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Large scale causal modeling to identify
adults at risk for combined and common
variable immunodeficiencies
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Giorgos Papanastasiou1,8 , Marco Scutari 2,8, Raffi Tachdjian3,4, Vivian Hernandez-Trujillo5,
Jason Raasch6, Kaylyn Billmeyer1,7, Nikolay V. Vasilyev1 & Vladimir Ivanov1

Combined immunodeficiencies (CID) and common variable immunodeficiencies (CVID), prevalent yet
substantially underdiagnosed primary immunodeficiencies, necessitate improved early detection.
Leveraging large-scale electronic health records (EHR) from four nationwide US cohorts, we
developed a novel causal Bayesian Network (BN) model to identify antecedent clinical phenotypes
associated with CID/CVID. Consensus directed acyclic graphs (DAGs) demonstrated robust
predictive performance within each cohort (ROC AUC: 0.61–0.77) and generalizability across unseen
cohorts (ROC AUC: 0.56–0.72) in identifying CID/CVID, despite varying inclusion criteria across
cohorts. The consensus DAGs reveal causal relationships between comorbidities preceding CID/
CVID diagnosis, including autoimmune and blood disorders, lymphomas, organ damage or
inflammation, respiratory conditions, genetic anomalies, recurrent infections, and allergies. Further
evaluation through causal inference and by expert clinical immunologists substantiates the clinical
relevance of the identified phenotypic trajectories. These findings hold promise for translation into
improved clinical practice, potentially leading to earlier identification and intervention of adults at risk
for CID/CVID.

Primary immunodeficiencies (PI) are heterogeneous genetic disorders
characterized by immune system defects1. PI patients are susceptible to life-
threatening infections, malignancies, organ damage, severe allergies, and
autoimmunity2,3. As of 2022, research has linked 485 PI phenotypes to 511
genetic defects4,5 and this number is expected to increase with ongoing PI
research4–6.

PI is more common than originally thought. Recent studies suggest
that PI affects 1–2% of the global population, with 70–90% of patients
remaining undiagnosed7,8. Early PI diagnosis is important to improve health
outcomes but is hampered by the heterogeneous clinical presentation and
low awareness among primary care practitioners leading to a lack of timely
referrals1–7,9. Misdiagnosis, underdiagnosis or diagnosis delay are therefore
common in PI1,2,7–10. Undiagnosis is associated with increased mortality,
morbidity, healthcare visits and costs8–10. Therefore, robust methods for
systematic PI screening are urgently needed1–5.

Combined immunodeficiencies (CID) are a subgroup of PI defined by
both cellular (T-cell) and humoral (B-cell) immunity defects1,8. Common
variable immunodeficiencies (CVID) are characterized by humoral
immunity and are among the most frequent PI1,2. Severe CID (SCID),
characterized by profound T-cell impairment, is life-threatening without
early infancy treatment via newborn screening and bonemarrow (BMT) or
hematopoietic stem cell transplantation (HSCT)1,11. CID, excluding SCID,
aremarked bypartial T-cell dysfunction, are associatedwith variable disease
progression and are among the least investigated PI1–8. Unlike SCID, CID
patients typically present with late symptom onset ( > 1-year of age) due to
residual T-cell function8. Beyond SCID, there is no population-based
screening method for PI, leading to many CVID/CID diagnoses only in
adulthood due to delayed disease onset and lack of awareness hindering
childhood diagnosis1–9. Despite the availability of definitive treatments like
HSCT, BMT, and Ig replacement therapy1,8,9, the lack of population-wide
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screening beyond SCID necessitates a systematic approach to identify at-
risk adults, facilitating early referral and intervention8,9,12.

Our work aimed to unravel the interplay between clinical diagnosis
codes linked to CID/CVID through the development of a Bayesian Net-
work (BN) model13,14. Our recently developed machine learning (ML)
model accurately identified CID/CVID from large-scale, nationwide (US)
electronic health record (EHR) diagnosis codes, the same patient popu-
lations utilized in the present study15. Through descriptive statistical ana-
lysis, we further elucidated combinations of antecedent phenotypes
correlated with CID/CVID15. Another study used ML on diagnosis codes
from small-scale EHR to identify PI16. However, it is known that typical
(non-causal)ML and statisticalmodels are unaware of how the existence of
causal relationships between variables can affect the overall reliability
(generalizability, robustness, interpretability) of their outcomes17. Prior
ML research has not prioritized identifying causal relationships and con-
founding variables, potentially limiting the generalizability, robustness,
interpretability and clinical applicability of PI study outcomes. Addressing
these factors could improve the early detection of PI, through the identi-
fication of causal paths in patient clinical history. A BN is a probabilistic
graphical model that represents variables and their conditional depen-
dencies via a directed acyclic graph (DAG)13,14. ADAGcan be learned from
the data: its nodes represent data variables (e.g., diagnosis codes) with arcs
indicating probabilistic dependencies13. Judea Pearl imbued BNs with
causal semantics by interpreting them as causal networks13. By positing
certain assumptions such as the absence of unobserved confounders, he
established that arcs within a BN can be construed as representing direct
causal relationships, enabling the identification and estimation of causal
effects. In the context of PI diagnosis codes, a DAG can be used to identify
clinical history traits: causal trajectories of clinical phenotypes associated
with CID/CVID diagnosis. Since BN is a generative model, a DAG can
subsequently be used to predict CID/CVID13,14. Causal modeling can
potentially improve the generalizability, robustness and interpretability of
ML models13,14,18–20. While randomized clinical trials are the reference
standard for establishing causal effects, they commonly face ethical, scal-
ability, and patient disruption challenges20. EHRs serve as a rich source of
real-world observational data, often providing the only accessible infor-
mation for research purposes15,16. Since we cannot directly randomize
interventions with observational data, causal modeling relies on careful
assumptions to account for potential biases and confounding factors13,14,20.
AlthoughBN-derivedDAGshave beenapplied to real-world observational
data in other biomedical fields, e.g., to identify genetic and protein
interactions18,19, there is no previous work in the context of patient clinical

history, i.e., identifying phenotypic trajectories and assessing their causal
impact on CID/CVID diagnosis.

Leveraging large-scale observational EHR data from four nationwide
US cohorts, we developed and evaluated causal BNmodels to elucidate the
complex interplay of antecedent clinical phenotypes associated with CID/
CVID. To enhance the robustness of our findings and reduce bias, we
employed an ensemble approach, constructing multiple BN models on
bootstrapped datasets. Each resulting DAG was subsequently integrated
into a consensus DAG. This consensus DAG represents the aggregated
causal relationships learned across the ensemble, where arcs exhibiting
lower prevalence across the models were pruned, thus retaining the most
robust and consistently identified connections. Essentially, the consensus
DAG prioritizes the most reliable and recurring relationships found in the
data, filtering out connections that were not consistently identified across
the models. The consensus DAGs demonstrated robust predictive perfor-
mance andgeneralizability in identifyingCID/CVIDpatients, acrossdiverse
populations. These DAGs elucidate causal trajectories of interrelated
comorbidities preceding CID/CVID diagnosis, including autoimmune and
blood disorders, lymphomas, organ damage or inflammation, respiratory
conditions, genetic anomalies, recurrent infections, and allergies. Causal
inference analysis, quantifying the impact of each variable in the consensus
DAG on the odds of receiving a CID/CVID diagnosis, and evaluations by
expert clinical immunologists, substantiate further the clinical relevance of
the identified phenotypic trajectories which hold promise for translation
into refined clinical practices.

