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High-resolution lifestyle profiling and
metabolic subphenotypes of type 2
diabetes
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Distinct metabolic susceptibilities (beta-cell dysfunction, insulin resistance (IR), and impaired incretin
response) underlie type 2 diabetes (T2D). However, their relationships with habitual lifestyle behaviors
are underexplored. This study integrated high-resolution lifestyle data from wearable devices,
continuous glucose monitoring, and smartphone-based food logs with gold-standard physiological
tests in 36 individuals at risk for T2D (ClinicalTrials.Gov; NCT03919877; 2019-04-18). Over 6400
timestamped records of diet, sleep, and physical activity were analyzed with in participants with
measures of beta-cell function, tissue-specific IR (muscle, hepatic, adipose), and incretin response.
We found that lifestyle timing and variability were strongly associated with metabolic subphenotypes:
(1) eating timingwas associatedwithmuscle IR and incretin function; (2) irregular sleep correlated to IR
and incretin function; and (3) Time-of-day effects of physical activity varied by subphenotype. These
findings were validated in an independent cohort. Our results highlight novel physiological links
between daily behaviors and metabolic risk, informing potential lifestyle modifications for T2D
prevention.

Type 2diabetes (T2D) continues to rise globally, affecting 589million adults
worldwide and 38 million people in the U.S. alone1. Moreover, 88 million
U.S. adults haveprediabetes,withup to70%expected todevelopT2Dwithin
four years2. Preventing this transition in at-risk individuals remains a critical
public healthpriority.Many studies have shown that lifestylemodification is
a powerful and cost-effectivemeans to prevent andmanageT2D3.However,
tomaximize the effectiveness of such interventions, a deeper understanding
of how daily lifestyle behaviors interact with physiological mechanisms that
precede hyperglycemia is needed.

Diet, sleep, and physical activity are core modifiable lifestyle behaviors
essential to metabolic health. Despite extensive research on their effects on
glucose levels, our current understanding of their influence on metabolic
disease development remains incomplete. Onemajor gap lies in the limited
investigation into how these behaviors relate to diverse physiological
underpinnings of T2D, such as beta-cell dysfunction, insulin resistance (IR),
and impaired incretin response. These traits often precede clinical glycemic
dysregulation4,5, yet their relationships with habitual lifestyle patterns

remain largely unknown. Another challenge is the difficulty of capturing
these behaviors with sufficient temporal resolution in real-world settings.
Traditional questionnaire-based assessmentsof lifestyle behaviors often lack
the granularity to detect subtle but meaningful patterns. In contrast,
advances in digital health technologies such as wearable sensors and
smartphone applications now enable 24-hour, real-time tracking of lifestyle
behaviors6,7.

A growing body of epidemiological and physiological evidence points
to close interactions between lifestyle behaviors and the circadian clock
system. The circadian clock is a timekeeping system that regulates thou-
sands of genomic activities andmetabolic processes at different times of the
day8–10. Light, food, and exercise can serve as external signals to synchronize
the internal clock11, which itself regulates glucose control and sleep. More-
over, sleep deprivation has been shown to adversely impact glucose
levels12,13. Therefore, circadian desynchronization induced by inappropriate
timing of lifestyle behaviors could disrupt physiological responses and may
increase risks for T2D. Nonetheless, most prior studies have explored the
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effect of only oneor two lifestyle domains at a time, leaving the simultaneous
and integrative effects on metabolic physiology largely unexplored.

In this study, we leveraged high-resolution digital monitoring and
gold-standard physiological tests to investigate how habitual lifestyle
behaviors are related tometabolic physiology in individuals at risk for T2D.
Specifically, we hypothesized that lifestyle factors would be associated not
only with glycemic outcomes but also with distinct metabolic sub-
phenotypes such as IR, beta-cell function, and incretin function. Our goals
were (1) to deeply profile temporal patterns of diet, sleep, and physical
activity in free-living individuals; (2) to examine the inter-relationships
among these lifestyle domains; (3) toquantify their associationswithglucose
levels using both laboratory tests and continuous glucose monitoring; and
(4) to identify lifestyle features predictive of core metabolic subphenotypes,
including tissue-specific IR, beta-cell dysfunction, and impaired incretin
response. By integrating behavioral data with physiological phenotyping,
this work aims to inform precision prevention strategies for T2D.

Results
Cohort characteristics and data collection
This study included two cohorts: (1) a main cohort (n= 36) for model
training, fine-tuning, and testing, and (2) an independent validation cohort
(n= 10). Themain cohort comprised 36 healthy adults (>18 y of age; median
56.2 y; 17 males and 19 females) whose habitual lifestyle data were collected
(2298 meals, 1661 days of sleep, 2447 days of physical activity, and 231,206
CGM readings). Figure 1 summarizes the study overview and the data
structure and availability across different data modalities. Baseline char-
acteristics and clinical labs are shown in Table 1. The participants were
grouped by HbA1c into prediabetes/T2D (n= 20; 19 prediabetes and one
with T2D) or normoglycemia (n= 16), based on American Diabetes Asso-
ciation criteria (normoglycemia (HbA1c < 5.7%; HbA1c < 39mmol/mol),
prediabetes (5.7% <HbA1c < 6.5%; 39mmol/mol <HbA1c < 48mmol/mol),
and T2D (HbA1c > 6.5%; HbA1c > 48mmol/mol). Demographic variables,
including age, sex, BMI, ethnicity, statin use, smoking, season at study entry,
self-reported exercise in minutes, and systolic/diastolic blood pressure, were
not statistically different between prediabetes/T2D and normoglycemia.
However, fasting plasma glucose (P= 0.002), fasting insulin (P= 0.009), and
triglyceride (P= 0.014) were higher in the prediabetes/T2D group (Table 1).
A separate validation cohort of 10 participants was also analyzed, and their
characteristics are summarized (mean age of 52 years, BMI 24, 90% Cau-
casian and 10% Asian ethnicity, and HbA1c of 5.5%) in Supplementary
Table 1, and their baseline demographics and clinical labs did not sig-
nificantly differ from the main cohort.

Individualized differences in metabolic subphenotypes
Participants underwent gold standard metabolic tests after 10-h overnight
fasting, including an oral glucose test (OGTT), insulin suppression test
(IST), and isoglycemic intravenous glucose infusion test (IIGI)14,15. The
metabolic test results determined participants’ metabolic subphenotypes,
such as IR, beta-cell dysfunction, and incretin dysfunction. Details are
presented in the Methods section and Metwally et al.5.

