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Predicting outcomes after moderate and
severe traumatic brain injury using
artificial intelligence: a systematic review
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Armaan K. Malhotra'??, Husain Shakil"*%, Christopher W. Smith'?, Yu Qing Huang>**, Jethro C. C. Kwong®,
Kevin E. Thorpe®’, Christopher D. Witiw'**, Abhaya V. Kulkarni*?, Jefferson R. Wilson'?3'° &

Avery B. Nathens®®'°

Methodological standards of existing clinical Al research remain poorly characterized and may
partially explain the implementation gap between model development and meaningful clinical
translation. This systematic review aims to identify Al-based methods to predict outcomes after
moderate to severe traumatic brain injury (TBI), where prognostic uncertainty is highest. The
APPRAISE-AI quantitative appraisal tool was used to evaluate methodological quality. We identified
39 studies comprising 592,323 patients with moderate to severe TBI. The weakest domains were
methodological conduct (median score 35%), robustness of results (20%), and reproducibility (35%).
Higher journal impact factor, larger sample size, more recent publication year and use of data collected
in high-income countries were associated with higher APPRAISE-Al scores. Most models were trained
or validated using patient populations from high-income countries, underscoring the lack of diverse
development datasets and possible generalizability concerns applying models outside these settings.
Given its recent development, the APPRAISE-AI tool requires ongoing measurement property

assessment.

Traumatic brain injury (TBI) is the leading cause of preventable trauma-
related morbidity and mortality worldwide”. Outcome prediction for
moderate to severe TBI patients remains a difficult task for clinicians’™.
With the advent of computational advancements, the number of automated
clinical decision tools leveraging artificial intelligence (AI) has risen
exponentially*’. Alis an umbrella term and refers broadly to algorithms that
learn from prior experiences and are capable of applying learned patterns to
new data in the future. Together, these models have the potential to enhance
patient care through improvements in predictive accuracy and identifica-
tion of novel associations®’. Using Al for TBI outcome prediction has the
potential to integrate multimodal data sources to optimize prognostication.
However, barriers to clinical translation stem from generalizability concerns
and unknown risk of biases, which likely explain the low number of Al-
based prediction models that have gained traction in real clinical
practice'®”’. For example, lack of diverse training data may degrade

prediction accuracy in specific subpopulations and potentially lead to
patient harm if applied to clinical practice without knowledge of biased
performance'®"".

There is a lack of systematically conducted critical appraisal for AI-
based prognostic models, resulting in generally limited clinical trans-
lation. This has motivated the development of several reporting
guidelines for clinical Al model development including the APPRAISE-
AT tool, which was designed as a quantitative appraisal instrument that
facilitates empirical evaluation of Al-based clinical decision support
models with emphasis on model design, validation methodology,
clinical utility and patient safety'”.

In this study, we sought to systematically evaluate the quality of AI-
based tools developed to prognosticate patients with moderate to severe TBL
We aimed to (1) characterize the methods used to develop the Al tools
(study design, validation techniques) and (2) determine the risk of bias,
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threats to validity and reporting standards of published models. Our goal
was also to make recommendations that may enhance the quality of ongoing
research and increase the likelihood of safe implementation with maximal
clinical impact.

Results

Study characteristics

We identified 39 moderate to severe TBI prognostication studies meeting
inclusion and exclusion criteria (Supplementary Fig. 1). There were 15
studies (39%) that predicted functional outcome using either the Glasgow
Outcome Scale (GOS) or Glasgow Outcome Scale-Extended (GOS-E)
measures (median follow-up duration 6 months)"*™’ 13 articles (33%) that
predicted mortality”*’ and 11 articles (28%) that predicted both functional
outcome and mortality”~'. There was heterogeneity in functional outcome
definitions using the GOS and GOS-E, with some studies binarizing these
ordinal scales using different thresholds and a minority of studies con-
ducting ordinal regression or treating these as continuous variables
(Table 1)"***". Among studies predicting both mortality and functional
outcome, 3 studies (8%) did not meet functional outcome assessment
inclusion criteria of =3 months after injury and were therefore considered
only for mortality outcomes*****’. Data collection methods varied with 16
prospective (41%), 21 retrospective (54%) and 2 mixed retrospective and
prospective studies (5%). Multicenter data was reported in 18 studies (46%),
of which 8 studies (21%) included data from more than one country. The
majority of articles were published between 2019-2024 (n = 31, 79%) with
the remainder from 1997-2016 (n = 8, 21%).