Results
The study comprised four parts as follows: (1) A consensus DAG was
learned for each cohort (Cohorts 1–4) and its predictive ability was eval-
uated using cross-validation. (2) The generalizability of each consensus
DAGwas then evaluated, by assessing their predictive accuracy in the other
three unseen cohorts. (3) Quantitative assessments were conducted by
performing causal interventions to evaluate the impact of each DAG vari-
able on the CID/CVID diagnosis. (4) The transferability of these DAGs to
clinical practice was assessed through qualitative evaluations with domain
experts. Figure 1 illustrates the study workflow.

Each of our four cohorts (Cohorts 1–4) consisted of individualswith PI
and a 1:1 matched control group, with matching based on demographics
(age, gender, race, ethnicity, medical history duration, and healthcare visit
frequency; see Table 1). To assess predictive performance within and across
cohorts, we applied the consensus DAG derived from the PI cases within
each cohort, to predict PI status across both the PI and 1:1 matched control

Fig. 1 | Study workflow. Overview of the causal
modeling framework. The process encompasses
data extraction and pre-processing (blue), including
cohort selection, ICD code to clinical phenotype
conversion and dimensionality reduction. Causal
modeling (red) includes structure learning and
model ensemble, consensus DAG estimation, para-
meter learning, model performance and general-
izability assessment, causal inference and evaluation
by clinical immunologists. CID: Combined Immu-
nodeficiency, CVID: Common Variable Immuno-
deficiency, BIC: Bayesian Information criterion,
DAGs: directed acyclic graphs.
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groups. This approach allowed us to evaluate the discriminatory power of
the DAGs in differentiating PI cases from demographically similar controls
within each cohort.

Participants
Table 1 presents the patient demographics, which have been previously
described15. In brief, age, gender, ethnicity, and patient history were similar
between PI cases and controls. Most patients were female (53.1–62.2%) and
Caucasian (82.4–88.1%). The mean age ranged from 44–48 years across
cohorts.As anticipated,CID/CVIDcases consistentlyhadahighernumberof
healthcare visits compared to controls. Supplementary Table 1 lists the ICD
codes for CID/CVID definition, identified in theOptumdatabase at the time
of data extraction. Supplementary Table 2 lists all other immunodeficiency-
related ICD codes identified in CID/CVID cases (i.e., those not used for case
definition) that were excluded to prevent bias in causal modeling.

BNmodels and their resulting consensus DAGs were generated in the
setting of identifying CID/CVID patients against matched controls, across
cohorts. All ICD codes were extracted from patient clinical histories and
converted into clinical phenotypes, which were then used as inputs for the
causal BN models. Initially, the model focused on identifying CID patients
with pneumonia against matched controls (Cohort 1), then expanded to
include controls without pneumonia (Cohort 2). Subsequently, the model
was refined to identify all CIDpatients (Cohort 3) in our data andultimately
expanded to include all CID and CVID patients (Cohort 4), both against
matched random controls. In Cohorts 3–4, cases and controls were selected
irrespectively of pneumonia status. All controls were negative for CID,
CVID, and PI.

Consensus DAGs across cohorts
The cause-effect relationships in the consensus DAGs represent probabil-
istic associations, not strict chronological sequences: each parent phenotype
significantly increases the likelihood of observing at least one of its child
phenotypes in a patient’s history, regardless of their temporal order.

The consensus DAGs identified by performing causal discovery in
Cohorts 1–4 are presented in Figs. 2–5, respectively. Figures 2–5 illustrate:

up to 2 direct parent levels andup to 2direct child levels away from theCID/
CVID diagnosis; and up to 1 direct parent level for each direct child and up
to 1 direct child level for each direct parent. These consensus DAGs con-
sistently reveal a network of interrelated comorbidities preceding CID/
CVID diagnosis, including autoimmune and blood disorders, lymphomas,
organ damage or inflammation, respiratory conditions, genetic anomalies,
recurrent infections, and allergies.

InCohort 1, neutropenia, complications after procedure, pneumococcal
pneumonia and general pneumonia were the direct parents of CID diagnosis
(Fig. 2). Abnormal findings from examinations on lungs and diseases of
respiratory system not elsewhere classified (NEC) were the direct parents of
multiple phenotypes including respiratory conditions (pneumococcal
pneumonia, general pneumonia, bronchiectasis, empyema and pneu-
mothorax, alveolar and parietoalveolar pneumonopathy, abnormal imaging
findings, acute bronchitis and bronchiolitis), organ damage or inflammation
(pericarditis, hepatomegaly) and infections or inflammations (meningitis,
chronic pharyngitis and nasopharyngitis). Failure to thrive and develop-
mental disorders was also the direct parent of gastrointestinal conditions and
pancytopenia. Other phenotypes involved in this consensus DAGwere non-
Hodgkin lymphoma and disorders involving the immune mechanism.

In Cohort 2, neutropenia, bacterial pneumonia and influenza were the
direct parents of CID diagnosis (Fig. 3). Influenza, bacterial pneumonia,
abnormal findings from examinations on lungs and acute pharyngitis were
the direct parents of multiple phenotypes including respiratory conditions
(bronchopneumonia and lung abscess, pseudomonal pneumonia,
empyema and pneumothorax, acute bronchitis and bronchiolitis, pul-
monary inflammation or edema, bronchiectasis, pneumococcal pneumo-
nia), acute or recurrent infections (acute sinusitis, chronic tonsilitis and
adenoiditis, acute pharyngitis, otitis media, skin infections, bacteremia,
meningitis, candidiasis, mycoses), allergies or allergic reactions (allergic
rhinitis, urticaria), organ inflammation (pericarditis), non-Hodgkin lym-
phoma, developmental delays/ disorders and disorders of the immune
system (IM; the latter typically associated with autoimmune diseases15).

In Cohort 3, neutropenia, genetic susceptibility to disease and encounter
for long-term use of antibiotics were the direct parents of CID (Fig. 4).

