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Identifying disease risk and detecting disease before clinical symptoms appear are essential for early
intervention and improving patient outcomes. In this context, the integration of medical imaging in a
clinicalworkflowoffers a unique advantagebycapturingdetailed structural and functional information.
Unlike non-image data, such as lifestyle, sociodemographic, or prior medical conditions, which often
rely on self-reported information susceptible to recall biases and subjective perceptions, imaging
offersmore objective and reliable insights. Although the use ofmedical imaging in artificial intelligence
(AI)-driven risk assessment is growing, its full potential remains underutilized. In this work, we
demonstrate how imaging can be integrated into routine screening workflows, in particular by taking
advantage of neck-to-knee whole-bodymagnetic resonance imaging (MRI) data available in the large
prospective study UK Biobank. Our analysis focuses on three-year risk assessment for a broad
spectrum of diseases, including cardiovascular, digestive, metabolic, inflammatory, degenerative,
and oncologic conditions. We evaluate AI-based pipelines for processing whole-body MRI and
demonstrate that using image-derived radiomics features provides the best prediction performance,
interpretability, and integration capability with non-image data.

Risk assessment and stratification aim at early identification of individuals
before disease onset or at a preclinical disease stage, enabling primary
prevention and timely intervention. This proactive approach has the
potential to shift healthcare from treatment to anticipation and prevention,
reducing the burden of advanced disease and improving long-term
outcomes1,2. At the same time, with advances in medical imaging technol-
ogies, there is a growing interest in integrating imagedata into theprediction
and detection process. The advent of artificial intelligence (AI) has further
revolutionized this field, enabling the detection of subtle changes and the
extraction of complex patterns and features that are beyond human
perception3,4. Combining imaging with other clinical and lifestyle infor-
mation has already demonstrated benefits in diagnostic prediction5–7 and,
therefore, represents a promising direction for improving the accuracy in a
prognostic risk assessment task.

In recent years, numerous approaches have leveraged non-image data
for risk assessment in various diseases. Dolezalova et al. develop tools for
predicting cardiovascular disease (CVD)8 and Type 2 Diabetes (T2D)9 risk
based on features that can be collected outside of a clinical setting, without
requiring specialized medical equipment or an in-person visit to a health-
care provider. In contrast, Steinfeldt et al.10 utilize clinical information to

predict the 10-year risk of major CVD events. Expanding on these efforts,
Mamouei et al.11 investigate the impact of a range of factors on CVD risk,
including medical events, behavioral and socioeconomic influences, envir-
onmental conditions, and clinical measurements. Beyond CVD, other
conditions have also been explored. Julkunen et al.12 evaluate the prognostic
value of metabolic blood biomarkers in CKD. Meng et al.13 evaluate risk
factors for alpha-1 antitrypsin deficiency-associated liver disease (AATD-
LD), including disease characteristics, laboratory values, demographics, and
lifestyle factors, to predict clinical outcomes such as all-cause mortality,
liver-related death, and likelihood of liver transplant. Shifting the focus to a
broader spectrum of age-related diseases, Lian et al.14 examine metabolic
biomarkers andGadd et al.15 blood protein levels as key indicators of disease
risk and mortality. Cancer risk assessment with non-image data has been
approached from multiple angles as well. Sun et al.16 analyze liver function
markers for lung cancer, while for general cancer, Soto et al.17 and Chang
et al.18 investigate dietary factors, such as diet type and ultra-processed food,
respectively. Placido et al.19 focus on integrating disease history into pan-
creatic cancer risk prediction models.