Participants with prediabetes and T2D showed significantly higher
24 h mean sensor-glucose, higher 24 h max sensor-glucose value (from
CGM), more time spent in hyperglycemic range (>140mg/dL), and higher
sensor-glucose variation than the normoglycemic group (P < 0.05; Sup-
plementary Fig. 2). Additionally, participants were categorized: (1) muscle
insulin sensitive (IS)when steady-state plasma glucose (SSPG) < 120mg/dL
(68.3 ± 20.9 mg/dL) and muscle insulin resistant (IR) when SSPG >/
= 120 mg/dL (193 ± 51.1 mg/dL). Our determination of IR aligns with
the 50% of the SSPG distribution among 490 healthy volunteers that
include moderate elevations of SSPG16; (2) normal beta-cell function
when the disposition index (DI) >/= 1.58 (2.47 ± 0.512) and dys-
function when DI < 1.58 (0.996 ± 0.356); (3) Incretin normal function
when incretin effects (IE) >/= 53.4% (65.1 ± 8.59) and dysfunction
when IE < 53.4% (33.4 ± 12.4); (4) adipose IS when an average of free
fatty acid (FFA) levels at 90, 100, and 110 min from IST < 0.22

(0.144 ± 0.0547) and IR when FFA >/= 0.22 (0.524 ± 0.204); and (5)
hepatic IS when hepatic insulin resistance (HIR)-index <4.35
(4.09 ± 0.198) and IR when HIR-index >/=4.35 (4.65 ± 0.197).

Habitual meal timing patterns are associated with hyperglyce-
mia, muscle IR, and incretin response
To our knowledge, the relationship between meal timing and different
metabolic subphenotypes has not been explored previously. Briefly, the
meal timing profiles for each of the 36 participants were determined by
segmenting the food and beverage consumption (hereafter referred to as
“meal”) periods into six windows: 1) 05:00 and 08:00; 2) 08:00 and 11:00; 3)
11:00 and 14:00; 4) 14:00 and 17:00; 5) 17:00 and 21:00; and 6) 21:00 and the
next day 05:00. These intervals reflect the major periods of food con-
sumption. Subsequently, the energy intake contribution from each meal
timing period relative to the total daily energy intake was determined.

Participants had highly variable inter-individual meal timing pat-
terns enabling an investigation between meal timing and glucose dys-
regulation (Fig. 2a). We used a principal component analysis (PCA)
based on six meal timing features to identify hidden dietary patterns of
the food consumption timing and their relationship to physiological
processes. Notably, the cohort clearly separated into two clusters by their
HbA1c levels based on the meal timing features (Fig. 2b). Specifically,
individuals with lower HbA1c levels are positioned at the top left of the
PCA plot, whereas those with higher HbA1c levels are located at the
bottom right indicating distinct behavior patterns in their timing of food
consumption. Multiple linear regression (MLR) analysis identified daily
time intervals where the separation arises, further substantiating this
conclusion. Relative to participants with lower HbA1c, participants with
higher HbA1c had lower energy consumption from the meal consumed
between 14:00 and 17:00 (PBH = 0.021), as well as higher energy con-
sumption from the meals 17:00–21:00 (PBH = 0.033) and 5:00–8:00
(PBH = 0.031) (Fig. 1c). Similarly, the cohort also clustered by incretin
function based on meal timing (Fig. 2d). Regression showed that those
with reduced incretin function consumed less energy at 14:00–17:00
(PBH = 0.026) and 21:00–5:00 (PBH = 0.031) and more at 11:00–14:00
(PBH = 0.044) and 17:00–21:00 (PBH = 0.018) (Fig. 2e). Muscle insulin
sensitivity showed similar patterns in PCA and regression (Fig. 2f, g;
PBH = 0.037 for 17:00–21:00). No clustering was observed for beta-cell
function (disposition index), indicating no association.

The distribution of timing-related diet data is shown in Fig. 3a, where
violin plots represent both summary statistics and data density. Sleep-
related diet parameters were derived through time-matching, meaning that
the diet and sleep data were collected concurrently. Then, we comprehen-
sively assessed associations of diet parameters (i.e., nutrients, food groups,
eating timing; Supplementary Table 2) with metabolic and CGM outcomes
(Fig. 3). Most relevant diet features were selected through the least absolute
shrinkage and selection operator (LASSO) (Supplementary Table 3), fol-
lowed by buildingMLRmodels that included potential confounders such as
age, sex, ethnicity, and BMI. This combined approach reduces the data
dimensionality and improves overall model performance.

In the forest plot (Fig. 3b), each horizontal panel corresponds to a
specific glucose outcome with the point estimate (beta coefficient) and
confidence intervals for each diet parameter. This visualization provides a
concise summary of multiple regression results and highlights significant
associations (Benjamini–Hochberg (BH)-adjusted P < 0.1). Specifically, the
energy proportion of the meal 14:00–17:00 to the total daily energy intake
was inversely associated with fasting plasma glucose. Conversely, higher
energy intake from themeal 17:00–21:00was linked to less time spent in the
target glucose range (70–100mg/dL) during nighttime, increased time in
hyperglycemia (>100mg/dL), and higher mean glucose levels the next day.

Carbohydrate sources also showed distinct associations. Greater car-
bohydrate intake from non-starchy vegetables was related to lower next-day
mean glucose, while carbohydrates from starchy vegetables were associated
withhigher fasting glucose,HbA1c, and 24-hourmean glucose.Additionally,
higher carbohydrate intake from snackswas associatedwithmore time spent
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in the hyperglycemic range (>140mg/dL) over 24 hours, increasednighttime
mean glucose, and more time in hyperglycemic range the following day.

Variation in sleep timing is associated with hyperglycemia and
incretin function
To investigate the relationship of sleep parameters with glucose control and
metabolic characteristics, real-time sleep monitoring data were estimated
from participants using a Fitbit Ionic band (Fitbit, Inc., San Francisco, CA).
We extracted and derived 14 sleep features and observed considerable
between-person variability for each sleep parameter (Fig. 4a). Using feature

selection via LASSO and 10-fold cross-validation (Supplementary Table 4),
as well as the MLR (Fig. 4b), we found that day-to-day variability of sleep
features was significantly associated with glucose outcomes. Specifically,
higher variability in sleep efficiency was associated with higher nighttime
mean glucose values, more time spent in the night-time hyperglycemic
range (>100mg/dL), and higher next-day mean glucose values. Moreover,
greater variabilities in WASO (wake-up duration after sleep onset) and
bedtime were linked to higher 2-hour OGTT glucose and higher next-day
max glucose, respectively. Earlier wake-up time was associated with lower
incretin effects.