Patient characteristics

There were 592,323 patients with moderate to severe TBI managed across
over 20 countries in North America, Europe, Asia and the Middle East.
Median sample size was 482 patients (interquartile range [IQR] 168-994).
Cohorts from high-income countries predominated (n =30, 77%), with a
small number of upper middle-income country cohorts (n =9, 23%); there
were no low-income cohorts represented. Cohort composition was
most frequently adult (n = 32, 82%), followed by mixed pediatric and adult
(n=5,13%) and pediatric only (n = 2, 5%). There were 34 studies (87%) that
reported sex composition; from these studies, the combined proportion of
male patients was 62% (n = 352,054/565,347). Mean age was reported in
19 studies (pooled mean 42 years, 95% CI: 37-48, I* > 90%) and median age
in 21 studies (median age 47, IQR 32-52 years); age was unspecified in
2 studies. Mortality was reported descriptively (not specifically as a primary
prediction outcome) in 30 studies at varying follow-up times. Moderate to
severe TBI mortality reported within studies ranged from 6% to 64% with a
median value of 24% (IQR 16-34%). Intracranial pressure (ICP) monitoring
and surgical intervention (craniotomy or craniectomy) rates were infre-
quently reported with 11 studies (28%) reporting on either procedure type
respectively.

Model characteristics

There was heterogeneity regarding AI model architectures, validation
methods and comparator models utilized (Tables 1 and 2). Internal vali-
dation was the most common method reported with 16 studies utilizing
(41%) cross-validation, 14 studies (36%) using random splits and 1 study
(3%) utilizing a temporal data split. External validation was performed in
only 8 studies (21%). Non-AI comparator multivariable logistic regression
predictions were present in 24 studies (62%). Of these 24 studies, 10 studies
(26%) used the International Mission for Prognosis and Analysis of
Clinical Trials in TBI (IMPACT)” prognostic calculator (or IMPACT
feature list) and 3 studies (8%) included the Corticoid Randomization after
Significant Head Injury (CRASH) prognostic calculator (or CRASH fea-
ture list), both of which are previously validated TBI prediction models
(multivariable logistic regression models) (Tables 1 and 2)*. Only 1 study
(3%) obtained human-generated outcome predictions from clinical
experts”’. Absolute performance difference between Al and non-AI model
predictions for performance metrics C-index, accuracy, sensitivity and

specificity are summarized in Fig. 1. No studies included model equity
assessments of pre-defined patient subgroups. Model explainability with
variable importance rankings was provided in 28 studies (72%). Among
the three most important features identified from each study, common
variables were age (n = 16 studies, 41%), Glasgow Coma Scale score (GCS)
(n = 12 studies, 31%), intracranial hematoma data (n = 8 studies, 21%) and
pupil reactivity (n = 7 studies, 18%) (Supplementary Table 1).

Evidence appraisal

Intraclass correlation coefficient (ICC) for reviewers was 0.96 (95% CI:
0.93-0.98) for the overall APPRAISE-AI score, demonstrating excellent
agreement. ICC ranged from 0.73-0.90 (moderate to good agreement)
across domains (Supplementary Table 2). APPRAISE-AI scores were
averaged between reviewers. Median overall score was 46 (out of 100
maximum points; IQR 39-52 points), reflecting an overall moderate study
quality. The range of scores was broad from 27 to 66. There were 13 low-
quality studies (33%), 21 moderate-quality studies (54%) and 5 high-quality
studies (13%). As a fraction of domain-specific maximum points allocated,
robustness of results, methodological conduct and reproducibility were the
lowest scoring domains with median pooled percent scores of 20%, 35% and
35% respectively (Fig. 2). The two strongest domains were clinical relevance
and reporting quality with pooled median scores of 88% and 87%
respectively.

