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Human-machine co-adaptation to
automated insulin delivery: a randomised
clinical trial using digital twin technology
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Most automated insulin delivery (AID) algorithms do not adapt to the changing physiology of their
users, and none provide interactive means for user adaptation to the actions of AID. This randomised
clinical trial tested human-machine co-adaptation to AID using new ‘digital twin’ replay simulation
technology. Seventy-two individuals with T1D completed the 6-month study. The two study arms
differed by the order of administration of information feedback (widely usedmetrics and graphs) and in
silico co-adaptation routine, which: (i) transmitted AID data to a cloud application; (ii) mapped each
person to their digital twin; (iii) optimized AID control parameters bi-weekly, and (iv) enabled users to
experimentwithwhat-if scenarios replayed via their owndigital twins. In silico co-adaptation improved
the primary outcome, time-in-range (3.9–10mmol/L), from 72 to 77 percent (p < 0.01) and reduced
glycated haemoglobin from 6.8 to 6.6 percent. Information feedback did not have additional effect to
AID alone. (Clinical Trials Registration: NCT05610111 (November 10, 2022)).

Rigorous clinical trials established Automated Insulin Delivery (AID) sys-
tems as viable and superior to standard care treatment for type 1 diabetes
(T1D)1–8. AID systems have firmly transitioned to the clinical practice of
T1D and made first strides into insulin-using type 2 diabetes as well9,10.
Several commercial systemsare available, andmultiplepublications reported
outcomes of their real-world use by thousands of people for extended per-
iods of time11–15. Meta analyses affirmed that AID systemswork as intended,
improving glycaemic control and the clinical outcomes for those with
T1D16–19. However, while themost advanced AID systems have consistently
shown improvements in overnight glycaemic control, virtually all studies to
date point to the fact that achieving optimal control during the day is still a
problem1,16,20. This results from typically fewer disturbances occurring at
night, e.g. no meals or exercise that are the major contributors to daytime
glucose fluctuations. Consequently, the vast majority of contemporary AID
systems are ‘hybrid’, in that the user is expected to announce meals to the
system and prompt prandial insulin boluses1,3,4,7,17. While clinical trials with
fully-automated AID systems are ongoing, the current engineering opinion
is that full automation would require continual adaptation of the AID
algorithm to the changing physiology and behaviours of its user21.

It has been also observed that after an initial improvement in glycaemic
control, virtually all contemporary AID systems rapidly reach a

performance ‘plateau’, typically achieving a steady time in the target range
(TIR, 3.9–10mmol/L) of 70–75 percent1,11–13. The reason for this saturation
effect is generally unclear, but an informed speculation is that patients using
AID systems do not adapt well to the system’s actions. This stems from the
fact that the information feedback provided by AID software is typically
limited to summary statistics, e.g. TIR and times above/below the target
range, an ambulatory glucose profile (AGP)22 based on continuous glucose
monitoring (CGM) data and, occasionally, advice based on artificial intel-
ligence methods23–26. This information is generally passive and does not
provide the user with specific instructions on how to optimise their AID
systemparameters, orwith interactivemeans toassesswhatwouldhappen if
they changed parameters of their AID treatment regimen.

A computer simulation model of human genotype, phenotype, phy-
siology, or behaviour is capable of representing a person’s metabolic system
including their glycaemic profile and is often termeda ‘digital twin’. Because
treatment approaches can be tested fast and cost-effectively on digital twins
prior to implementing in the clinical practice, they are considered key to
personalised medicine27. In diabetes, the concept of digital twins began in
2008 when a computer simulator of the human metabolic system, jointly
developed at the Universities of Padova and Virginia, was accepted by the
Food andDrug Administration (FDA) as a substitute to animal trials in the
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testing of insulin treatment strategies28. Today, this simulation environment
is widely used for research and regulatory purposes29. The current version is
equipped with over 6000 digital twins of people with type 1 and type 2
diabetes, allowing for various in silico trials.

In this manuscript, we integrate the previously unrelated AID and
digital twin technologies into a system that automatically maps each AID
user to their corresponding digital twin in a cloud-based ecosystem.