Fig. 1 | High-resolution lifestyle profiling and glucose metabolic phenotyping.
a Study design. Two cohorts were included in this study: (1) a main cohort (n = 36)
for model training, fine-tuning, and testing, and (2) an independent validation
cohort (n = 10). We collected 24 hours of real-time data on the lifestyle behaviors
and glucose levels of all study participants for at least 14 days using wearable devices,
smartphone applications, and continuous glucose monitors. In addition,

participants underwent gold-standard deep glucosemetabolic tests (i.e., OGTT, IST,
and IIGI tests) to determine their physiologic phenotypes contributing to T2D, such
as beta-cell dysfunction, incretin dysfunction, and tissue-specific insulin resistance.
b Lifestyle data structure and availability across different datamodalities in themain
cohort. The “Features” indicate the number of variables derived and extracted from
each lifestyle data type. Details are found in Supplementary Table 2.
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Physical activity habits profiling and the time-dependent
association with glucose values
We obtained real-time step count and heart rate data from the Fitbit Ionic
band. Using feature selection via LASSO and 10-fold cross-validation
(Supplementary Table 5), as well as the MLR, we observed that more steps
near bedtime was associated with poor nighttime CGM outcomes in the
overall cohort (Fig. 4c). A longer sedentary duration of the day was asso-
ciated with more time spent in hyperglycemic range. Interestingly, a higher
step density after having last food was associated with less time in the
nighttime hyperglycemic range.

Next, we quantified how physical activity is related to glucose levels by
splitting the time-series stepcountandCGMdata into7circadianwindows:1)
05:00–8:00; 2) 8:00–11:00; 3) 11:00–14:00; 4) 14:00–17:00; 5) 17:00–21:00; 6)
21:00–24:00; and 7) 24:00—the next day 05:00 (Supplementary Table 6). To
visualize the interaction between step counts and insulin resistance status (IS
and IR) with CGM values at different times of the day, we plotted the results
from linear models across time window combinations (Fig. 5a). Significant
interactions were found during 00:00–05:00, 08:00–11:00, 11:00–14:00, and
14:00–17:00 (denoted by asterisks in Fig. 5a). We then performed a shifted
Pearson correlation with permutation to examine temporal associations
between step counts and mean glucose by IR subgroup. A heatmap shows
correlation coefficients at the designated combination of time windows (Fig.
5b–d). In the IS group, stepsduring the afternoon14:00–17:00werenegatively

correlatedwithCGMvalues over the following 48 hours (Fig. 5b). In contrast,
in the IR group, steps during the morning 08:00–11:00 were linked to lower
glucose values the next day (Fig. 5c). In addition, steps between 00:00 and
05:00were positively correlatedwithhigher glucose levels for up to the next 48
in both IS and IR groups, with stronger correlations in IR.

We also observed CGMpeaks within the range of heart rate/heart rate
max (HR/HRmax) 0.32 to 0.45, and the subsequent declines in CGMvalues
when HR/HRmax surpassed 0.65 (Fig. 5e, Supplementary Fig. 1). This
pattern highlights the importance of elevating HR/HRmax, which could be
achieved by increasing activity such as aerobic training.

Permuted correlation network analysis between diet, sleep, and
physical activity habits
Our diet-sleep-activity correlation network with permutation highlighted
many significant correlations among diet, sleep, and activity features, and
the diet factors (nutrients, food groups, eating timing) were central in the
complex relationships (Fig. 6a). The network plot provides an intuitive
visual representation of relationships among three lifestyle behaviors at a
glance. In this analysis, all three lifestyle factorswere time-matched. For food
groups, higher rice consumption was correlated with lower sleep efficiency
and longer latency duration. In contrast, higher legume consumption was
correlated with shorter latency and longer total sleep duration. Higher fruit
consumption was also correlated with longer sleep duration. For nutrients,

Table 1 | Baseline demographics and clinical lab results of the main cohort

Overall cohort (n = 36) Normal (n = 16) Prediabetes or T2D (n = 20) P value

Demographics

Age, y 56.2 ± 11.4 53.5 ± 11.8 58.3 ± 10.9 0.339

Sex, n (M/F) 17/19 6/10 11/9 0.335

BMI, kg/m2 26.0 ± 3.38 25.4 ± 2.94 26.4 ± 3.70 0.524

Ethnicity, n (Caucasian/Asian)

23/10 13/3 10/7 0.259

Medication statin use, n (yes/no)

2/34 1/15 1/19 1.000

Smoking, n (yes/no)

2/25 1/10 1/13 1.000

Season at study entry, n (spring/summer/fall/winter)

4/13/9/9 3/3/4/6 1/10/5/3 0.128

Exercise, min 159.2 ± 114 204 ± 79.3 133 ± 126 0.099

Systolic blood pressure, mmHg 116 ± 10.6 114 ± 8.67 118 ± 11.9 0.214

Diastolic blood pressure, mmHg 72.3 ± 8.39 70.8 ± 7.90 73.6 ± 8.76 0.435

Clinical labs

HbA1c, % 5.64 ± 0.376 5.31 ± 0.224 5.90 ± 0.231 3.25e-07*

Fasting plasma glucose, mg/dL 97.9 ± 12.9 90.6 ± 10.6 104 ± 11.7 0.00161*

OGTT at 2 hours, mg/dL 132 ± 33.7 115 ± 26.2 151 ± 31.3 0.00610*

Triglyceride, mg/dL 93.2 ± 41.0 76.1 ± 33.4 107 ± 42.1 0.0142*

Total cholesterol, g/dL 188 ± 35.8 182 ± 27.1 193 ± 41.5 0.464

HDL, mg/dL 61.5 ± 19.5 62.8 ± 12.9 60.5 ± 23.8 0.171

LDL, mg/dL 108 ± 28.7 104 ± 27.1 111 ± 30.1 0.265

Non-HDL, mg/dL 126 ± 34.0 119 ± 31.5 133 ± 35.4 0.143

Fasting Insulin, mmol/L 9.54 ± 6.93 6.59 ± 3.57 12.0 ± 8.10 0.00930*

Creatinine, mg/dL 116 ± 69.6 121 ± 80.2 113 ± 61.9 0.962

hs-CRP, mg/L 1.19 ± 1.62 0.881 ± 0.854 1.44 ± 2.02 0.482

ALT/SGPT, U/L 27.3 ± 11.6 26.4 ± 9.95 28.1 ± 12.9 1.00

Continuous variables are reported asmean ± standard deviation, and categorical variables as count. Asterisk in theP value column indicates statistical significance (P < 0.05) between normoglycemia and
prediabetes/T2D groups.
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higher fiber and potassium intakes were correlated to longer sleep duration.
While higher saturated fat intake was correlated to longer sedentary dura-
tion, higher vitamin D intake was correlated to longer active duration.
Interestingly, higher energy contribution from the meal between 8:00 and
11:00 am and longer fasting window were correlated with longer sleep
duration, whereas late eating of the first meal of the day was correlated to
lower sleep efficiency. Finally, a longer duration fromwaking up tofirst food
eating was correlated to a longer latency.