Review of individual item scores highlighted relative strength in overall
title clarity, background information, problem and target population spe-
cification, ground truth definitions, specification of inclusion and exclusion
criteria, Al model descriptions, critical analysis of results, acknowledgement
of limitations and disclosure reporting (Fig. 3). Major weaknesses across
studies were data source descriptions (often single center without explicit
reporting of low/middle-income or community/rural patient populations),
generally small sample sizes, sample size specification in only two studies,
low-quality comparator models (absence of gold standard model, non-AI
regression model or human expert predictions), absent bias assessments,
lacking predictive error analyses, and poor reproducibility. Qualitative
review of performance differences between Al versus non-Al comparator
models across APPRAISE-AI score groups highlight a smaller magnitude
difference in C-index difference among high-quality studies, with variability
across accuracy, sensitivity and specificity metrics (Fig. 1).

Overall APPRAISE-AI scores were higher in studies utilizing data
collected in high-income countries compared to upper middle-income
countries (two-sample #-test; mean difference=7.6 points, p=0.014).
Univariate linear regression demonstrated that high impact factor pub-
lications, sample size over 500 patients and more recent publication year
were independently associated with higher mean overall APPRAISE-AI
scores (Table 3 and Supplementary Figs. 2-4). After adjustment in a mul-
tivariable regression model, high impact factor journal publication,
increasing sample size, more recent publication year and data collection in a
high-income country were all independently associated with higher
APPRAISE-AI overall scores (Table 3).

Discussion

We systematically reviewed studies predicting acute moderate to severe TBI
mortality and functional outcomes using Al-based methods. Specific study
strengths include strong study clinical rationales, robust ground truth spe-
cification, frequent use of functional outcomes and explicit definition of
eligibility criteria. There were also notable weaknesses such as lack of sample
size calculations, infrequent external validation, absent bias assessment in
defined patient subgroups and a minority of studies including open-source
data, source code and available models to generate single or bulk predictions.
Collectively, these weaknesses threaten the validity, generalizability and
potential safety of clinical decision support prediction models. These lim-
itations with existing Al-based prognostic models also likely explain the
implementation gap between model development and lack of meaningful
clinical deployment. Further, we also demonstrate empirical associations
between journal impact factor, study sample size, publication year and
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World Bank country classifications with overall APPRAISE-AI scores.
There was a lack of studies representing low- and middle-income cohorts as
well as rural or community-dwelling patient populations. This systematic
lack of representation could culminate in worsening performance and
potential for biased predictions if these models were applied in low- and
middle-income country healthcare systems, where local injury epidemiol-
ogy, care processes and treatment timing may differ. Our findings under-
score a current lack of Al-based TBI prognostication models for low- and
middle-income patient populations.

Three APPRAISE-AI domains had median scores within the low range
across identified studies including methodological conduct, robustness of
results, and reproducibility. Interestingly, similar low-quality domains have
been previously identified in a methodological review of Al-based bladder
cancer prognostication models, suggesting consistency and potential rele-
vance of these inferences across more general medical prediction models™.
The following focused recommendations consider domain-specific and
item-specific scores to maximize the yield of targeted methodological
improvements within Al-based TBI prediction models.

From a methodological conduct perspective, sample size calculations
were reported in only 2 of the 39 included studies™”". Lack of sample size
specification may introduce biased estimation in the setting of insufficient
event rates relative to candidate features used in modeling. In this setting,
conclusions made about model performance may be attributable to study
power, rather than data handling, model training or Al architectures (higher
chance of type I or II errors)™. We demonstrated an association between
sample size and APPRAISE-AI composite score, providing evidence to
further support this claim. Prior simulation studies have demonstrated
machine learning modeling approaches are data hungry and often need over
10 times the number of events per variable compared to logistic regression,
meaning the necessary sample size for appropriate clinical prediction model
development may be much larger than was reported in most of the included
studies”’. In addition to sample size, selection of a comparator model affords
investigators an internal control to benchmark AI modeling choices and
rigorously demonstrate they improved prediction performance compared
to an existing gold standard. In this review, there were 15 studies that lacked
the presence of a comparator model, 1 study that used a team of clinician
experts and only 10 studies that included a previously validated prediction
model for moderate to severe TBI (CRASH or IMPACT score)*****. Spe-
cific steps to enhance methodological conduct in future work would be a
priori sample size estimation, use of data collected from diverse patient
populations and inclusion of comparator models as benchmarks when
evaluating AI model performance.