Table 1 | Baseline demographics and clinical characteristics of the study participants (all four cohorts)

Characteristics Cohort 1 Cohort 2 Cohort 3 Cohort 4

PI
Cases
(N = 797)

Controls
(N = 797)

PI
Cases
(N = 797)

Controls
(N = 797)

PI
Cases
(N = 2,312)

Controls
(N = 2,312)

PI Cases
(N = 19,924)

Controls
(N = 19,924)

Gender and Age

Male (%) 46.9 46.3 46.6 45.4 44.3 41.7 38.7 37.8

Female (%) 53.1 53.7 53.4 54.6 55.7 58.3 61.3 62.2

Age (years) 46 ± 26 46 ± 25 46 ± 26 48 ± 24 44 ± 26 45 ± 24 47 ± 24 46 ± 23

18–30 (%) 16.39 16.32 16.98 17.02 17.12 17.14 13.89 14.01

31–50 (%) 24.55 24.61 23.96 23.91 23.65 23.69 28.98 29.79

51–70 (%) 35.85 35.79 36.05 35.85 34.81 34.79 35.76 36.03

71–max age (%) 23.21 23.28 23.01 23.22 24.43 24.38 21.37 20.17

Patient history

Diagnosis History
duration (years)a

10 (8–13) 12 (10–14) 10 (8–13) 12 (9–14) 9 (6–12) 11 (8–14) 9 (6–12) 11 (8–14)

Number of visitsa 201 (103–399) 145 (48–415) 206 (105–399) 182 (45–397) 108 (36–250) 73 (17–243.5) 87 (30–206) 64 (16–195)

Ethnicity (%)

African American 8.7 7.3 8.4 6.7 7.9 7.2 5.8 5.8

Asian 1.4 1.5 1.3 0.5 1.7 1.6 1.2 1.1

Caucasian 82.4 85.1 83.4 88.1 81.7 84.2 85.3 86.8

Other/Unknown 7.5 6.1 7 4.7 8.7 7.1 7.8 6.3

PI primary immunodeficiency (combined immunodeficiency in Cohorts 1–3; combined immunodeficiency and common variable immunodeficiency in Cohort 4).
aMedian (25th–75th percentile).
The bold values show the predictive perfomance within each cohort, while the non-bold values show the predictive performance (generalizability) across cohorts.
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Developmental delays/ disorders, abnormal findings from examinations on
lungs, bacterial infection not otherwise specified (NOS), disorders involving
the immunemechanismandacutebronchitis andbronchiolitiswere thedirect
parents of several phenotypes including acute or chronic respiratory condi-
tions (pleurisy and pleural effusion, respiratory failure, emphysema), infec-
tions (sepsis, bacteremia, acute sinusitis, acute pharyngitis, streptococcus
infection), gastrointestinal conditions (gastritis and duodenitis, diarrhea),
blood conditions (decreased white blood cell count (bcc), anemia of chronic
disease) and organ damage (splenomegaly). Other phenotypes identified in
the consensus DAG were non-Hodgkin lymphoma, symptoms concerning
nutrition, metabolism and development, failure to thrive and edema.

In Cohort 4, autoimmune disease NEC, hypothyroidism NOS, neu-
tropenia, developmental delays/ disorders and bronchiectasis were the direct

parents of CID/CVID diagnosis (Fig. 5). In turn, hypothyroidism NOS,
bronchiectasis, neutropenia, viral infection andbacterial pneumoniawere the
direct parents of multiple phenotypes including acute or chronic respiratory
conditions (bronchitis, asthma, asphyxia and hypoxemia), infections or
inflammations (chronic sinusitis, bacteremia, otitis media, chronic phar-
yngitis and nasopharyngitis) autoimmune diseases (rheumatoid arthritis),
gastrointestinal conditions (gastritis and duodenitis, non-infectious gastro-
enteritis) and allergies (allergic rhinitis). Other phenotypes involved were
non-Hodgkin lymphoma and abnormal electrocardiogram (ECG).

Predictive accuracy within the same population
Subsequently, we evaluated the predictive ability of each consensus DAG in
identifyingCID/CVID in anunseen test set from the samepopulation. ROC

Fig. 2 | Consensus DAG calculated in Cohort 1. Cohort 1 included N = 797 CID
cases with pneumonia and 797 matched controls (with no PI) with pneumonia. To
improve clarity, we visualize up to 2 direct parent levels and up to 2 direct child levels
away from CID diagnosis. To provide further context, up to 1 direct parent level for

each direct child and up to 1 direct child level for each direct parent are included.
DAG directed acyclic graph; NEC not elsewhere classified; NOS not otherwise
specified; IM immune mechanism; CID combined immunodeficiency; PI primary
immunodeficiency.
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analysis showed good predictive performance within each cohort (Table 2,
Fig. 6).

In Cohorts 1–2, the model achieved strong predictive performance
with a sensitivity of 0.84 and 0.70, a specificity of 0.69 and 0.75, overall
accuracy of 0.75 and 0.72 and an AUC of 0.77 and 0.75, respectively. In
Cohorts 3–4, the model showed good predictive performance with a sen-
sitivity of 0.88 and0.78, a specificity of 0.59 and 0.55, overall accuracy of 0.65
and 0.59 and an AUC of 0.63 and 0.61, respectively.

Supplementary Table 3 reports the predictive performance of each
consensus DAG when applied to the 1:1 matched negative controls. This
analysis reveals lowperformance across all cohorts, indicating that ourmodels
are not randomly identifying cases among individuals unrelated to PI diag-
noses. A sensitivity analysis, detailed in Supplementary Table 4, demonstrates
thatmodel performance and the core causal relationships identified are robust
tominor variations in the consensus network threshold, withminimal impact
on predictive accuracy and retention of nearly all original direct causal effects.

Generalizability to other populations
When the consensus DAGmodels were applied to unseen data from other
cohorts, they maintained high predictive accuracy across all evaluations
(Table 2). Sensitivity, specificity, accuracy, andAUCranged from0.83–0.66,
0.67–0.54, 0.73–0.57, and 0.72–0.56 respectively.

Notably, the consensus DAG models trained on larger cohorts
(Cohorts 3–4) showed improved predictive performance when tested in
unseen smaller data (Cohorts 1–2), against when tested in unseendata from
the cohorts they were trained on (Table 2). Conversely, models trained on
smaller cohorts (Cohorts 1–2) demonstrated reduced predictive perfor-
mance when applied to new (larger) data.

Causal inference
Interventional analysis identified key antecedent phenotypes with highORs
(Table 3). The following antecedent phenotypes with ORs greater than 2.00
were identified in each cohort: Cohort 1: pneumococcal pneumonia, neu-
tropenia and general pneumonia (OR range: 13.09–4.09); Cohort 2: neu-
tropenia, bacterial pneumonia and influenza (OR range: 6.07–3.55); Cohort
3: failure to thrive, genetic susceptibility to disease, disorders involving the
IM and decreased white bcc (OR range: 23.65–5.14). Cohort 4; bronch-
iectasis, autoimmune disease NEC, neutropenia and developmental delays/
disorders (OR range: 9.44–2.25).

Qualitative evaluation by clinical immunologists
Three clinical immunologists (RT, VHT, JR) reviewed the consensus DAG
outcomes (Figs. 2–5, Tables 2–3) against their clinical experience and prior
studies on PI15,16,21,22. All 3 clinicians agreed that the DAGs could

Fig. 3 | Consensus DAG calculated in Cohort 2. Cohort 2 included N = 797 CID
cases with pneumonia and 797 matched controls (with no PI) with and without
pneumonia. We visualize up to 2 direct parent levels and up to 2 direct child levels
away fromCID diagnosis. Up to 1 direct parent level for each direct child and up to 1

direct child level for each direct parent are included. DAG directed acyclic graph; IM
immune mechanism; CID combined immunodeficiency; PI primary
immunodeficiency.
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substantially enhance patient screening by identifying phenotype combi-
nations on the following trajectories:
a. Direct precursors of CID/CVID diagnoses (e.g., bacterial pneumonia)

alongside conditions from different phenotype families (e.g., acute
pharyngitis) or disease complications (e.g., bronchiectasis), anywhere
in the DAG.

b. Parent phenotypes (e.g., abnormal findings in examinations of lungs)
associated with child phenotypes from different phenotype families
(e.g., pericarditis, hepatomegaly, lymphoma, meningitis) or disease
complications (e.g., sepsis).

c. Associations between parent phenotypes and other, not necessarily
interconnected, child phenotypes from different phenotype families or
disease complications.