Integrated lifestyle machine learning prediction models for
metabolic subphenotypes
We built comprehensive, integrated machine learning models to predict
different metabolic subphenotypes using a full feature set that included all
three lifestyle domains and demographic variables. The model coefficients
of top 10 selected features were visualized in all models (Fig. 6). First, for
predicting prediabetes versus normoglycemia, a high proportion of carbo-
hydrate intake from starchy vegetables and sweets (relative to the total daily
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carbohydrate intake) as well as greater energy intake during 5:00–9:00 pm,
were associated with HbA1c levels and prediabetes. In contrast, higher
carbohydrate intake from fruits was linked to normoglycemia. Additional
predictors of normoglycemia included longer total sleepduration and a later
time of first food intake. Incretin dysfunction was predicted by several
variables including older age, higher energy intake between 5:00–9:00 pm,
greater carbohydrate intake from pasta and noodles, and higher protein
intake. Normal beta-cell functionwas predicted by longer exercise duration,
and muscle insulin sensitivity was also associated with longer exercise
duration and later wake-up time. For adipose insulin sensitivity, predictors
included longer exercise duration, higher fiber intake, greater carbohydrate
intake from legumes, and longer sleep latency. Finally, hepatic insulin
sensitivity was associated with higher fiber intake and greater energy con-
sumption during the morning and midday periods (8:00–11:00 am and
11:00 am–2:00 pm). Performance of each model are found in Supplemen-
tary Table 7.

Validation of the metabolic subphenotypes prediction models in
an independent cohort
To evaluate the reproducibility of our prediction models for metabolic
subphenotypes, we conducted an independent validation study in a cohort
of 10 individualsmatched for age, sex, BMI, ethnicity, HbA1c, fasting blood
glucose, and other characteristics (Supplementary Table 1). All participants
underwent the same gold-standard metabolic tests including OGTT, IST,
and IIGI in the CTRU, along with continuous lifestyle monitoring via
wearable devices (Fig. 6). We focused on incretin function for validation
because the other metabolic subphenotypes (beta-cell function and muscle
IR) exhibited highly skewed and shifted distributions. In the independent
cohort, incretin status was evenly split (normal, n = 5; dysfunction, n = 5),
providing a robust test set. Application of the final model trained on the
main cohort to this independent cohort yielded 80% accuracy and a mis-
classification error of 0.20, compared to a baseline error of 0.5. In the
training cohort, the model had similar performance, yielding a mis-
classification error of 0.15 (85% accuracy), compared to a baseline error of
0.42. These results indicate the model’s consistent and robust predictive
performance across cohorts (Fig. 6h).

Discussion
This study provides a novel and comprehensive characterization of how
habitual lifestyle behaviors (i.e., diet, sleep, and physical activity) are asso-
ciated with core physiological processes underlyingmetabolic susceptibility
to T2D, such as beta-cell dysfunction, tissue-specific insulin resistance, and
incretin dysfunction. While previous studies have primarily focused on
glucose levels, our work moves beyond these conventional markers by
linking lifestyle behaviors to distinct metabolic subphenotypes within the

same individuals. This approach offers a deeper understanding ofmetabolic
susceptibility to T2D in relation to lifestyle behaviors.

We integrated over 6,400 timestamped lifestyle data points collected
using wearable biosensors, continuous glucose monitoring (CGM), and
smartphone apps (meal intake n = 2298, sleep behavior n = 1661 days,
physical activity n = 2447 days). These data were paired with gold-standard
physiological assessments, including the OGTT, insulin suppression test,
and isoglycemic intravenous glucose infusion test, to characterize beta-cell
function, incretin response, and insulin resistance inmuscle, adipose tissue,
and liver5. To capture both domain-specific effects and cross-domain
interconnectedness, we employed an individual-to-systemic analytical fra-
mework.We first examined each lifestyle domain independently in relation
to metabolic subphenotypes and CGM outcomes. Then, we systematically
integrated the most relevant features across domains in network analysis
and predictive modeling. We also validated several findings in a separate
independent cohort, confirming that our findings are reproducible.

We discovered novel associations between lifestyle timing and meta-
bolic physiology. Notably, habitual meal timing was linked to hyperglyce-
mia, insulin resistance (IR), and reduced incretin function in PCA analyses.
Regression analyses further confirmed that participants with lower HbA1c
and higher incretin effect consumedmore calories between 14:00 and 17:00,
whereas those with higher HbA1c, lower incretin effect, and greater muscle
IR consumedmore calories between 17:00–21:00. However, nutrient intake
and food group features did not show these associations (Supplementary
Figs. 3–6). In our integrated prediction model, incorporating all three life-
style domains and demographics, evening caloric intake remained the
strongest variable for impaired incretin function. These associations were
not due to total caloric intake, which was similar between the two groups,
implicating circadian misalignment rather than caloric excess. These find-
ings are consistent with previous work showing associations of night-time
mealswithpoor glycemic control suchas glucose intolerance inbothhealthy
and individuals with diabetes17,18. Mechanistically, this may reflect desyn-
chrony between central and peripheral circadian clocks following high-
calorie evening meals, as found in animal studies19,20. Our results extend
these observationsbydirectly linkingmeal timing to corephysiological traits
relevant to diabetes development, such as incretin function and insulin
sensitivity.