The two items driving low scores for robustness of results were limited
bias assessments and lack of error analyses. A major safeguard against
unintended patient harm remains robust exploration of clinically relevant
subgroups and task-specific applications. Out of 39 included studies, 27 did
not investigate task-specific or subgroup-specific discrimination and clinical
utility. In TBI patients, clinically relevant mismatch in clinical exam findings
(ex: GCS) and severity of injury has been well-established for older adults™.
Lack of age-stratified performance assessment across age strata is one
potential threat to clinical workflow integration®. Similarly, 32 studies did
not conduct a predictive or surprise error analysis through review of mis-
classified results. This can be a useful method to build model trust, under-
stand potential impacts of model deployment and identify features
influencing decision-making that may be nonsensical based on conven-
tional clinical knowledge (such as detection of a ruler to define a malignant
skin lesion)*".

Transparency and reproducibility were low across included studies due
to infrequent inclusion of data dictionaries, source code, publication of
models that make single or bulk predictions and low rates of data availability
(or specification of data access procedures). Investigators and journals
should endeavor to provide scientific audiences with this information to
facilitate maximum model usage, feedback and troubleshooting. This may
take the form of accessible source code or an available trained model that
other researchers can use to make individual predictions. Further, from a

Multivariable proportional odds LR

with IMPACT features:
External dataset 1:

Non-Al performance (top model;
AUC: 0.88

if existing nomogram or human
experts included, all reported)

Not included
External dataset 2:

Not included
AUC: 0.63

features for External Dataset 2:

AUC: 0.69

GCS Glasgow Coma Scale, ICP intracranial pressure, ICU intensive care unit, SDH subdural hematoma, msTBI moderate to severe TBI, AIS abbreviated injury severity, GBM gradient boosting machine, SVM support vector machine, CNN/ANN convolutional neural
network/artificial neural network, LASSO least absolute shrinkage and selection operator, KNN K nearest neighbors, LR logistic regression, XGBoost eXtreme gradient boosting, MAP mean arterial pressure, CPP cerebral perfusion pressure, IMPACT International Mission

Top model random forest with
for Prognosis and Analysis of Clinical Trials in TBI, CRASH Corticoid Randomization after Significant Head Injury, PROTECT Progesterone for Traumatic Brain Injury, Experimental Clinical Treatment, CT computed tomography.

IMPACT features for
Top model ANN with IMPACT

Al performance (top model

performance reported)
Mean time-dependent

AUC: 0.713
External Dataset 1:

AUC: 0.896

Top model KNN:
Accuracy: 88%
AUC: 0.86

discriminant analysis, KNN classifiers, and

XGBoost Cox proportional hazard regression
SVM (differing kernels)

Compound covariate predictor, linear

Model architecture(s)
Random forest & ANN

(adult, mixed, or
pediatric)
545,388 (adult)

Sample size
52 (adult)
1808 (adult)

Time of mortality

assessment
In-hospital
In-hospital
6-12 months

=6)

Head region AIS>3 and AIS<1 in
other regions (excluding AIS
Severe TBI undergoing ICP
monitoring, excluding severe

TBI all severities admitted to ICU
(83% model development dataset
moderate to severe TBI)

TBI definition
polytrauma

Table 2 (continued) | Study details, model development and performance characteristics of studies predicting mortality following moderate to severe TBI

First author and
year of publication

Cao 2023
Stein 2012
Bark 2024
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A: Mortality B: Functional Outcome
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Favors Non-Al Favors Al Favors Non-Al Favors Al Favors Non-Al Favors Al Favors Non-Al Favors Al
> >

Absolute Performance Difference (%)

Fig. 1 | Absolute performance difference between AI and non-Al models across
c-index (AUC), accuracy, sensitivity and specificity (reported as %). Positive
absolute performance difference values mean AI model performance was higher
than non-AI model for the given metric. Stratification corresponds to study-specific
APPRAISE-AI score (low, moderate or high). A, B depict results for studies pre-
dicting mortality and functional outcome respectively. Note: absolute performance

differences reflect comparisons of study-specific performance point estimates, not
confidence intervals, which were inconsistently reported in included studies and
models. Listed comparisons between Al and non-Al models may therefore overstate
performance differences due to unreported confidence intervals quantifying
uncertainty. Pease 2022 accuracy, sensitivity and specificity results from AI com-
pared to average of three human experts (neurosurgeons).