The consensus among clinicianswas that certain phenotypes identified
in (a-c) may be subject to recurrence, aligning with existing medical lit-
erature on the recurrent nature of conditions such as pneumonias, infec-
tions, and inflammations1–10,15.

According to all clinicians, analysis of consensus DAGs in the context
of prior large-scale studies15,16,21,22 revealed a broader and more nuanced
spectrum of PI-associated comorbidities that could precede CID/CVID
diagnosis, potentially enhancing their identification.

Discussion
In this study, we present a novel approach to identify antecedent patient
comorbidities associated with CID and CVID, through the development
and evaluation of consensus DAGs derived from BNmodels. Our findings
demonstrate that these DAGs can effectively identify CID/CVID diagnoses

across diverse patient cohorts, exhibiting good predictive accuracy both
within the training population andwhen generalized to unseenpopulations.
Notably, this methodology offers a unique advantage by revealing complex
interrelationships among a wide array of comorbidities preceding CID/
CVID diagnosis, including autoimmune and blood disorders, lymphomas,
organ damage or inflammation, respiratory conditions, genetic anomalies,
recurrent infections and allergies. This comprehensive understanding of the
antecedent phenotypic landscape has the potential to significantly improve
patient screening and early detection of these PIs.

To the best of our knowledge, this is the first study to apply causal
discovery methods to clinical history phenotypes derived from diagnosis
codes, and the first such investigation within the context of PI. While not
directly pertinent to causal discovery, a previous study employed a BN
structure to quantify the interplay of diagnosis codes within a pediatric
cohort (N = 3460 patients and 1:1 matched controls)18. However, this
approach relied on a predetermined set of 36 diagnosis codes selected by
an expert immunologist, potentially introducing bias into the BN struc-
ture (due to involving a single domain expert) and limiting its general-
izability to larger and more clinically diverse patient populations. Prior
research has demonstrated the efficacy of ML models in identifying PI,
including CID and CVID, using EHR-derived clinical history diagnosis
codes15,16. In our recent work, we demonstrated that ML models can
identify CID and CVID with high accuracy15, from the same populations
used in our current work. By using descriptive statistics, we have also
identified combinations of antecedent phenotypes associated with these
conditions15. Building upon our prior work15, but without imposing any
knowledge from it, our causal discovery method has independently
identified, represented and interrelated many of these antecedent

Fig. 4 | Consensus DAG calculated in Cohort 3. Cohort 3 included N = 2,312 CID
cases (of which 797 with pneumonia) and 2312 matched controls (with no PI), both
with and without pneumonia. We visualize up to 2 direct parent levels and up to 2
direct child levels away fromCIDdiagnosis. Up to 1 direct parent level for each direct

child and up to 1 direct child level for each direct parent are included. DAG directed
acyclic graph; NEC not elsewhere classified; NOS not otherwise specified;
IM immune mechanism; bcc blood cell count; CID combined immunodeficiency;
PI primary immunodeficiency.
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phenotypes within the consensus DAGs across cohorts (Figs. 2–5,
Tables 3, 4). Among these, our interventional analysis identified key
antecedent phenotypes (respiratory conditions, blood disorders, devel-
opmental delays, autoimmune diseases) with high ORs (Table 3). Our
causal discovery methodology can offer a distinct advantage by explicitly
unveiling probabilistic trajectories across clinical history phenotypes,
which can be used to potentially improve the early suspicion and
identification of adult patients at risk for CID/CVID.

Standard (non-causal) machine learning (ML) and statistical models
frequently fail to capture the intricate interplay and probabilistic depen-
dencies among variables (phenotypes), thereby potentially limiting their
generalizability, robustness, and interpretability13,14,17,23. Of note, previous
ML research on large-scale PI datasets consisting of patient clinical history
(diagnosis codes), has primarily focused on evaluating the predictive per-
formance of ML models on unseen data drawn from the same population
used formodel training15,16. Regarding generalizability, without the capacity
to discern causal mechanisms and spurious associations, the predictive
accuracy of non-causalML and statisticalmodels is compromisedwhen the
distributionof the testingdata diverges from that of the trainingdata13,17. It is
known that variations in the sampled populations, such as the patient
characteristics and clinical histories observed inCohorts 1–4, canpotentially
degrade model generalizability if the model was not exposed to such var-
iations during development13,14,17,23–25. This issue, referred to as the out-of-
distribution generalization challenge in ML, constitutes an active research
area, with causalmodeling identified as a potential solution tomitigate these

limitations17. Our results support these methodological developments,
demonstrating the robust performance of consensus DAG models across
diverse cohorts, including those not represented in the training data
(Table 2). While maintaining high predictive accuracy within the same
cohort, the models exhibited notable generalizability across datasets.
Importantly, consensus DAG models trained on the largest and most het-
erogeneous cohorts (Cohorts 3–4) showed superior performance on
smaller, unseen datasets (Cohorts 1–2) compared to their performance on
unseen data from the cohorts they were originally trained on (Table 2). By
giving access to our open-source code, learning consensus DAGs across
further large external CID/CVID cohorts, and potentially other PI subtypes,
could provide important clinical utility by enabling the generation of
informative consensus DAGs in the setting of predicting PI in smaller
cohorts e.g., derived from certain patient populations or healthcare systems.
Moreover, our analysis indicates that causal modeling, by accounting for
underlying causal mechanisms across phenotype occurrences, enhances
model robustness and generalizability across diverse data distributions,
thereby addressing the out-of-distribution generalization challenge in our
data. Our approach facilitates clinical translation through two key compo-
nents: our previously published, publicly available code for converting
diagnosis codes to clinical phenotypes15 (see code availability: https://www.
nature.com/articles/s43856-023-00412-8#code-availability), and our causal
modeling framework (Fig. 1), which takes these phenotypes as input. This
framework is fully open-source and provides tools for dimensionality
reduction, DAG analysis, model performance evaluation and causal

Fig. 5 | Consensus DAG calculated in Cohort 4.Cohort 4 includedN = 19,924 CID
andCVIDcases (ofwhich 2350with pneumonia) and 19,924matched controls (with
no PI), both with and without pneumonia. We visualize up to 2 direct parent levels
and up to 2 direct child levels away fromCIDdiagnosis. Up to 1 direct parent level for
each direct child and up to 1 direct child level for each direct parent are included.

DAG directed acyclic graph; NEC not elsewhere classified; NOS not otherwise
specified; IM immune mechanism; ECG electrocardiogram; CID combined
immunodeficiency; CVID common variable immunodeficiency; PI primary
immunodeficiency.
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inference. By incorporating causal discovery into our screening and early
detection tool, we can potentially enhance its generalizability, robustness,
and interpretability, ultimately contributing to more effective clinical
decision-making and improved patient outcomes.