In addition, the significant association of higher caloric intake from
14:00 to 17:00 with lower fasting plasma glucose and greater incretin effect
suggest potential metabolic benefits of afternoon snacks or early dinners.
These associations remained significant regardless of later meal caloric
intakes (meals 17:00–21:00 and 21:00–5:00 next day). Prior work also
indicates that pre-dinner snacking may enhance beta cell responsiveness21,
supporting the plausibility of this timing effect. Taken together, our findings
highlight that in the context of T2D risk, not just what we eat but when we

Fig. 2 | Meal timing patterns are associated with distinct metabolic character-
istics. a Heterogeneity in meal timing profiles between persons (n = 36). The food
and beverage consumption (referred to as “meal”) periods were segmented into six
windows. 1) 05:00 and 08:00; 2) 08:00 and 11:00; 3) 11:00 and 14:00; 4) 14:00 and
17:00; 5) 17:00 and 21:00; and 6) 21:00 and the next day 05:00. The energy intake
contribution from each meal timing window relative to the total daily energy intake
was determined. A bar indicates each participant. Different colors comprising the
bar represent six meal timings. The length of the color corresponds to the con-
tribution (%) of each meal to the total daily energy intake (100%). b PCA plot
showing the cohort separation by the six meal timing features. A circle-shaped point
indicates each participant. The color gradation represents one’s HbA1c level, ran-
ging from low (yellow) to high (red). c Box plots showing statistically significant
differences (BH-adjusted P value < 0.05) in energy contribution from six meal
timings by glycemic status (normoglycemia when HbA1c < 5.7%
(HbA1c < 39 mmol/mol) and prediabetes when 5.7% ≤HbA1c < 6.5% (39 mmol/
mol ≤HbA1c < 48 mmol/mol)). Statistical significance was derived from the
covariate-adjusted multiple linear regression models including HbA1c, age, sex,
BMI, and ethnicity. The central line inside the box represents the median, and the
error bars indicate 1.5 times the IQR from the lower and upper quartiles. PreDM,

prediabetes. d PCA plot showing the cohort separation by the six meal timing
features. A circle-shaped point indicates each participant. The color represents one’s
incretin effects, ranging from low (yellow to light green) to high (dark green). e Box
plots showing statistically significant differences (BH-adjusted P value < 0.05) in
energy contribution from six meal timings by incretin effects. Statistical significance
was derived from the covariate-adjustedmultiple linear regressionmodels including
incretin effects %, age, sex, BMI, and ethnicity. The central line inside the box
represents the median, and the error bars indicate 1.5 times the IQR from the lower
and upper quartiles. IE, incretin effect. fPCAplot showing the cohort separation into
two clusters by the six meal timing features. A point indicates each participant, and
the different shapes and colors of the points represent muscle insulin sensitivity
status (green circle for IS and orange triangle for IR). gBox plots showing statistically
significant differences (BH-adjusted P value < 0.05) in energy contribution from six
meal timings by muscle insulin sensitivity. Statistical significance was derived from
the covariate-adjustedmultiple linear regressionmodels including insulin sensitivity
(SSPG), age, sex, BMI, and ethnicity. The central line inside the box represents the
median, and the error bars indicate 1.5 times the IQR from the lower and upper
quartiles. IS insulin sensitive, IR insulin resistant.
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Fig. 3 | Personal profiling of meal timing-related dietary habits and their asso-
ciations with glucose metabolic outcomes. a Violin plots showing timing-related
diet features in the cohort. The violin plots illustrate kernel probability density of the
data at different values and the horizontal bar depicts themedian of the distribution.
The error bars represent the data within 1.5 times the IQR from the lower and upper
quartiles. First food time (am), time of eating the first food of the day; last food time
(pm), time of eating the last food of the day; daily eating span (sec), eating time
window between the first food and the last food; last food ~ bed time (sec), time spent
from the last food till the bed time; wake-up time ~ first food (sec), time spent from
wake-up in the morning till eating the first food. Sleep-related diet parameters were
derived through time-matching.bForest plot showing individual associations of diet
parameters with glucose metabolic outcomes using LASSO feature selection com-
bined with multiple linear regression. A horizontal panel in the plot represents each

glucose outcome model (i.e., metrics comprising metabolic tests and CGM). Asso-
ciations that achieved statistical significance (BH-adjusted P < 0.1) between diet
parameters and glucose outcomes are listed in this figure. The coefficient of each diet
feature (a point of estimate depicted as the central marker) was derived from the
covariate-adjusted multiple linear regressionmodels (all diet features, age, sex, BMI,
and ethnicity). The error bars represent the 95% confidence interval for the point
estimate. %EMeal, energy proportion (%) of themeal timing to the total daily energy
intake; %Carb, carbohydrate proportion (%) of the food group out of the total daily
carbohydrate intake from all food groups; FPG fasting plasma glucose, IR insulin
resistant, SSPG steady-state plasma glucose, representing muscle insulin resistance.
Hyperglycemic range for 24 h was defined as >140 mg/dL, and for night time as
>100 mg/dL. Time in target range for 24 h was defined as 70–140 mg/dL and for
night time as 70–100 mg/dL.
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eat can influencenot only glycemic control but also susceptibility to broader
metabolic impairments.

Similarly, we found associations between habitual sleep patterns and
metabolic physiology that extend beyond glycemic control (Fig. 4, Sup-
plementary Fig. 7). In addition to total sleep duration, irregular sleep
timing and efficiency were linked to higher IR and elevated glucose levels,
as captured by CGM. These findings build on prior studies in shift
workers22,23, and extend them to non-shift-working, free-living indivi-
duals. Additionally, greater night-to-night variability in sleep

fragmentation, measured by WASO (wake after sleep onset), was asso-
ciated with higher OGTT glucose levels. This result emphasizes the sig-
nificance of maintaining both consistent sleep timing and stable sleep
continuity, in line with previous work showing the negative impact of
sleep fragmentation on glucose control24–26.

Beyond glucose regulation, we found in regression analyses that later
wake-up timeswere associatedwith improved incretin function, irrespective
of total sleep duration. This association remained robust in our integrated
prediction models, where later wake-up time emerged as one of the
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strongest variables, along with other lifestyle factors, positively associated
with both incretin normal function and higher muscle insulin sensitivity.
Given the cohort’s median wake-up time of 6:58 am, these results suggest
that waking after ~7:00 am may confer metabolic benefits via enhanced
incretin response. This is biologically plausible, as incretin secretion exhibits
diurnal patterns, with slower release at night27. Additionally, a randomized
controlled trial28 showed the major effects of nocturnal light exposure on
baseline and postprandial glucagon-like peptide-1 (GLP-1) levels, inde-
pendent of sleep deprivation, suggesting light-mediated circadian disrup-
tion. Future studies are needed to clarify the mechanisms linking sleep
timing and continuity to these distinct metabolic subphenotypes, including
incretin response and insulin sensitivity.

Our time-series analyses revealed significant interactions between step
counts and muscle IR status affecting CGM values (Fig. 5a, Supplementary
Fig. 8). Specifically, participants with muscle IR (higher SSPG values)
showed subsequent lower CGM glucose levels following morning activity
(i.e., increasing steps between 8:00–11:00), while those with muscle insulin
sensitivity (IS) benefited more from afternoon activity (14:00–17:00). This
pattern held, to a lesser extent, for other dysfunctional subgroups (pre-
diabetes and beta-cell dysfunction) who benefited from morning activity,
compared tonormoglycemic individualswho respondedbetter to afternoon
activity (Supplementary Fig. 9).