Clinical Relevance

Data Quality

Methodological Conduct

Robustness of Results

Reporting Quality . . —_— L

APPRAISE-Al Domain

Reproducibility

Overall Score

0 25 50 75
Percentage of Maximum Score

100

Fig. 2 | Box plot depicting consensus APPRAISE-AI domain-specific scores, and
overall scores determined from review of included studies (n = 39). Scores were
normalized as a proportion of the maximum domain-specific or overall score
(percentages). Vertical bars show median values, boxes demonstrate interquartile
range (25th to 75th percentile) and whiskers the bounds of 5th and 95th percentiles.
Outliers are shown as individual points.

model specification perspective, investigators can enhance reproducibility
by also explicitly outlining hyperparameter tuning steps (such as whether a
grid search or random search was used, which final hyperparameters were
selected and ranges of hyperparameter searching) and final model specifi-
cations. These steps, which ultimately determine final model parameters, are
essential for other investigators to attempt to fully understand the model
development process.

The current regulatory landscape of Al-based decision support systems
in healthcare is complex and evolving. While we don’t aim to provide a
comprehensive overview of regulatory frameworks, most of these prog-
nostic TBI models would fall into the category of Software as a Medical
Device (SaMD). Given the complex nature of prognostication in TBI, these
models would be decision support tools if implemented, where the ultimate
decision rests with the treating clinical team, not any direct agency for an Al

model. The Food and Drug Administration in the United States introduced
the Proposed Regulatory Framework for Modifications to AI/ML-based
SaMD, which outlines responsibilities for developers such as a requirement
to monitor the performance of models in the real world”. Some of the
highlighted weaknesses identified in existing Al-based TBI models in this
review highlight crucial model development areas that may limit real-world
performance; these results will be useful for regulators and model developers
alike. In fact, our findings agree with several key considerations outlined by
the recent World Health Organization Regulatory considerations on artifi-
cial intelligence for health including an emphasis on transparency, robust
external validation and adherence to high data quality standards®.

This study should be interpreted in light of a few limitations. We were
unable to perform an across-study meta-analysis of Al and non-AI model
performance owing to heterogeneity in outcome definitions, study designs,
model architectures and included features. As a result, there is no pooled
estimate for task-specific prediction performance across studies, only study-
specific absolute performance differences where possible. Notably, these
absolutely performance differences (shown in Fig. 1) compared study-
specific performance point estimates, and did not incorporate confidence
intervals since these were variably reported across studies. We additionally
acknowledge the APPRAISE-AI tool has been recently introduced, and
there remains limited validation of its measurement properties such as
construct validity and responsiveness, temporal validity with evolving Al
research standards and floor/ceiling effects with scoring. As ongoing psy-
chometric evaluation of these measurement properties continue, there may
be ongoing item modification or alterations to domain score weights. We
also recommend future additional validation of APPRAISE-AI, especially
with the rapidly evolving field of medical AI, which may quickly advance
beyond existing appraisal instruments. The majority of included studies
utilized tabular clinical data only, meaning that the multimodal benefits of
Al may have been underutilized. We also did not encounter applications of
natural language processing, despite explicitly including this as a search
term. Finally, if a component of the APPRAISE-AI tool was completed, but
not reported by the authors, we may have underestimated study quality (e.g.
if a study included low-income patients, but this was not specified). To
ensure fairness of methodological appraisals, we limited our review to only
accessible information contained within studies, rather than contacting
authors specifically, which may have yielded higher scores.
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Fig. 3 | Box plot depicting individual APPRAISE-
Al item-specific scores across study components
determined from review of included studies

(n = 39). Scores were normalized as a proportion of
the maximum item-specific score (percentages).
Vertical bars show median values, boxes demon-
strate interquartile range (25th to 75th percentile; no
range shown if score distribution for item is narrow)
and whiskers the bounds of 5th and 95th percentiles.
Outliers are shown as individual points.
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Ground Truth Definition .
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Al Model Description

Hyperparameter Tuning
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Clinical Utility Assessment
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< |- Methods

HI¥- Results
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The findings of this systematic review have the potential to increase
methodological rigor of neurotrauma research, enhance model translation
to clinical settings and reduce potential patient harm. Future prognostic
neurotrauma research could specifically benefit from evaluation of model
performance in pre-specified patient subgroups, explicit consideration of
sample size requirements, evaluation of AI models against comparator
benchmark prediction models and release of open-source models to max-
imize transparency.

