baseline as well as the study primary end-
point. We were able to exactly reproduce most of the study results. Where
discrepancies occurred, they were generally minor and fell within a 10%
error bound. We reported major discrepancies to the study sponsor as per
agreement.We attempted to completely eliminate all discrepancies, but this
was not possible due to a variety of factors, including lack of access to the
original analytic code or the complete analytic dataset, and inability to
contact the original analysts.

We completed an assessment of data availability for all study variables.
Target variables includeddemographic features, CDAI at baseline andweek
eight, baseline inflammatory biomarkers, concomitant steroid and immu-
nomodulator use, history of treatment with anti-TNFs, and other disease-
related features. We identified nine variables that were universally available
across all trials and thus could be used for downstreammodeling: Age, Sex,
BMI, baseline CDAI, CRP, history of TNFi use, oral steroid use, immuno-
modulator use, and ileal involvement.

Only 3% of the participants had at least one missing covariate at
baseline. Continuous variables were addressed by median imputation, and
participants with missing categorical variables were dropped from the
dataset (N = 86). 11% of the participants had a missing value for the out-
come at week eight. To handle this, we used last-observation-carried-
forward to impute these values, typically usingmeasurements fromweek six
and four. This is the typical practice for the analysis of these trials in reg-
ulatory submissions and was the prespecified approach in the protocols for
all included trials. The variable corresponding to a history of TNFi use was
available in all recent trials that occurred after the approval of the very first
TNFi medication. Older trials of the first TNFis commonly excluded
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patients who had a history of exposure to other drugs from this class but did
not include this feature as an actual variable in the data set. In these cases, we
deterministically imputed this variable corresponding to no prior use.

Other variables of a priori importance could not be included in this
study. Ethnicity was not collected in most trials. Race was missing in some
trials, but when it was captured, it reflected a significant imbalance (88% of
participants were white). Other disease-specific variables such as disease
behavior and duration were also not uniformly captured across studies and
thus could not be included in this meta-analysis.

The included trials had a range of study designs. We included both
randomized and unblinded/open-label cohorts. For trials involving post-
randomizationgating (e.g., EXTEND,CLASSIC),we included those cohorts
that were consistently exposed to a given treatment for six weeks only when
post-randomization gatingwasnot conditionedon treatment response (e.g.,
rerandomization of all participants, rather than just those with a particular
response).

Drug class modeling, subgroup identification
This study sequential regression and simulation (SRS) as the primary
method tomodel potential outcomesunder eachdrug class. SRS is described
in detail and validated in a prior publication4. Briefly, SRS was developed to
overcome several limitations of prior network meta-analyses (NMAs),
which include their assumption of homogeneous cohorts, as well as the
assumption that drug classes are just as likely to be tested against each other
as they are against placebo. If all assumptions aremet, NMAs can identify if
some drugs aremore effective or safe than others on average. However, they
cannot be used to discover treatment subgroups, or identify if some patients
would preferentially respond to one drug over another. This is because
individual-level data are typically not available for these analyses.

Conventional individual participant data meta-analyses are the pri-
mary alternative to NMAs for comparative effectiveness studies. These use
participant-level data, as does SRS, but historically have not been used to
study heterogeneity in treatment effect. SRS was developed to normalize
potentially heterogeneous trials with different placebo effects and enable the
user to perform in silico head-to-head trials.

We used SRS to 1) normalize all trials to a common background
(placebo response), and 2) analytically isolate the portion of the patient
response that could specifically be attributed to a given treatment, rather
than what would have been observed without treatment (i.e., placebo; Fig.
1b). For each drug class, we fit a separate linear mixed effects regression
model of the drug-attributable reduction in CDAI. We chose to use linear
models given the advantages in speed and interpretability, as well as evi-
dence that they perform comparably to more flexible machine learning
models (see Supplementary Table 2 of Rudrapatna et al. 4). This outcome
was modeled as a function of the nine primary variables (see the “Quality
Control” section above) handled asfixed effects, with trial as a randomeffect
to control unmeasured heterogeneity across trials. We compared these
models to intercept-only models using the likelihood ratio test. The latter
corresponds to a model that ignores the role of patient-level characteristics
in determining response to treatment and reflects the assumptions of
methods that compare drugs based on their average effects, such as network
meta-analyses.WeperformedWald tests to identify significant predictors of
responses to individual drug classes.