In terms of clinical interpretation of the constructed consensus DAGs,
the presence of a parent phenotype in a patient’s clinical history signals a
heightened likelihood of observing its child phenotypes, regardless of their
chronological order. This interpretation suggests that the DAG can be
utilized as a diagnostic tool for identifying groups of patients who may
exhibit specific clusters of phenotypes, even if these phenotypes do not
appear in a strict temporal sequence. Consequently, theDAG could serve as
a valuable resource for clinicians, potentially aiding in early suspicion and
diagnosis of CID/CVID, by highlighting key phenotypic trajectories within
patient histories.

Our study elucidates a consistent pattern of interconnected comor-
bidities precedingCID/CVIDdiagnosis, demonstrating a complex interplay
of factors contributing to their clinical manifestation. While the specific
phenotypes directly preceding CID/CVID diagnosis varied across cohorts
(reflecting differences in patient populations), the broader constellations of
antecedent conditions remained remarkably consistent. This highlights the
robustness of our causal discovery approach and suggests the presence of
shared underlying causal history trajectories across diverse patient popu-
lations. Notably, neutropenia emerges as a key antecedent and direct parent
of CID/CVID across all cohorts, suggesting that it may be an early clinical
indicator or risk factor for these conditions. This aligns with existing lit-
erature highlighting the association between neutropenia and PI, further
underscoring its clinical relevance22. The prominent involvement of
respiratory conditions and complications, infections, and inflammatory
processes across cohorts aligns with the known susceptibility of individuals
with PIs to these manifestations, reinforcing the importance of early PI
identification and management1–10,12. The presence of allergies across mul-
tiple cohorts is consistent with the known association between allergic
manifestations and PI1–5,10,26. Additionally, the presence of multiple auto-
immune diseases highlights a known link between autoimmunity and

PIs1–5,10,12,22,26. Ongoing research aims to elucidate the precise genetic and
immunological mechanisms underpinning the relationships between
autoimmunity and PIs27. The identification of developmental disorders as
precursors across all cohorts is in line with current medical knowledge of
inherited or early-life factors in individuals with CID/CVID1–5. Further-
more, the presence of non-Hodgkin lymphoma in all cohorts highlights the
established link between PI and increased risk for lymphoid
malignancies1–5,12,22, emphasizing theneed forheightened surveillance in this
patient population to address both such severe co-morbidities and PI. The
consistent identification of gastrointestinal disorders across cohorts aligns
with the established link between PIs and such antecedent
manifestations1–3,22,26. These findings provide a comprehensive, data-driven
understanding of the complex network of comorbidities associated with
CID/CVID, offering valuable insights for early detection, risk stratification,
and personalized treatment strategies. The consistent patterns identified
across cohorts further emphasize the potential of causal discovery methods
to uncovermeaningful relationships within clinical data and inform clinical
practice.

Our open-source codebase can empower researchers to readily train or
deploy our causal model on their own datasets, enabling local predictions
and flexible exploration of causal relationships without retraining. In future
work, we aim to extend our analysis by applying counterfactualmodeling to
explore how personalized risk stratification and targeted treatments could
impact individuals at risk of CID/CVID. This approach will necessitate a
detailed examination of individual treatment histories.

Several limitations warrant consideration in the interpretation of our
findings. The major limitation lies in the reliance on a set of assumptions
necessary for conducting causal modeling (described in our Methods). Spe-
cifically, observational studies such as ours face the inherent limitation of
partial identifiability28,29. This can result in ambiguity in causal direction, as
multiple causal modelsmay fit the observed data equally well. In addition, the
critical assumptions of faithfulness and the absence of unobserved variables,
while theoretically necessary for interpreting arcs as causal effects, cannot be
statistically verified13. Violations of these assumptions can lead to mis-
interpretations of causal relationships. However, to mitigate these limitations
and ensure a robust interpretation of our findings, we employed a multi-
faceted approachwhich included: a) accurate predictive performance onheld-
out test data within and across cohorts created by using different inclusion
criteria, to assess model performance and generalizability, respectively; b)
incorporation of expert knowledge from clinical immunologists to enhance
the validity of causal interpretations; c) causal inference through interventions
on BN variables to observe their effects on the odds of CID/CVID diagnosis,
providing further empirical support for our causal claims; d) an ensemble
approach to reduce bias and variance across individual DAGs, ultimately
identifying the most prevalent variables within the consensus DAGs13,30.

In conclusion, our study demonstrates the potential of causal BNs to
uncover complex trajectories among clinical phenotypes preceding CID/
CVID diagnosis. The consensus DAGs exhibit robust predictive perfor-
mance and generalizability across diverse patient cohorts, offering a pro-
mising avenue for enhanced screening and early detection of these
conditions. Our multi-pronged approach, incorporating BN model pre-
dictions across diverse cohorts, causal inference and expert knowledge,
strengthens the validity and clinical relevance of our findings. The identified
phenotypic trajectories and their causal relationships hold considerable
promise for translating into improved clinical practice, potentially leading to
earlier identification and intervention for adults at risk of CID/CVID.

Methods
Dataset extraction and curation
To characterize patient history and perform causal discovery, we used
International Classification of Diseases (ICD) diagnosis codes (medical
claims) extracted from large anonymized Electronic Health Records (EHR)
(Optum®, Inc., Eden Prairie, MN), a US nationally representative cohort
covering all 50 U.S. States. The study was performed with the approval of
Pfizer US Medical Affairs institutional review board. Data extraction, pre-

Table 2 | Mean diagnostic performance of causal modeling
predictions in the testing set, acrossall evaluationsperformed
in 4 Cohorts 1–4

Patient cohorts

Metric trained on
(column)/Predicted
on (row)

Cohort 1 Cohort 2 Cohort 3 Cohort 4

Sensitivity Cohort 1 0.84 (0.00) 0.69 (0.01) 0.78 (0.00) 0.79 (0.00)

Cohort 2 0.83 (0.00) 0.70 (0.00) 0.81 (0.00) 0.78 (0.00)

Cohort 3 0.74 (0.00) 0.67 (0.00) 0.88 (0.00) 0.76 (0.00)

Cohort 4 0.76 (0.00) 0.66 (0.01) 0.69 (0.00) 0.78 (0.00)

Specificity Cohort 1 0.69 (0.00) 0.63 (0.00) 0.62 (0.00) 0.61 (0.00)

Cohort 2 0.67 (0.00) 0.75 (0.01) 0.63 (0.01) 0.61 (0.00)

Cohort 3 0.55 (0.01) 0.55 (0.01) 0.59 (0.00) 0.56 (0.00)

Cohort 4 0.54 (0.01) 0.54 (0.01) 0.55 (0.00) 0.55 (0.00)

Accuracy Cohort 1 0.75 (0.00) 0.65 (0.00) 0.67 (0.00) 0.66 (0.01)

Cohort 2 0.73 (0.00) 0.72 (0.00) 0.69 (0.00) 0.66 (0.00)

Cohort 3 0.58 (0.01) 0.57 (0.00) 0.65 (0.00) 0.59 (0.01)

Cohort 4 0.57 (0.01) 0.56 (0.01) 0.58 (0.00) 0.59 (0.00)

ROC AUC Cohort 1 0.77 (0.01) 0.66 (0.00) 0.71 (0.00) 0.65 (0.00)

Cohort 2 0.72 (0.00) 0.75 (0.00) 0.72 (0.01) 0.65 (0.00)

Cohort 3 0.58 (0.01) 0.59 (0.00) 0.63 (0.00) 0.56 (0.00)

Cohort 4 0.57 (0.00) 0.56 (0.01) 0.59 (0.00) 0.61 (0.00)

Within cohort evaluations in the held-out fold test set are shown with bold. Parentheses show
standard deviation.
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processing, causal modeling and evaluation of the Optum data were per-
formed in accordance with the Declaration of Helsinki. The Optum data
have been acquired according to the Health Insurance Portability and
Accountability Act (HIPAA) Privacy Rule and all data were fully de-
identified before licensed by Pfizer15. Given the use of fully de-identified
data, the need for informed consent was determined to be not applicable by
the Pfizer US Medical Affairs institutional review board.