Methods

The following systematic review was performed adhering to the
CHARMS® (Checklist for Critical Appraisal and Data Extraction for
Systematic Reviews of Prediction Modeling Studies) for data extraction
and PRISMA® (Preferred Reporting Items for Systematic Reviews and
Meta-analyses) guidelines for reporting (Supplementary Note 1). Our
search strategy and protocol were registered in advance through PROS-
PERO (CRD42024553288).

Search strategy

We searched electronic databases including OVID Medline, Embase, Sco-
pus, Web of Science and Evidence-Based Medicine Reviews-Cochrane
library from inception to June 1, 2024. The search strategy utilized Boolean
operators across three content domains: (1) traumatic brain injury, (2)
artificial intelligence/machine learning (subfield of AI) and (3) prog-
nostication (Supplementary Note 2).

Eligibility criteria

Study inclusion criteria included: (1) original studies that reported on Al-
based models for patients with acute moderate to severe TBI, where prog-
nostic uncertainty is greatest*’, defined by GCS < 13, inclusion <7 days from
injury; (2) peer-reviewed journal articles; (3) sample size 210 patients; (4)
prediction of a future outcome state (prognostic studies). Considering our
interest in prediction models, a sample of ten patients would be minimally
sufficient (though still very limited) to assess a single predictor, hence was
decided as an inclusion criterion”. A sample size of ten patients was felt to be
the minimum number of patients required to potentially evaluate a single
predictor variable, as suggested by simulation studies of logistic regression
prediction models®. There were two early post hoc protocol modifications.
To ensure outcome homogeneity, we narrowed the outcome definition to
include either death or functional status. Functional outcome assessment
must occur a minimum >3 months from injury since earlier assessments are

highly susceptible to under-estimating recovery trajectories (overly
nihilistic)’.

There was no restriction imposed regarding age, presence of extra-
cranial injuries or type of data input (e.g. ICP monitoring, neuroimaging, or
tabular clinical data as examples). We defined Al as utilizing computer
systems to replicate human-like cognitive processing tasks for clinical
decision support. A wide range of AI model architectures were permitted
including tree-based models, transformers, neural networks, support vector
machines and natural language processing. Studies reporting on patients
with concussion or mild TBI only were excluded, unless >75% of the
included cohort had moderate or severe TBI. We excluded reviews, com-
mentaries, editorials, conference abstracts or proceedings, meta-analyses,
and case reports or series of fewer than ten patients. We also excluded
studies that did not report on development of a moderate to severe TBI
subgroup-specific prognostic tool (ie. if other acute brain injuries were
included). Diagnostic studies alone (such as detection of intracranial
hemorrhage) were excluded in addition to studies using AI methods to
identify a covariate for a conventional regression analysis.

Screening and data collection

Abstract screening and full-text review were conducted by two independent
authors. The following data were extracted from each study: study type,
country of data collection, sample size, baseline characteristics such as age,
sex, outcome characteristics including follow-up duration, outcome type
and counts, as well as model details validation method, dataset size, archi-
tecture and presence of specified subgroup or fairness testing (to assess
model equity). Continuous variable means with standard deviation or
median with IQR and categorical counts were collected. Pooled mean age
was determined directly using random effects meta-analysis with a max-
imum likelihood estimator from studies reporting means with standard
deviation due to anticipated high heterogeneity®.