Through simulation, this systemoptimises typical therapy parameters, such
as carbohydrate ratio (CR), correction factor (CF) and basal rate, proposing
an optimised solution that adapts biweekly to the patient’s changing phy-
siology and behaviour30. Additionally, it allows patients to experiment with
their own data using interactive computer simulation, providing insights
into the potential outcomes of changingAID parameters. This latter feature
was first tested in pilot clinical studies31,32, refined and deployed in the larger
6-month randomised clinical trial reported below.

Results
Participant characteristics
Seventy-seven individuals were recruited and 72 completed the 6-month
study (Supplementary Fig. 7 includes the flow of the participants). Five
participants withdrew: 1 screen failure, 3 prior to and 1 after randomisation
due to initiation ofGLP-1RA treatment. Twoparticipants were new toAID
use at the start of the study. For the duration of the trial, participants
continued to use their Control-IQ systems. The demographic and baseline
glycaemic characteristics of those who completed the study are presented in
Table 1.

Primary outcome
In Group A, the primary outcome—TIR (3.9 to 10mmol/L)—remained
unchanged during AID and the subsequent Information Feedback (IF)
period but increased when participants switched to Adaptive Bio-
behavioural Control (ABC) use. In Group B, TIR increased immediately
after activating the ABC system and remained elevated after ABC was
turned off during the subsequent IF and AID alone periods.

Figure 1 presents the trajectories of the two groups throughout the
study: the increase in TIR after switching to ABC was ~4 percentage points
for both groups (mean difference: −3.67%, confidence interval: [−5.13,
−2.22], p < 0.001). In Group B, retaining the benefits of ABC during the
6-week period following ABC discontinuation suggests sustained effect of
co-adaptation for a certain period of time. As presented in Table 2, a linear
mixed-effects model for TIR found a significant intervention effect
(p < 0.01) and significant interaction between group and intervention
(p = 0.04), meaning that the difference in TIR across interventions was
statistically different between Group A and Group B. This result suggests
that the TIR improvement in Group A is due to the ABC intervention and
should not be attributed to study participation effect. Age was a statistically
significant factor for the primary outcome TIR (3.9–10.0) mmol/L,

Table 1 | Demographics and baseline characteristics

Entire
population
(N = 72)

Group A
(escalation)
(N = 38)

Group B (de-
escalation)
(N = 34)

Age (years) 42.8 (15.1) 41.6 (15.5) 44.1 (14.7)

[19.0 - 69.0] [19.0–69.0] [19.0–68.0]

Weight (kg) 82.7 (18.9) 83.2 (21.3) 82.1 (16.2)

[53.1–137.3] [53.1–137.3] [54.4–131.5]

Height (cm) 168.0 (9.4) 168.7 (10.2) 167.2 (8.4)

[149.9–190.5] [149.9–190.5] [149.9–182.9]

Screening
glycated
haemoglobin (%)

6.8 (0.8) 6.7 (0.7) 6.8 (0.8)

[5.3–9.2] [5.4–8.5] [5.3–9.2]

Gender

-Male 29.2% 23.7% 35.3%

-Female 68.1% 71.1% 64.7%

-Other 1.4% 2.6% 0.0%

-Prefer not to
answer

1.4% 2.6% 0.0%

Race

-White 93.1% 94.7% 91.2%

-Black/African
American

4.2% 2.6% 5.9%

-Other 2.8% 2.6% 2.9%

Ethnicity

-Non-Hispanic 91.7% 94.7% 88.2%

Resultsare reportedasmean (SD) [range] for continuousvariablesandasapercentageover the total
for categorical variables

Fig. 1 | Percentage of CGM-measured time in
range (3.9–10 mmol/L) between escalation (left
panel) and de-escalation (right panel) groups,
across different interventions. Circles indicate
mean values, whereas error bars indicate mean ±
standard error intervals.
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p < 0.001, but was not significantly related to hypoglycaemia - the time
below 3.9mmol/L. Gender and Race were not related to any of these out-
comes and had no significant impact on the glycaemic benefits achieved
with the ABC system.

Secondary outcomes
Table 2 presents the changes in the secondary outcomes. Because the
CGM-measured percent time below 3.9 mmol/L during the day did not
change significantly, all subsequent analyses were considered
exploratory and their p values are presented only for illustration. No
conclusions about statistical significance can be derived for the
secondary outcomes. Nevertheless, it is evident that, with the expected
low incidence of hypoglycaemia in this population1,13, ABC effectively
and safely reduced exposure to hyperglycaemia.