These findings refine previous studies reporting mixed results when
modifying the timing of exercise on glycemic control.While oneRCTfound
morning moderate-intensity exercise beneficial for individuals with
diabetes29, others reported stronger effects from afternoon or evening
moderate-to-vigorous activity, or no timing effect at all among people with
or without T2D30–33. Such inconsistencies may reflect differences in exercise
intensity and types, which we could not extract from step counts alone.
Nevertheless, our results suggest that the optimal timing of physical activity
may vary by metabolic phenotype. One possible mechanism for the
observed morning activity benefit in insulin-resistant individuals involves
the circadian peak in catecholamines34, which may promote free fatty acids
uptake and improve lipid-induced insulin signaling in skeletal muscle.

Post-meal activity patterns were also important. Higher step density
after the last meal (steps/hour) was linked to better nighttime glucose out-
comes, whereas increased steps 1-2 hours before bedtime were associated
with poorer glycemic control. This suggests that while postprandial
movement may be beneficial, late-night activity before bedtime may
interfere with metabolic recovery during sleep. In our integrated prediction
models, longer exercise duration was strongly associated not only with
better glycemic control (A1C) but alsowith improved beta-cell function and
insulin sensitivity in muscle and adipose tissues. Future studies should
explore how activity timing, intensity, and type of activity interact with

individual metabolic phenotypes to guide personalized exercise strategies
for diabetes intervention35,36.

This study has several limitations. First, due to the high cost and
labor-intensive nature of these gold-standard tests, the sample size was
modest. To address this, we employed rigorous statistical techniques,
including permutation testing, cross-validation, and multiple testing
correction to enhance validity and minimize overfitting and bias. We
also used an individual-to-systemic framework to address complex
interactions across lifestyle and metabolic features. Second, the study
cohort was recruited in the San Francisco Bay area, which may limit
generalizability to other geographic or demographic populations. Third,
as the data is observational rather than intervention-based, causal
inference is limited. Finally, our study did not genotype participants for
common SNPs related to diabetes. Therefore, we cannot exclude the
possibility that some associations observed in our study may be influ-
enced by certain genetic variants. However, large studies showed that a
healthy lifestyle mitigated genetic risk by over 60%37, and individuals
with high genetic risk benefitedmore from lifestyle intervention38. These
findings support the significance of lifestyle interventions, even in
genetically predisposed individuals.

In summary, this study provides a unique, physiologically grounded
characterization of how habitual lifestyle patterns are related to metabolic
susceptibility to T2D. Unlike prior research that has primarily focused on
glycemic markers alone, we evaluated multiple physiological processes
within the same individuals (e.g., beta-cell function, incretin function, and
tissue-specific insulin resistance) using rigorous, gold-standard physiolo-
gical tests. Our results consistently showed that the timing and variability of
behaviors are linked to core metabolic processes. The inclusion of an
independent validation cohort supports the reproducibility of these find-
ings. Taken together, these findings highlight the need for future studies
aiming to tailor behavioral recommendations to individual metabolic
physiology. By identifying how distinct lifestyles intersect with specific
diabetes pathophysiology, this work supports the development of precision
prevention strategies for T2D.

Methods
Study design, participants, and sample collection
Participants were recruited from the San Francisco Bay Area, California.
Inclusion criteria were general health, with no prior diabetes diagnosis, no
uncontrolled hypertension or major organ disease, and no use of diabetes
medication. Participants underwent evaluations and screening tests at the
Clinical and Translational Research Unit after overnight fasting (e.g.,
HbA1c, fasting plasma glucose, insulin, lipid panel, and creatinine at
baseline). The study protocol was reviewed and approved by the

Fig. 4 | Personal profiling of sleep and physical activity habits and their asso-
ciations with glucose metabolic outcomes. a Violin plots showing sleep and phy-
sical activity habits and related timing features in the cohort. The violin plots
illustrate kernel probability density of the data at different values and the horizontal
bar depicts the median of the distribution. The error bars represent the data within
1.5 times the IQR from the lower and upper quartiles. Total sleep duration is the
actual time spent asleep, and latency duration is the time spent to accomplish the
transition from full wakefulness to sleep onset. Sleep efficiency is determined by
wake-up after sleep onset (WASO) divided by the total sleep duration. Themidpoint
of sleep is the clock time between sleep onset and wake-up. Sedentary duration is the
duration of “0” step count per day (minutes), andmovement duration is the duration
of non-zero step count per day (minutes). Active duration is the hours per day for
which the step count >250. Units for each panel are as follows: sec for total sleep
duration, WASO, and latency; % for sleep efficiency; AM for the midpoint of sleep
and wake-up time; PM (22:00, 23:00) and AM (00:00, 01:00, 02:00, 03:00) for bed
time and sleep onset time. “Steps Last Food ~BedTime” and “StepsWake-Up~First
Food” features were derived by aligning the times of diet, sleep, and physical activity
behaviors of each individual. b Forest plot showing individual associations of sleep
parameters with glucose metabolic outcomes using LASSO feature selection com-
bined with multiple linear regression. A horizontal panel in the plot represents each

glucose outcomemodel (i.e., glucose metrics comprising metabolic tests and CGM).
Associations that achieved statistical significance (BH-adjusted P < 0.1) between
sleep parameters and glucose outcomes are listed in this figure. The coefficient of
each sleep feature (a point of estimate depicted as the central marker) was derived
from the covariate-adjustedmultiple linear regressionmodels (all sleep features, age,
sex, BMI, and ethnicity). The error bars represent the 95% confidence interval for the
point estimate. Night-time was defined as the period during which participants took
their night sleep, based on their Fitbit sleep data, and the hyperglycemic range for
nighttime was defined as >100 mg/dL. WASO, wake-up after sleep onset. c Forest
plot showing individual associations of physical activity parameters with glucose
metabolic outcomes using LASSO feature selection combined with multiple linear
regression. A horizontal panel in the plot represents each glucose outcome model.
Associations that achieved statistical significance (BH-adjusted P < 0.1) between
activity parameters and glucose outcomes are listed in this figure. The coefficient of
each activity feature (a point of estimate depicted as the central marker) was derived
from the covariate-adjusted multiple linear regression models (all activity features,
age, sex, BMI, and ethnicity). The error bars represent the 95% confidence interval
for the point estimate. Time in target range for night time was defined as
70–100 mg/dL.
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Institutional Review Board at Stanford University School of Medicine
Human Research Protection Office (Institutional Review Board #43883).
All participants provided written informed consent. This trial is registered
on ClinicalTrials.Gov (NCT03919877; “Precision Diets for Diabetes