Additional metrics of model performance were collected including
area under receiver operating characteristic curve (AUC-ROC), accuracy,
sensitivity and specificity. For studies comparing AI models to non-Al
models (statistical models such as the previously validated IMPACT
prognostic score” or clinician judgment), we determined absolute perfor-
mance difference for reported metrics. In studies that reported performance
metrics across different cohorts, we prioritized use of estimates according to
the following hierarchy: external validation groups, testing (internal vali-
dation) and training™. We additionally collected the top three influential
variables from variable importance rankings reported in included studies.
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Table 3 | Linear regression results highlighting univariate
associations between sample size (categorized as <100,
100-500, 500-1000, >1000), journal impact factor (categorized
as <3, 3-5, 5-10 and >10) and publication year with APPRAISE-
Al overall scores

Variable Mean difference  95% pvalue R?
in APPRAISE-Al  confidence
overall score interval
Univariate linear regression
Impact factor [Reference IF < 3] 0.026 0.21
IF 3-4.9 5.8 —1.5-13.1
IF 5-9.9 8.1 —-0.97-17.1
IF>10 15.5 4.5-26.5
Sample size [Reference: <100 patients] 0.002 0.31
100-499 patients 8.4 -1.0-17.7
500-1000 patients 10.3 0.2-20.4
>1000 patients 18.3 8.4-28.2
Publication year 0.65 0.04-1.27 0.034 0.11
Multivariable linear regression
Impact factor [Reference IF < 3] 0.041 0.65
IF 3-4.9 0.49 -5.9-6.9
IF 5-9.9 5.9 -2.6-12.3
IF>10 104 0.8-20.0
Sample size [Reference: <100 patients] <0.001
100-499 patients 1.4 3.6-19.1
500-1000 patients 8.8 0.09-17.6
>1000 patients 18.7 10.9-26.6
Publication year (per 0.70 0.23-1.16 0.002
1-year increase)
Country of data 8.6 1.7-15.4 0.011

collection [high-
income country with
reference to upper
middle-income
country]

Multivariable linear regression model was additionally adjusted for country of data collection (high-
income compared to upper-middle income). p values were determined for variables using likelihood
ratio testing (to determine overall association, rather than association per variable level). Publication
year ranged from 1997 to 2024 in the study. In the regression model, publication year was kept as a
continuous variable and centered around 0. Bolded values represent statistically significant
associations with p <0.05.

Quality assessment

The APPRAISE-AI tool is comprised of 24 items summing to a maximum
total score of 100 across six domains: clinical relevance, data quality,
methodological conduct, robustness of results, reporting quality, and
reproducibility™. Score interpretation follows pre-defined ranges from 0-19
(very low-quality), 20-39 (low-quality), 40-59 (moderate-quality), 60-79
(high-quality) and 80-100 (very high-quality). Use of this tool provides
investigators the resolution to examine domain-specific study weaknesses as
well as compare global between-study scores quantitatively.

Study risk of bias assessment was evaluated independently by two
reviewers, each of whom was an expert in the field of brain injury and Al
methodology. To measure agreement, we determined interrater reliability
using the ICC. Since two reviewers independently scored each article at a
single time, a two-way random effects ICC with absolute agreement was
reported. Interrater reliability was poor, moderate, good or excellent
according to the following thresholds: <0.50, 0.50-0.75, 0.75-0.90
and >0.90".

To assess the relationship between country of data collection and
APPRAISE-AI scores (country categorizations as high-income, upper-
middle-income and low or lower-middle-income per World Bank

groupings)’’, we used a two-sample f-test assuming unequal variance
(Welch’s t-test) since there were only two country designations identified.
To assess whether APPRAISE-AI scores changed with study sample size,
journal impact factor or year of publication, we performed univariate linear
regressions to quantify these relationships. We then constructed a multi-
variable regression model to obtain adjusted associations between above-
mentioned variables with APPRAISE-AI scores. Multicollinearity was
assessed, and variance inflation factor was <3 for all variables.

All other statistical analyses and plotting were performed using
packages available through R Statistical Programming (V.4.2.1) with two-
sided values for statistical significance less than 0.05.

Data availability

Data were extracted from peer-reviewed published articles and are acces-
sible. Any additional data used and APPRAISE-AI scoring forms analyzed
during the current study can be made available from the corresponding
author on reasonable request.

Code availability

The underlying code for this study is not publicly available but may be made
available to qualified researchers on reasonable request from the corre-
sponding author.
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