By study design, all participants were AID users at randomisation,
resulting in good baseline control—the baseline average glycated hae-
moglobinwas 6.8 ± 0.8 percent (range 5.3–9.2 percent). Nevertheless, by the
end of the study, glycated haemoglobin was further reduced to 6.6 ± 0.5
percent (range 5.6–7.8 percent), consistent with the improvement in TIR
andmost prominent for those whowere at suboptimal glycaemic control at
baseline. Supplementary Table 2 reports glycated haemoglobin at screening
and end of study.

Stratification by baseline glycaemic control
Table 3 stratifies the participants by baseline glycated haemoglobin levels
(below 6.5 percent, 6.5–7.0 percent, 7.0–7.5 percent and above 7.5 percent)
showing that the improvement attributed to the use of the ABC systemwas
most prominent in the group that had suboptimal baseline glycaemic
control—for those with baseline glycated haemoglobin above 7.0 percent,
TIR increased by ~5 percentage points, which is considered clinically sig-
nificant effect, p = 0.01. Nevertheless, TIR improvement, albeit non-sig-
nificant, was registered also by those with optimal baseline glycated
haemoglobin below 6.5 percent—their TIR increased by ~1.2 percentage
points from the beginning to the end of the ABC intervention.

In total, 30 out of 72 participants (41%) achieved a 5 percentage points
clinically meaningful improvement of TIR at the end of the ABC phase. Of
these participants, 20/28 had baseline TIR below 70 and 10/44 had baseline
TIR above 70%, confirming that theABC interventionwasmost efficient for
those at suboptimal control. Supplementary Fig. 8 details further the pro-
gression of treatment effect in 2-week increments during the ABC phase.
The data is stratified by baseline HbA1c as in Table 3 (below 6.5 percent,
6.5–7.0 percent, 7.0–7.5 percent and above 7.5 percent), showing that the
effect of ABC was most prominent for those at suboptimal control at the
baseline, e.g. the subgroups with baseline HbA1c ≥ 7.0% improved their
baseline TIR by ~5 percentage points. Generally, those already at optimal
control (baseline HbA1c < 7%) did not improve their TIR over time.

Adverse events
There were no adverse events in the trial including no cases of severe
hypoglycaemia or diabetic ketoacidosis (DKA).

ABC system use
On average, the participants logged into the ABC system 0.9 (±0.4) times
per day. The improvement in TIR did not correlate with the number of
system interactions. Although participants were free to accept or decline the
recommendations provided by the ABC app, deviations from recommen-
dations were minimal—only 23 out of a total of 504 recommendations,
corresponding to 4.6 percent of the total.

Discussion
AID is currently the best-practice treatment for T1Dand is also increasingly
used in insulin-treated type 2 diabetes. Several commercial systems are now
available in the U.S, and several others are cleared in Europe. A number of
publications reported outcomes of real-world AID use by thousands of
people for extended periods of time11–15,33,34. All contemporary AID systemsT
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perform significantly better than both multiple daily injections or sensor-
augmented insulin pump therapy. However, a common effect is observed
across AID systems and studies: following a rapid initial improvement after
switching from another therapy, AID systems reach a ‘ceiling’ of ~70–75
average percent time in the target range (3.9–10mmol/L). This ceiling effect
points at the limitations of the current hybrid closed-loop devices: few of
their control algorithms adapt to the changing physiology of their users and,
besides event alarms, none provide specific actionable information via
interaction with their users.

The objective of this randomised controlled trial was to test the
effectiveness of a new ABC system, which aimed simultaneous
co-adaptation of the control parameters of an AID algorithm to the
changing physiology and behaviour of its user, and users’ behavioural
modification via interactive understanding of AID actions. While adaptive
AID algorithms exist, the unique element of the ABC system is its Web
Simulation Tool (WST)—to the best of our knowledge, theWST is the only
system capable of mapping its users to their corresponding ‘digital twins’
and thereby allowing two modes of interaction: (i) biweekly advice to the
user regarding optimal AID parameter settings and, most importantly,
(ii) in silico replay of ‘what if’ treatment scenarios. The latter appears to be a
powerful tool allowing people with diabetes to see what would happen if
they adjusted some parameters of their otherwise complex and virtually
incomprehensible AID algorithm.