Prevention”; 2019-04-18). Participants underwent gold standard metabolic
tests (as described in detail in the following sections) after 10-h overnight
fasting, including an oral glucose test (OGTT), insulin suppression test
(IST), and isoglycemic intravenous glucose infusion test (IIGI). The

Fig. 5 | Time series associations between physical activity and sensor-glucose
outcomes by insulin resistance status. a Interaction effects plot for step counts and
SSPG status (IS/IR) on CGM. Effects of step count and SSPG status onmean glucose
values were assessed through linear models at each time window, permuted as in the
Pearson correlation analysis. We split the time-series of step counts into seven-time
windows of the day. The X axis indicates the standardized step counts of a specific
time window, and the Y axis represents the corresponding glucose values up to the
next 48 hours. The orange line represents IR, and the green line IS, where interaction
effects were considered significant (asterisk) if multiple testing-adjusted q value <

0.01. b–d Shifted correlation analysis plot between step count and CGM in different
time windows of the day ((b) Insulin-sensitive, (c) Insulin-resistant; (d) overall
cohort). The color gradation represents correlation coefficients ranging from −0.5
(negative correlation) to 0.5 (positive correlation). CGM continuous glucose mon-
itoring. e 2D scatter plot that shows the distribution of CGM as a function of HR/
HRmax for all participants over a shared period. Each point represents a data entry.
The scatterplot shows a noticeable pattern betweenHR/HRmax andCGMvalues for
all participants.
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metabolic test results determined participants’ metabolic subphenotypes,
such as IR, beta-cell dysfunction, and incretin dysfunction.

Main cohort
36healthy adultswere included in thefinal analyses as themain study cohort
(also called training cohort) (Table 1).

Validation cohort
An independent cohort of 10 individuals completed metabolic tests and
provided lifestyle data. The demographics, labs, and metabolic test results
are summarized in Supplementary Table 1.

Lifestyle deep profiling using wearable biosensors and feature
extraction
By leveraging the power of real-time digital healthmonitoring technologies,
we monitored participants’ dietary intake, sleep characteristics, physical
activity, and glucose levels in real-time throughout the study period (at least
14 consecutive days). Participants were asked not to change their sleep and
activity habits during the study. Moreover, participants were required to
maintain their normal eating, sleep, and physical activity habits without
change during the study.

For dietary data collection, participants were required to log all food
andbeverage items consumed in real-timeon theCronometer food tracking
app (Cronometer Software, Inc., Revelstoke, BC, Canada). A median of
20.5 days of food logs were collected from 36 participants. Over 92% of
participants provided more than 10 days of diet data during the study
period. To enhance the accuracy of the diet data, days with a reported daily
caloric intake of less than 500 kcal as well as those reporting an overnight
fasting period exceeding 24 hours were excluded. Registered dietitians
monitored participants’ food log entries (food items, calories, and nutrient

compositions) throughout the study. Itwas also ensured that all participants
could record dietary intake data for at least two weekdays and one weekend
day to capture a more accurate and representative understanding of their
typical dietary habits. There was no missing dietary data for all 36 partici-
pants. A total of 74 diet features (51 energy-adjusted nutrient levels, 10 food
groups, and 13 meal timings) were extracted (Fig. 1 and Supplementary
Table 2).

For sleep andphysical activity data collection, participantswore a Fitbit
Ionic band (Fitbit, Inc., San Francisco, CA) for the study period. The Fitbit
data was available for 24 out of 36 participants due to a product recall of
Fitbit Ionic for potential burn hazards during the study period. As such, a
median of 55 nights of sleep data and 64 days of physical activity data were
collected from 24 participants. To ensure data accuracy, only days with
4–12 hours of overnight sleep data were considered, and days with less than
500 steps were excluded. 14 sleep features (1 quantity, 9 qualities, 4 timings)
and 23 physical activity features (4 activity levels, 19 timings) were extracted
(Fig. 1 and Supplementary Table 2). This study did not use the duration for
each sleep stage because we did not have access to open-source Fitbit data to
independently validate the algorithm predicting sleep structure in our
population. Finally, heart rate (HR) data were also extracted.

For continuous glucose monitoring, participants wore a Dexcom G4
CGM device (Dexcom Inc., San Diego, CA) for the study period. Of note,
readings from glucose monitoring devices were not made available to the
participants until the study-end, therefore, lifestyle habits were not affected
by the recordings. CGMdatawere collected for amedian of 28 days from35
participants (Fig. 1).

Gold-standard metabolic physiological tests
Participants underwent glucose metabolic tests after 10-h overnight fasting
to determine metabolic characteristics, such as tissue-specific IR, beta-cell

Fig. 6 | Comprehensive lifestyle prediction of metabolic subphenotypes and
validation on independent cohort. a Diet, sleep and physical activity correlation
network analysis. Concurrent correlations between lifestyle features were calculated
using Spearman correlation with permutation and considered significant if multiple
testing-adjusted q value < 0.2. The color gradation represents correlation coefficients
ranging from −1.0 to 1.0. Different colors of points indicate different types of
lifestyle features: light green (diet); purple (sleep); red (activity); dark green (com-
bined features from diet and sleep); blue (combined features from diet, sleep, and
activity). b–g Integrated lifestyle predictionmodel of metabolic subphenotypes. The
LASSO classification model was built upon all lifestyle features, and model coeffi-
cients of selected features were visualized. The classifications are for (b). Normo-
glycemia vs. PreDM/T2D. c Incretin normal vs. dysfunction; (d) beta-cell normal vs.

dysfunction; (e) muscle IS vs. IR; (f ) adipose IS vs IR; and g Hepatic IS vs. IR.
Different colors indicate different types of lifestyle features. Sex (1 male, 0 female)
and ethnicity (1 Caucasian, 0 non-Caucasian) are two levels of numerical values.
Latency is the time spent to accomplish the transition from full wakefulness to sleep
onset. %E Meal, energy proportion (%) of the meal timing to the total daily energy
intake; %Carb, carbohydrate proportion (%) of the food group out of the total daily
carbohydrate intake from all food groups; movement/sedentary duration, the ratio
of movement duration to sedentary duration; education, the years of education,
PreDM prediabetes, IS insulin sensitive, IR insulin resistance. Nutrients (e.g., fiber
and sodium) are the daily dietary intakes of the corresponding nutrients.
h Comparison of accuracy for predicting incretin function in training main cohort
and validation cohort. The Y axis indicates classification accuracy (%).
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dysfunction, and incretin dysfunction. The details of the physiologic tests
are described in Metwally et al.5, and are summarized as follows.