The end-to-end process of ICD data extraction and curation has been
previously described15. Our ICD data spanned from January 1, 2008 to
December 31, 2021 and included diagnosis codes from approximately 100
million US patients, featuring detailed records of clinical histories and
demographic information. Clinical history ICD codes were converted into
clinical phenotypes which were then utilized as data inputs for causal dis-
covery modeling (see details in the subsection “Converting ICD codes to
phenotypes”). Demographic information was used to match cases and
controls using propensity score matching15. Participants were divided into
four distinct cohorts (Cohorts 1–4), consisting of 797, 797, 2,312 and 19,924
PI cases respectively, with each cohort having an equivalent number of

controls (a total of N = 47,660 cases and controls). The inclusion criteria
required participants to be at least 18-years old at the time of PI diagnosis15.

The identification of CID andCVIDwas based on ICD codes obtained
from https://www.icd10data.com/, by including all D81 (for CID) and D83
(CVID) sections and subsections15. Supplementary Table 1 details all the
ICDcodes forCID/CVID, as identified in theOptumdatabase at the timeof
our data extraction.

In all cohorts, cases of PI and controlswere 1:1matched for age, gender,
race, ethnicity, duration of medical history (in months) and number of
healthcare visits, through propensity score matching. This resulted in an
evendistributionof PI patients andPS-matched controlswithin each cohort.
Across each patient and control inCohorts 1–4, all available ICD codeswere
extracted andadded in the list of clinical history15. Thepresenceor absenceof
all ICD codes identified were used as binary categorical features.

Cohort generation
As previously described15, given that pneumonia is themost frequent severe
infection in CID1,8–10, we first generated BNmodels to identify CID patients

AUC=0.77 (0.76-0.78) AUC=0.75 (0.75-0.75)

AUC=0.63 (0.63-0.63)

a) b)

c) d)

AUC=0.61 (0.61-0.61)

Fig. 6 | Receiver operating characteristic curves (ROC). ROC for all causal models
developed (in the training set) and evaluated (test set) across all four cohorts. Here,
ROCanalysis demonstrates the evaluations performed in the held-out test set, within
each cohort (e.g., a DAG trained and tested in Cohort 1, a DAG trained and tested in
Cohort 2, and so forth). aCID patients with pneumonia against pneumonia patients
without PI (N = 1594; 797 CID cases and 797 controls). b CID patients with
pneumonia against randomly selected patients without PI, with and without
pneumonia (N = 1594; 797 CID cases and 797 controls). c CID patients with and

without pneumonia against randomly selected patients without PI, with andwithout
pneumonia (N = 4624; 2312 CID cases and 2,312 controls). d All CID and CVID
patients with andwithout pneumonia against randomly selected patients without PI,
with and without pneumonia (N = 39,848; 19,924 PI cases and 19,924 controls).
Across all cohorts, PI cases and controls were 1:1 matched for age, gender, race,
ethnicity, duration of medical history, and the number of healthcare visits. CID
combined immunodeficiency; CVID common variable immunodeficiency.
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with pneumonia againstmatched controls with pneumonia (Cohort 1).We
then generated another set of BN models to identify CID patients with
pneumonia against matched controls with or without pneumonia (Cohort
2). We continued BN model development by aiming to identify CID
patients against matched random controls (both with or without pneu-
monia) (Cohort 3). Lastly, we expanded our dataset and developed another
set of BNmodels to identify both CID and CVID patients against matched
random controls (both with or without pneumonia). Across all cohorts, we
ensured none of the controls had CID, CVID or PI.

ICD data preparation
Across all Cohorts 1–4, ICD-10 / ICD-9 codes and patient demographics
were mined from the Optum® patient and diagnosis tables using Dataiku:
https://www.dataiku.com/15. All the ICD-9 codes present in the data were
converted to ICD-10, using the updated general equivalence mappings
(2018 GEMS) from the https://www.cms.gov/ website, as previously
described15. All ICD-10 codes were then converted to disease descriptions:
e.g., the ICD-10 for unspecified abdominal pain is R10.9, which was con-
verted to “unspecified abdominal pain”. For this step, hierarchical ICD code
mapping was implemented using the “regexp_replace” SQL function, by
combining information from the SubChapter,Major and ShortDescription

levels, as previously described15. These levels match the diagnosis category,
name and description respectively, obtained from the most updated (2020)
ICD Data R package (http://cran.nexr.com/web/ packages/icd/icd.pdf)15.

In clinical settings, a PI patient might be assigned multiple ICD codes
corresponding to general or more specific characterization of PI. To avoid
biasing causal modeling, all other ICD codes that were relevant to immu-
nodeficiency were removed as data leaks (Supplementary Table 2)15.

Converting ICD codes to phenotypes
We used the PheWAS Phecode v.1.2 system to translate features into
clinically meaningful phenotypes (disease categories), prior to BN
modeling31. One ormore ICD codesweremapped into a distinct phenotype
across each patient, based on the PheWAS Phecode v.1.2. To perform this,
we employed the “regexp_replace” SQL function, combining data from
multiple description levels (i.e., the Short and Long Description, Major and
Sub Chapter levels), as previously described15. This mapping was based on
the updated ICD Data R package (http://cran.nexr.com/web/packages/icd/
icd.pdf)15.