The results from this 6-month clinical trial involving 72 people with
T1D confirm that such an interactive approach can improve glycaemic
control beyond the capabilities of the AID system alone. Both TIR and
glycated haemoglobin improved significantly, despite their initially very
good values, without insulin treatment intensification that would result in
increased risk for hypoglycaemia. Moreover, there are indications that the
improvement was selective, affecting most those who were at poorest
control at baseline (Table 3), i.e. AID users who likely need most support
adapting to their systems. Additional messages from this trial include: (i)
Information feedback typically employed by contemporary AID software
hasnegligible addedeffect onglycaemic control; (ii)An initial 4-weekperiod
of ABC use appears sufficient to achieve full system effect (Supplementary
Fig. 7), and (iii) the effects of the interactive ABC lasted for at least 6 weeks
after the system was turned off, indicating that future ABC use may be
intermittent, depend on the willingness of the user to engage.

Therewere no adverse events reported by the study participants during
the duration of the clinical trial. The study participants whowere enroled in
the clinical trial viewed the application daily and some participants reported
viewing the app multiple times a day. The participants were consistently
engaged and communicated effectively with the study team with only one
drop-out post-randomisation after starting a GLP-1 receptor agonist sug-
gesting adherence.

Currently,ABC is specific tooneAIDsystem—Control-IQbyTandem
Diabetes Care.While the base simulationmodel—well known in the field as
the UVA/Padova simulator29—has been shared widely during the past 15
years and the process of generating digital twins is independent from the
AID systemused—the data needed are standard, e.g. CGM, insulin,meals35,
the rest of the ABC system is specific to the control algorithm used by the
AID system. Adapting theABC concept to other AID algorithms is possible
in principle, but would require some effort and resources. To do so, the
ABC-control algorithm interface would need to be adapted as follows: (i) to
replay what-if scenarios, the ABC would need to accurately represent the
action of the AID control algorithm, and (ii) because each AID system has
different tunning ‘knobs’, to recommend appropriate adjustments, the ABC
wouldneed toknowwhich are themodifiable control algorithmparameters.

Further, the ABC system can only interact with those who are
responsible for their diabetes management, e.g. adults or adolescents. The
management of T1D in children is a co-regulation process typically invol-
ving parents or caregivers.WhilemostAID systems are approved towork in
paediatric population, e.g. for ages 2 and older, the ABC requires decision
making that usually involves adult supervision. Nevertheless, in future
studies, ABC could be used by parents or caregivers who upload theirT
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children data and from there interact with the system in a similar
way—the base simulation model includes child metabolic profiles29.
In conclusion, to the best of our knowledge, this study offers the first
example of breaking the ‘ceiling effect’ of AID via interactive human-
machine co-adaptation. This involves adapting the user to the sys-
tem’s work and the system to the user’s changing physiology and
behaviour. Emerging ‘digital twin’ technologies, which program
certain characteristics, such as a person’s glucose-insulin metabolism,
into a computer application, not only enable rapid therapy parameter
optimisation but also offer educational support to make diabetes
management more accessible. Directions for further studies include:
exploring broader applicability of the concept of human-machine
interaction for the management of diabetes, usability of ABC in
different AID platforms and different age groups, as well as long-
term sustainability of the observed benefits.

Methods
Procedure
This randomised controlled clinical trial tested the effectiveness of a new
ABCsystem. TheABC technology and the study protocolwere approvedby
the FDA Investigational Device Exemption #G220224 on September 23,
2022, and subsequently by the Institutional Review Board at the University
of Virginia (HSR 220300). The trial was registered with ClinicalTrials.gov,
NCT05610111, recruitment began on January 18, 2023, and the study was
completed on September 28, 2024.