Muscle IR was quantified through an insulin suppression test (IST). In
a validated IST39,40, participants were infused with octreotide
(0.27 μgm−2 min−1), insulin (32mUm−2 min−1), and glucose
(267mgm2min−1) for 240min. In this test, participants showed different
levels of SSPG, indicating the individual’s ability to insulin-mediated glucose
disposal14.

Beta cell function was assessed during an oral glucose tolerance test
(OGTT). Specifically, plasma glucose levels were measured at 16 timepoints
(−10, 0, 10, 15, 20, 30, 40, 50, 60, 75, 90, 105, 120, 135, 150, and 180min)
following a75 goral glucose load,while insulin andC-peptideweremeasured
at 7 timepoints (0, 15, 30, 60, 90, 120, 180min) using Millipore radio-
immunoassay assay at the Core Lab for Clinical Studies, Washington Uni-
versity School of Medicine in St. Louis (WashU). The insulin secretion rate
was calculated fromC-peptide levels during the OGTT test using the Insulin
SECretion (ISEC) software. Then, a disposition index (DI; (pmol*dL)/
(kg*ml))15, was calculated as the area under the insulin secretion rate, divided
by the SSPG. Based on the DI, the beta cell function was determined.

Incretin function was quantified using an IIGI test. In this test, parti-
cipantswere continuously infusedwithdextrose via an intravenous catheter.
The incretin effect (IE%) can be quantified by comparing plasma glucose
andC-peptide profiles responding to the dextrose load either orally (OGTT)
or intravenously (IIGI).

The HIR index equation, using insulin, BMI, body fat%, and HDL
cholesterol levels, was validated against endogenous glucose production
measured during euglycemic–hyperinsulinemic clamp41. Adipose tissue IR
was calculated based on the average plasma FFA measured at 90, 100, and
110min during the modified IST.

Data analyses
All data analyses, corresponding key findings, and interpretations are
described in detail in Supplementary Table 8. To test for differences in
baseline demographics, labs, and metabolic test results between normo-
glycemia and prediabetes/T2D groups, as well as between the main and
validation cohorts, theWilcoxon rank-sum test was used for non-normally
distributed continuous variables, and the χ2 test or Fisher’s exact test was
used for categorical variables.

To identify dietary patterns and their relationship to metabolic
characteristics in the cohort, PCA was performed on meal timing fea-
tures. They were classified/color-coded by HbA1c, IR SSPG, incretin
effect, or beta-cell function Disposition Index. Then, we used covariate-
adjusted multiple linear regression (MLR) models to examine differ-
ences in the energy contribution of each meal timing between metabolic
groups while adjusting for age, sex, BMI, and ethnicity. P values were
BH-adjusted for multiple testing.

Individual-to-systemic analytical framework: linear regression
analysis (individual) and training machine learning prediction
models (systemic)
To assess individual associations of diet, sleep, and activity features with
glucose outcomes (CGM and metabolic test results), we used the LASSO
combinedwith regressionmodels. For each glucose outcome,we performed
a grid search (values ranging from λ = 1010 to λ = 10-2) to optimize the
hyperparameter, λ, and selected the model that minimizes test mis-
classification error (MSE). The LASSO models selected lifestyle features
associatedwith glucose outcomes andprovided an estimate of the predictive
values of the feature individually (Supplementary Tables 3–5). Then, we
used regression analyses to examine individual associations of diet, sleep,
and activity with glucose outcomes. P values were BH-adjusted for multiple
testing.

We built integrated, comprehensive prediction models based on all
three lifestyle modalities and demographic information to predict
metabolic characteristics. Since many features are highly dependent on
each other, we removed obvious dependencies and kept a total of 47

features to start with (e.g., baseline BMI was kept, and height and weight
were removed). Features were then centered and scaled. Since we needed
to include all three lifestyle factors simultaneously for building the
predictionmodels, and thereweremissing values for individuals without
Fitbit data, we chose to use the cohort mean to replace these NA values,
as MICE-imputed data failed to predict all metabolic classes. Next, the
LASSO approach selected relevant features, and then models with no
regularization were built39. The hyperparameter lambda was selected,
and the model was selected through leave-one-out and MSE. The plot
(model coefficients of the top 10 selected features) was visualized in all
analyses (Fig. 6 and Supplementary Fig. 6). P values were adjusted for
multiple testing.

Time series analysis of activity and CGM
Toexamine the effects of the time series interaction between step counts and
SSPG status on CGMmean values, linear models with permutation were fit
at the 7-time windows of 24 hours (05:00–8:00, 8:00–11:00, 11:00–14:00,
14:00–17:00, 17:00–21:00, 21:00–24:00, and 24:00–the next day 05:00).
Then, a shifted Pearson correlation analysis with permutation was per-
formed between step counts and CGM mean values by SSPG status sub-
groups through the 7-time windows.

Correlation network analysis among time-matched lifestyle
behaviors
To identify intercorrelations among the three lifestyles, we used Spearman
correlation with permutation. All correlation and interaction analyses were
adjusted for multiple testing.

Model validation on an independent validation cohort
Lifestyle and metabolic test data from the independent validation cohort
were first preprocessed to extract the same lifestyle (diet, sleep, and physical
activity) features and metabolic subtypes as used in the main cohort. Beta-
cell function (all 10 normal) and muscle IR (9 insulin-sensitive and 1
insulin-resistant) were highly skewed in distribution. Therefore, we focused
on the incretin function for validation, which was evenly split (normal,
n = 5; dysfunction, n = 5), providing a robust test set. Then, we applied the
final trained prediction model derived from the main cohort to this inde-
pendent dataset.This yieldedaMSE,whichwas compared against a random
baseline error by selecting the largest group as the prediction.

Data availability
The datasets generated and/or analyzed during the current study are
available from the corresponding author on reasonable request. The de-
identified lifestyle data, gold-standard metabolic test results, continuous
glucose monitoring data, along with other data types in this study can be
downloaded from the study data repository (https://cgmdb.stanford.edu/
data/) at the time of publication. The study protocol is shared as Supple-
mentary Information.

Code availability
The underlying code for this study is available and can be accessed via this
link (https://github.com/mikeaalv/lifestyle_glucose_control).
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