We applied the three finalizedmodel objects to the covariate vectors
of each of the 5703 participants in our meta-analysis to obtain their
simulated response under each of these three counterfactual scenarios:
treatment with an anti-TNF vs anti-integrin vs anti-IL-12/23. The
inferred normal distributions of the conditional mean response to each
drug class were pairwise compared against each other using the median
of bootstrapped predictions and bootstrapped standard errors. We
applied a nominal p-value threshold of 0.05 to identify patients
belonging to a particular subgroup, defined as having a distinct pattern
of ordinal preferences across all three drug classes. These included
superiority of one drug class to another as well as indifference (lack of
evidence for a difference at the p = 0.05 threshold).

Because the primary focus of this study involved the testing of only
three primary hypotheses (i.e., goodness of fit for each of the drug class
regressionmodels compared to intercept-onlymodels), we used nominal p-
value thresholds of 0.05 for all other hypothesis tests including the post-hoc
assessments of drug subgroup membership.

Wenote that SRS is associatedwith certain assumptions. These include
1) conditional exchageability of trial of origin in the placebo model (i.e.,
given the available variables used to model the placebo effect, the responses
of placebo recipients are otherwise indistinguishable across trials, and 2)
correct model specification (i.e., the functional form is correct).

Subgroup assignment
For each trial-basedpatient (N = 5703)we predicted each drug class efficacy
using the drug class models (Table 2; random effects set to 0) and estimated
the 95% prediction interval using bootstrapping, the gold standard
approach for deriving prediction uncertainty from linear mixed models26.
Weperformed10,000 simulations per patient.We conducted paired sample
t-tests (p < 0.05) to further determine if any two drug class pairs were
equivalent or different in efficacy to obtain a personalized treatment
recommendation (Table 3). Finally, patients were assigned a subgroup
based on their personalized treatment outcome based on the rank order and
drug class comparisons.

Subgroup validation via cross-validation
To further assess the validity of the subgroups identified by statistical
hypothesis testing and reduce the risk of false subgroup discovery due to
overfitting, we repeated the subgroup discovery procedure using tenfold
cross-validation. We reserved 90% of the dataset to estimate placebo and
drug classmodels, andweapplied them tohold-out data fromthe remaining
10%. The conditional means and standard errors were used to perform
pairwise t-testing and establish a rank-ordering of treatment preferences at
the individual patient level.

Decision support tool prototype
The decision support tool has been developed to provide real-time feedback
to clinicians selecting treatments for patients with moderate-to-severe
Crohn’s disease. However, we are also making a prototype of the tool
publicly available to enable early feedback frommany potential users and to
provide insights to patients wishing to understand the potential advantages
and disadvantages of available treatment options.

To use the decision support tool, users must input various data points,
including the patient’s age, gender, BMI, recent c-reactive protein levels
(measured in milligrams per liter), current corticosteroid and immuno-
modulator use (yes/no), prior anti-tumor necrosis factor use (yes/no), ileal
involvement (yes/no), and the CDAI score. All inputs, except for the CDAI
score, aremandatory for the calculation process. If any inputs are left blank,
the user will receive an error message (Fig. 3a) and be prompted to input a
default of “0” for numeric inputs or “No” for binary inputs if unknown. If the
CDAI is unknown, the user can either 1) leave it blank, which will result in
the tool imputing a score of 300 (indicative of moderate-to-severe disease),
or 2)use theMDCalcCDAI calculator27 to obtain a precise result. If theCRP
is unknown, it can be left blank and will be imputed to the median of the
pooled population used for this study.

If all inputs are valid, the dashboard will output the patient’s treatment
recommendations in both textual and graphical forms (Fig. 3b). To achieve
faster recommendations in a real-time context compared to what would
otherwise be obtained using bootstrapping, we used an analytical approx-
imation for the standard error of a newprediction28.Weused these standard
errors to perform t-tests of the predicted mean response at week 6 for each
pair of drug classes.