Study participants
All participants signed informed consent forms. The inclusion criteria were
adults diagnosedwithT1D, ages18–70 years, whohadbeenusing an insulin
pump for at least 6months. At randomisation, participantswere required to
be using the t:slim X2 insulin pump with Control-IQ technology (Tandem
Diabetes Care, San Diego, California) and Dexcom G6 CGM sensors
(Dexcom, Inc., San Diego, California). Participants had to have a total daily
insulin dose of at least 10 units, with no other restrictions related to their
diabetes control, such as limits on glycated haemoglobin at enrolment.
Concurrent use of any non-insulin glucose-lowering agents, except for
metformin or GLP-1 receptor agonists, was excluded following screening
(including pramlintide, DPP-4 inhibitors, SGLT-2 inhibitors and sulfony-
lureas). Complete inclusion and exclusion criteria are detailed in Supple-
mentary Table 1.

Study design
Supplementary Fig. 1 presents the design of this single-centre outpatient
study in the United States: participants were randomised 1:1 into two
groups, which differed by the order of introduction of the ABC system.
Group A (Escalation group) began with a 2-week baseline period on AID
alone, followed by 4 weeks of AID+ information feedback (AID+ IF),
followedby16weeksof the completeABCsystem that included information
feedback plus co-adaptation using the ABC system (AID+ABC). Group B
(De-escalation group) experienced these conditions in reverse order. The
complete ABC systemwas activated after randomisation for 16 weeks, then
downgraded to AID+ IF for 4 weeks and finally to AID alone for the last
2 weeks. The study design (Supplementary Fig. 1) included periods of AID,
IF and ABC of unequal length. This was done considering that: (i) All
participantswere onAID at recruitment and therefore a 2-weekAIDperiod
was sufficient to confirm the degree of their glycaemic control—this cor-
responds to a standard 2-week AGP22; (ii) The participants were generally
familiar with information summaries provided by their commercial AID
systems. Here, the IF module provides additional summaries and risk
analysis, but is not offering actionable advice; thus, a 4-week exposure to this
module was considered sufficient to gauge its effect; (iii) The ABC is an
entirely new concept that offers both actionable advice (e.g. algorithm
parameter change) and interactive simulation. Thus, we expected that study
participants would have a learning curve until the effect of ABC becomes
apparent. Following this logic and to make the lengths of the IF and ABC

time periods selected for analysis comparable, we used the last 4 weeks of
ABC to gauge outcomes.

Outcomes and statistical analysis
The primary outcome was CGM-measured TIR (3.9–10mmol/L) during
the last 4 weeks of ABC system vs the 2 weeks on AID alone. The primary
hypothesis was that ABC will be superior to AID at a significance level of
α = 0.05. To preserve the overall type 1 error for selected key secondary
endpoints, a hierarchical testing procedure was used. If the primary analysis
for TIR yielded a statistically significant result (p < 0.05), then testing pro-
ceeded to the next outcome in the following order: (i) CGM-measured
percent time below 3.9mmol/L during the day; (ii) CGM-measured percent
time above 10mmol/L during the day; (iii) CGM-measured coefficient of
variation during the day, and (iv) CGM-measured mean glucose. This
process continued moving to the next variable on the list until a non-
significant result (p ≥ 0.05) was observed, or all variables have been tested. If
a non-significant result was encountered, then formal statistical hypothesis
testing was terminated, and any remaining analyses were considered
exploratory. Glycated haemoglobin wasmeasured at the baseline and at the
end of the study. Descriptive statistics and general linear models were used
to tabulate and analyse the data, with the analysis performed in IBM SPSS
29. Glycaemic outcomes between the two groups were compared via linear
mixed-effects, with group, intervention and age as fixed factors, a group ×
intervention contrast and a random intercept for each participant. Safety
analyses were done to account for severe hypoglycaemia, DKA and adverse
events with a possible relationship to the ABC system.

ABC technology
CGM and insulin delivery data from the participants’ AID systems were
uploaded automatically to a cloud-based platform for further processing.
The data included time series of glucose values and insulin delivery with
5-min resolution. Participants could log into the ABC portal and interact
with the system through an app on their phones, or via a web browser on a
tablet or computer. Supplementary Figs. 2–5 provide screenshots of the
main ABC screens, along with explanations of the corresponding modules
described below:

The ABC system included an IF (information feedback) module, a
Physiological Adaptation Module (PAM) and a WST. The IF module
included traditional markers of glycaemic control progression, such as
standard CGM metrics and AGP22, as well as a calendar of daily risks for
hypoglycaemia and hyperglycaemia allowing users to reflect upon days
when high risks were encountered. Generally, the approaches behind the
ABC modules are similar to those described in a recent review, which
provides insights into the concepts, modelling methods and current cap-
abilities of digital-twin mapping35. Thus, here we offer only a brief
description: PAM uses CGM, insulin and meal data. The Identification-
Replay-Optimisation approach described by Diaz et al.30, is central to the
digital twin mapping used in PAM. This approach involves identifying a
subcutaneous minimal model of glucose-insulin dynamics using primarily
users’ glucose and insulin data. The workflow of PAM is presented in
Supplementary Fig. 6: all PAM computations are executed in the back-
ground without user intervention. Daily, PAMprocesses CGM, insulin and
meal data and runs a model identification to generate a digital twin. To
reconstruct accurately observed scenarios and simulate what-if conditions,
the data processing includes adjusting announced mealtimes and inferring
unannounced meals from CGM and insulin data. Physical activity
announcements to the AID system are considered in the replay simulation
methodology as well. The ABC system also accounts for user behaviour
related to hypoglycaemia treatments and insulin dosing (e.g. extended,
aborted, or fixed boluses). Settings specific to the AID system employed by
the trial are used to replay manual and automatic doses. Every 2 weeks, the
system uses the digital twins to run multiple replay simulations, each time
with slightly different therapy parameters (CR, CF and basal rate). The goal
is to find optimal modulation factors for CR, CF and basal rate by applying
up to 10% changes to each 4-h time segment.
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The purpose of PAM was to track changes in the participant’s phy-
siological response to insulin delivery, adjust therapy parameters (CR, CF,
basal rate) accordingly, and suggest modifications to the user for imple-
mentation in their AID systems. Therapy adjustments were limited to a
maximum of ±10 percent of the original profile for safety reasons. Users
could also experiment with their own data and try in silicowhat-if scenarios
using the WST. For instance, they could explore the expected outcomes of
lowering their CRby 10 percent or increasing their basal rate overnight. The
expectationwas that experimentingwith their owndatawouldprovideusers
with insights into how the AID system works, thereby triggering beha-
vioural adaptation.

The technology of the ABC system is a subject of the following patent
applications:
(1) Applicant: University of Virginia Patent Foundation; Inventors: Boris

P. Kovatchev, Patricio Colmegna, Jenny L. Diaz-Castañeda, andMaria
Fernanda Villa Tamayo; Title: “System, Method, And Computer
Readable Medium for Adaptive Bio-Behavioral Control (ABC) in
Diabetes,” described in: U. S. Provisional Patent Application Serial No.
63/448,082 filed on February 24, 2023; U. S. Provisional Patent
Application SerialNo. 63/459,060filed onApril 13, 2023; International
Patent Application Serial No. PCT/US2024/016960 filed on February
22, 2024, and International PublicationNumberWO2024/178261A1,
29 August, 2024.

(2) Applicant: University of Virginia Patent Foundation; Inventors: Boris
P.Kovatchev,MarcD. Breton, KeWang, andPatricioColmegna; Title:
“Method And System For Generating AUser Tunable Representation
of Glucose Homeostasis in Type 1 Diabetes Based on Automated
Receipt of Therapy Profile Data”, described in U. S. Provisional Patent
Application Serial No. 63/065,948 filed on August 14, 2020 and
International Patent Application Serial No. PCT/US2023/0352185 A1
filed on November 2, 2023.

Data availability
This study was supported by the U.S. National Instituted of Health and will
therefore adhere to the NIH and Nature Portfolio Journals policies for data
dissemination. Protocols and deidentified data will be made available upon
request.

Code availability
The systems action and screenshots are described in the Supplementary
materials and the system algorithms are described in a previous
publication30. The software computing various metrics of glycemic control
and generating the figures and tables of the ABC system is provided in this
repository: https://github.com/jp993/abc_analysis. Thus, those skilled in the
art should be able to reproduce the action of the ABC system in their own
coding environment. Certain restrictions will be imposed on sharing the
code of the replay simulation module (PAM)—this code is specific to the
control algorithm used by the AID system; thus, the replay simulation code
is not publicly available for proprietary reasons.
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