Pre-processing
Following data preparation, the number of clinical history ICD codes
identified in Cohorts 1–4 were: 2188; 2154; 3522; and 10,445 ICD codes,

Table 3 | Temporal information and interventions (causal
inference) in Cohorts 1 and 2

Phenotype per cohort Temporal information (in
months)

Intervention
(Odds ratio)

Cohort 1

Pneumococcal
pneumonia

−0.13 (−11.4, −10.61) 13.09

Neutropenia −10.3 (−36.0, 0.2) 7.22

Pneumonia −14.3 (−46.7, 0.0) 4.09

Abnormal findings
examination of lungs

−10.0 (−32.8, 0.2) 1.67

Failure to thrive and
developmental
disorders

−14.5 (−48.4, 0.0) 1.29

Diseases of respiratory
system NEC

−14.9 (−45.0, 1.5) 1.29

Bacteremia −1.7 (−29.9, 5.3) 1.11

Pancytopenia −10.6 (−34.4, 0.4) 1.02

Non-Hodgkin
lymphoma

−21.9 (−60.3, −0.4) 1.02

Meningitis −34.1 (−61.1, −11.8) 1.02

Cohort 2

Neutropenia −10.3 (−35.4, 0.3) 6.07

Bacterial pneumonia −1.6 (−22.9, 3.1) 6.06

Influenza −7.9 (−30.3, 14.15) 3.55

Abnormal findings
examination of lungs

−9.7 (−32.7, 0.6) 1.70

Acute pharyngitis −19.2 (−55.9, 5.5) 1.33

Bacterial infection NOS −3.1 (−26.5, 8.2) 1.19

Viral infection −17.2 (−50.7, 2.6) 1.04

Allergies −14.0 (−41.5, 5.4) 1.02

Acute bronchitis −19.5 (−45.6, 0.0) 1.02

Otitis media −15.9 (−36.7, 9.3) 1.01

Temporal distributions were calculated by considering the first diagnosis of each phenotype in
reference to the first CID diagnosis, in terms of Box and Whisker plots: median value and 50%
interquartile range to the median (lower and higher interquartile value to the median, shown in
parenthesis). All temporal information (median values and interquartile ranges) is expressed in
months. Odds ratio represents the effect of each intervention on the CID diagnosis. NEC not
elsewhere classified, NOS not otherwise specified.

Table 4 | Temporal information and interventions (causal
inference) in Cohorts 3 and 4

Phenotype per cohort Temporal information (in
months)

Intervention
(Odds ratio)

Cohort 3

Failure to thrive −4.9 (−31.0, 0.7) 23.65

Genetic susceptibility to
disease

−4.1 (−30.7, 1.2) 13.24

Disorders involving the IM −8.2 (−35,2, −0.4) 8.74

Decreased white bcc −3.03 (−25.4, 0.7) 5.14

Splenomegaly −4.9 (−24.7, 1.8) 1.49

Nutritional, metabolic,
and developmental
symptoms

−10.0 (−34.9, 0.9) 1.46

Developmental delays &
disorders

−5.8 (−33.0, 6.3) 1.26

Pancytopenia −5.2 (−29.5, 0.7) 1.22

Pneumonia −13.7 (−46.6, 0.0) 1.16

AutoimmunediseaseNEC −28.8 (−61.2, −2.2) 1.16

Cohort 4

Bronchiectasis −4.2 (−29.6, 1.3) 9.44

AutoimmunediseaseNEC −23.7 (−50.1, −3.2) 4.36

Neutropenia −4.9 (−29.8, 0.9) 3.68

Developmental delays &
disorders

−7.8 (−39.3, 5.7) 2.25

Bacterial pneumonia −1.8 (−23.4, 5.8) 1.14

Asphyxia and hypoxemia −2.1 (−25.3, 6.5) 1.13

Asthma −27.9 (−62.8, −4.5) 1.10

Bronchitis −7.8 (−19.8,−0.2) 1.08

Viral infection −16.5 (−45.8, 0.3) 1.07

Rheumatoid arthritis −17.2 (−61.8, −0.2) 1.01

Temporal distributions were calculated by considering the first diagnosis of each phenotype in
reference to the first CID/CVID diagnosis, in terms of Box andWhisker plots: median value and 50%
interquartile range to the median (lower and higher interquartile value to the median, shown in
parenthesis). All temporal information (median values and interquartile ranges) is expressed in
months. Odds ratio represents the effect of each intervention on the CID/CVID diagnosis. IM
immune mechanism, bcc blood cell count, NEC not elsewhere classified.
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respectively. After ICD to phenotype conversions, Cohorts 1–4 involved:
1590; 1551; 4595 and 39,823 phenotypes, respectively. Across all cohorts,
BN modeling was performed on phenotype data.

To remove sparse, redundant data and to improve computational effi-
ciency, we performed dimensionality reduction. First, we removed sparse
phenotypes that had <5% prevalence in the CID/CVID cases within each
cohort. This led to 565, 562, 397 and 331 phenotypes in Cohorts 1–4,
respectively. Subsequently, we performed Pearson’s X2 analysis to evaluate
collinearity betweenphenotypeswithin each cohort.Given that all phenotypes
were binary and had a hierarchical structure (from general to specific phe-
notypes), there were many highly colinear phenotype pairs. Based on expert
advice from 3 clinical immunologists (co-authors RT, JR and VHT), we only
allowed one phenotype from each pair demonstrating a Pearson’s X2 statistic
P-value < 10−20, 10−20, 10−84 and 10−84 in Cohorts 1–4, respectively. This led to
241, 245, 212 and 122 phenotypes in Cohorts 1–4, respectively. Due to the
varying selection criteria across cohorts and the large sample size in Cohorts 3
and 4, which increased statistical power, P-value thresholds were chosen to
ensure at least 20 phenotypes were included in the DAG across all cohorts32.

Causal discovery
Causal discovery aims to recover causal relationships among the variables.
Causal networks (CNs), a foundationalML approach rooted in BNs, offer a
mathematically rigorous, semantically sound and interpretable repre-
sentation of cause-effect relationships through probabilistic graphical
models that represent variables as nodes and associations as arcs in aDAG14.

The processes of learning the DAG and the parameters of BNs33,34,
performing inference and model validation35, as well as generating
hypotheses36 and guiding the design of experiments (with BNs)37, are well-
studied topics. BNs are generative models: as such, we can use them as a
working model of reality and explore the phenomena we are studying
through inference, reducing the need for experimental data collection.
Furthermore, BNs can easily incorporate information available from the
literature and domain experts38.

To construct his causal reasoning framework, Judea Pearl endowed
probabilistic interpretations of BNmodelswith additional causalmeaning13.
Under additional assumptions such as the lack of unobserved (latent)
confounders, he showed thatwe canattribute causalmeaning to theBNarcs.
Modern literature focuses onhow to learn them fromobservational data28,29,
from a combination of observational and interventional data19, and hier-
archical data such as that arising from multi-center clinical trials39. Further
work on BNs has been focused to identify when they can be uniquely
identifiable40, to deal with missing data41,42 and to detect possible sources of
confounding43.

Formally, BNs are defined as a set of variables X1; . . . ;XN that are
associated with the nodes of a DAG G. Each arc Xi ! Xj indicates that Xi
and Xj are linked by a relationship in which Xi is the cause and Xj is the
effect.Arcs are assumednot to formcycles in theDAG. Indirect causal effects
mediated by other variables are not represented directly as arcs but can be
read fromtheDAGbycheckingwhetherXi andXj are graphically separated,
or if there is an open path that makes it possible to reach Xj from Xi.

Each variable has an associated probability distribution. The BN
represents the joint probability distributions and provides a clear graphical
representation of the relationship among the variables, thus producing an
interpretable generative model.

In practice, learning a BN consists of two steps:
1. Learning the structure of the network, i.e., learning which arcs should

appear in the DAG to represent the cause-effect relationships between
the variables.

2. Learning the parameters of the probability distributions associated
with the variables. The BN defines them as the distributions of each
variable conditioned on its direct causes, with independent parameters
in each distribution.