University of California Health Data Warehouse
The University of California (UC) Health Data Warehouse (UCHDW)
contains data on 8.7 million patients who have been seen at a UC facility
since 2012; data has been stored using theObservationalMedicalOutcomes
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Partnership (OMOP)datamodel.Additional informationabout theOMOP
common data model can be found at https://www.ohdsi.org/data-
standardization/.

We queried the UCHDW to approximate a real-world subpopulation
with similar characteristics to that of the anti-IL-12/23 subgroup found in
our analysis, which consists of primarily older (>50 years old) and female
participants.Querieswere run onApril 5th, 2023.Wefiltered patients in the
UCHDW based on diagnoses (Crohn’s disease), medication prescriptions
(adalimumab, ustekinumab, infliximab, natalizumab, vedolizumab, certo-
lizumab pegol), medication start date, current age (as of 2023), and gender
(Supplementary Information). We identified standard concept IDs for
diagnoses and medications using the SNOMED International SNOMED
CT Browser, Athena29. The codes are listed here: Crohn’s disease (201606),
adalimumab (1119119), ustekinumab (40161532), infliximab (937368),
natalizumab (735843), vedolizumab (45774639), and certolizumab pegol
(912263). For more details on the query, please find the code at https://
github.com/rwelab/CrohnsRx.

Sample size calculations
We performed simulations to calculate the expected power of a pro-
spective trial designed to test a key prediction of ourmodel, that anti-IL-
12/23 drugs are superior to anti-TNF drugs inwomen over 50. In each of
1000 simulations, we sampled from the overall trial population to create
pairs of study arms consisting of women over 50. Sampling was done
with replacement.We used the placebo and drugmodels to calculate the
individual-level probability of achieving aCDAI reduction of≥ 100 (i.e.,
clinical response), under an assumption of conditional normality.
These were averaged within each simulated study arm, used to calculate
the expected number of participants in clinical response, and then
compared using a chi-squared test with an alpha of 0.05. This overall
simulation procedure was performed using study arm pairs of sizes 100,
250, and 500. We repeated this analysis with the simpler inclusion
criteria of just requiring participants to be over age 50, irrespective of
gender.

Statistical computing, web application development
Programming was performed in R (version 4.2.2). We used RShiny to
prototype a decision support tool implementing our models (https://
crohnsrx.org). The analytical code was reviewed by a secondmember of the
team and has been placed on GitHub (https://github.com/rwelab/
CrohnsRx). The web dashboard utilizes manually inputted data to pro-
duce recommendations based on ourmodels. However, for users seeking to
deploy this dashboard locally, an additional mode has been made available
that automatically sources input data from an OMOP-formatted EHR
database.

Sensitivity analyses
We repeated the entire workflow of the study using random forest models.
This involved the creation of four models: one for the placebo model and
three for the drug class models. Each model was hyperparameter tuned by
fivefold cross-validation. For subgroup assignment, we used bootstrap
resampling to simulate mean potential outcomes from each drug class, and
used the standard deviations of these bell-shaped distributions to perform
pairwise t-testing as before.

After all subjects had been assigned to subgroups using the random
forest-based approach, we calculated the proportion of patients who were
placed in a subgroup that contradicted the subgroup assignments of the
original linear mixed effects model. By contradictory, we mean a situation
wheredrug classAwas found superior toB in onemodeling approach, but B
was found superior to A in the other approach. Situations where A was
superior to B in one approach but were considered statistically indis-
tinguishable in the other were not counted as contradictory, but instead
reflecting a lack of statistical power to resolve potential true differences in
effects. We report the concordance as 1 minus the proportion of patients
with contradictory assignments.

For each ablation analysis, we removed the target variable from the
dataset and repeated the full procedure, then similarly calculated the con-
cordance as above. We selected three target variables for this analysis:
baseline CDAI, CRP, and ileal involvement

Data availability
The raw data are owned by the trial sponsors. The data may be accessed for
reproduction and extension of this work following an application on the
YODAandVivli platformsandexecutionof adatause agreement.However,
a synthetic dataset needed to interpret, replicate, and extend this work is
available at https://github.com/rwelab/CrohnsRx/.

Code availability
The analytical code is freely available without restrictions at https://github.
com/rwelab/CrohnsRx. This code, written in R (version 4.2.2) can be used
together with the synthetic dataset to understand and extend the approach
reported here.
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