The first step corresponds to model selection and is the main focus of
causal discovery. The second step corresponds to model estimation, a

statistical process also integral to causal discovery. Causal discovery and
inference were performed using the bnlearn environment (https://www.
bnlearn.com/documentation/man/bnlearn-package.html).

Structure learning
Structure learning involves finding the DAGG that is best supported by the
data D, optimizing for:

PðG jDÞ / PðGÞPðD jGÞ ð1Þ

The term P Gð Þ in Eq. (1) encodes our prior knowledge on the cause-effect
relationships that should appear in the DAG. Further, the likelihood term
PðDjGÞ represents how well the DAG is supported by the data. Together,
they are proportional to the posterior probability PðGjDÞ of the DAG given
the data.

Here, we used a score-based approach with tabu search as the causal
discovery algorithm and the Bayesian Information Criterion (BIC) to
approximate the likelihood of observing the data given the model PðDjGÞ,
which was found to provide the best trade-off between speed and structural
accuracy33. Tabu search is a greedy search algorithm that operates similarly
to gradientdescent. It chooses to addor removeanarcbasedon theBIC.BIC
is derived as a first-order approximation from PðDjGÞ and is robust against
overfitting.

Furthermore, we employed an ensemble approach by using boot-
strapping andmodel aggregation, to enhance the robustness of our findings
by reducing bias and variance across individual DAGs, ultimately identi-
fying the most prevalent variables within the consensus DAGs30. We pro-
duced 200 bootstrap samples from the data and applied causal discovery to
each of them. We then created a “consensus DAG” from the resulting 200
DAGsby selecting those arcs that appearedwith a frequency above the data-
driven thresholds, as previously detailed30. This approach provides us with
the inclusion probability of each arc (the frequencywith which eitherXi !
Xj or Xj ! Xi appear) and the probability of each causal direction (the
frequency of, e.g.,Xi ! Xj divided by the inclusion probability) for each of
the arcs in the consensus BN. These two quantities estimate the posterior
probability that Xi and Xj are linked by a cause effect relationship and the
possible direction of causality, respectively.

Parameter learning
After we have learned the DAG, BNs define the distribution of each
variable Xi in the model as P Xijpa Xi

� �� �
, where pa Xi

� �
are the direct

causes of Xi in the DAG (i.e., all nodes with an arc pointing to Xi). As our
variables are binary, representing presence or absence of conditions, their
distributions are modeled as logistic regressions against their direct
causes13,14. The parameters, being regression coefficients, intuitively reflect
the odds of causing the associated condition associated with the node13.
Parameter learning involves estimating these model coefficients, often
facilitated by Bayesian inference to incorporate prior knowledge13,14.

Causal Bayesian network assumptions and multi-pronged
evaluation
Using BNs as CNs requires careful consideration of several essential
assumptions. Firstly, inherent to observational studies is the challenge of
partial identifiability, where multiple causal models may fit the data equally
well, resulting in ambiguity in causal direction28,29. This stems from the
inability of observational data alone to differentiate between statistically
equivalent models sharing the same dependencies and correlations.
Moreover, interpreting arcs as causal effects relies on the assumptions of
faithfulness (observed dependencies arise solely from causal structure) and
the absence of unobserved confounders13. These assumptions, while crucial
for valid causal inference, are inherently untestable through statistical
methods. Furthermore, the acyclic nature of DAGs precludes representing
cyclic relations, which require the construction of dynamic BNs with
duplicated nodes across time points, modeled as vector autoregressive
series14,44,45. Lastly, the training data for the BN should be representative,
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sufficient in quantity (adequate statistical power to identify causal effects), as
well as free from sampling bias and systematic missing values which can act
as hidden confounders13,41.Weobservednomissing values in our large-scale
diagnosis codes15.

In our study, to fairly interpret the learned consensus DAGs and
evaluate the validity of the aforementioned assumptions, we developed a
multi-pronged approach: a) we performed BN model predictions on held-
out test datawithin eachcohort andon test data fromtheother three cohorts
(acting as independent datasets); b) we incorporated domain expert
knowledge from clinical immunologists to fairly interpret the DAGs across
cohorts; c) we performed causal inference by conducting causal interven-
tions on the variables in BN and observing their effects on the odds of being
diagnosed with CID/CVID; d) we employed an ensemble approach to
enhance the robustness of our findings by reducing bias and variance across
individual DAGs, ultimately identifying themost prevalent variables within
the consensus DAGs.

Study-specific assumptions
We set two key study-specific assumptions: 1) that unraveling causal
relationships between clinical history phenotypes may improve the iden-
tification of CID/CVID (but not the reverse) and 2) that CID/CVID may
(commonly) chronologically stem from clinical history phenotypes, given
the considerable challenges of underdiagnosis and delayed diagnosis in PI.
These assumptions are based on the established association of PI with
delayed diagnosis1,2,7–10 and our previous large-scale ML study which
demonstrated that clinical history phenotypes consistently preceded the
first CID/CVIDdiagnosis across all four datasets15. The latter has also been
shown by other computational PI studies16,44. Hence, in our DAG we only
allowed the exploration of cause-effect relationships leading from clinical
phenotypes towards CID/CVID diagnosis across cohorts (and did not
allow the reverse directions). We implement this assumption by prohi-
biting all the arcs stemming from CID/CVID towards clinical history
phenotypes.

BNmodel performance
We assessed the predictive performance of our consensus DAGs in
two ways:
a. PredictingCID/CVIDdiagnoses within the same population.We used

10-fold cross-validation, training the Bayesian Network (BN) on 9
folds of data and predicting CID/CVID in the held-out fold. This step
was repeated across all cohorts.

b. Generalizing to different populations. We tested the ability of each
consensusDAGtopredictCID/CVID in the other three cohorts (using
the entire dataset of each cohort). This evaluates the consensus DAG’s
ability to generalize to unseen data from distinct populations.

For all evaluations,we perform receiver operating characteristic (ROC)
analysis and report the sensitivity, specificity, accuracy, and area under the
curve (AUC) as measures of predictive performance.

Causal inference
We conducted interventional analyses to quantify the impact of each con-
dition (phenotype variable in theDAG) on the odds of receiving aCID and/
or CVID diagnosis (depending on the cohort).We perform an intervention
on each phenotype in the consensus DAGs, by removing all incoming arcs
and setting its value first to 1 (i.e., a positive diagnosis) and then to 0 (a
negative diagnosis). We calculate the odds ratio (OR; presence/ absence of
each phenotype) for a positive CID and/CVIDdiagnosis across phenotypes,
to quantify the effect of each condition on the odds of receiving a CID and/
or CVID diagnosis.

By conducting interventions and blocking all incoming causal effects
on each phenotype, we can interpret the calculated ORs as cohort-wide
causal effects, quantifying how the presence of each phenotypemodifies the
odds of a CID/CVID diagnosis for each cohort19.

Data availability
Thedatasets used for this study couldnot bemadepublicly available due to a
data use commercial agreement between Pfizer and Optum. However, the
data can be made available to qualified investigators upon reasonable
request with evidence of institutional review board approval.

Code availability
Our entire codebase for dimensionality reduction, DAG analysis, model
performance evaluation and causal inference has been made available with
the online documents.
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