Image-based approaches are less frequently used in the context of risk
assessment. Flynn et al.20 use DXA knee scans to extract theminimum joint
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spacewidth (mJSW) feature,which is then linkedwith genetic data to derive
a polygenic risk score (PRS) for knee osteoarthritis. Huang et al.21 derive
features from abdominal ultrasonography, carotid artery ultrasonography,
bone mineral density scans, and electrocardiography to improve T2D risk
assessment based on genetic data. Prasad et al.22 utilize retinal fundus images
to analyze vascular patterns for CVD prediction. In breast cancer risk
assessment,Eriksson et al.23 extractmammographic features such as density,
microcalcifications, masses, and asymmetries from full-field digital mam-
mography. Additionally, Linge et al.24 examine muscle composition and
liver features extracted fromwhole-body and liverMRIs for their predictive
value on all-cause mortality. For non-small cell lung cancer (NSCLS) risk
stratification, Vanguri et al.25 and Captier et al.26 employ multi-modal
approaches that integrate radiomics features extracted from computed
tomography (CT) imageswith the clinical andpathological data.Despite the
growing use of imaging in disease risk assessment, the application of
radiation-free whole-bodyMR screening exams remains an underexplored
area, particularly in understanding how they can be effectively incorporated
into screening and prediction algorithms. This integration could sig-
nificantly improve the detection of preclinical disease stages and persona-
lized risk stratification across a wide range of disease conditions due to its
ability to provide an objective and comprehensive, multi-organ view in a
single exam.

In this work, we utilize various AI models to explore low-resolution
whole-bodyMR images, thereof-derived radiomics features, andnon-image
data for a 3-year preclinical risk assessment ofCVD, pancreatic disease, liver
disease, cancer,COPD,CKD, andosteoarthritis.Weadditionally investigate
the potential of functional and structural image-derived cardiac features
extracted from higher-resolution cardiac MRI for CVD risk assessment.
Our findings demonstrate that images and image-derived features are
powerful predictors of preclinical disease risk, enhancing the predictive
value of non-image data. We also show that in terms of risk prediction
accuracy, employing image-derived whole-body radiomics and cardiac
features outperforms the direct use of whole-body MRI. These features

provide better interpretability and training efficiencywhile beingwell-suited
for integration with non-image tabular data, enabling more effective multi-
modal analysis.

Results
Preclinical risk assessment in UK biobank
We use UK Biobank27 to identify the disease groups - CVD, pancreatic
disease, liver disease, cancer, COPD, CKD, and osteoarthritis - using a
disease-specific set of InternationalClassificationofDiseases (ICD-10) codes
and self-reported information as filtering criteria. An event is defined as the
recorded occurrence of a disease-specific diagnosis in the linked health
sources, such as a cancer register, hospital records, and self-reported infor-
mation. Subjects are classified as at-risk for a particular disease if their first
event occurs within three years after the imaging assessment and does not
occur before or within three months; otherwise, if no event is ever recorded,
they are classified as healthy. We extract an equal number of at-risk and
healthy subjects with aligned distributions of age, sex, body mass index
(BMI), and ethnicity within the disease-specific dataset by applying pro-
pensity score matching28. The resulting balanced dataset is randomly split
into training, validation, and test sets. More details on the disease group
identification and training regime are provided in the Methods Section.

To capture a subject’s profile, we integratemultiple datamodalities. As
a non-image modality, we incorporate general information related to life-
style, sociodemographics, and health. We identify the features from the
following categories available in the UK Biobank: basic features, clinical
features, disease history before imaging assessment, physical activity, general
health features, diet, smoking, and alcohol habits. As the imaging modality,
we select the 3D whole-body MRI with fat and water contrasts. We apply a
whole-body MRI segmentation tool29 to segment 69 different organs and
extract whole-body radiomics features. For CVD, we employ additional
cardiac structural and functional features extracted from the cardiacMRI, as
describedbyBai et al.30. Theoverviewofdataset construction is shown inFig.
1 and the resulting disease-specific datasets in Table 1.

Fig. 1 | Dataset construction for preclinical disease risk assessment in UK Bio-
bank, including. a Selection pipeline using ICD-10 codes and self-reported infor-
mation from the linked health sources, and (b) collecting multi-modal data, whole-

body MRI (upper and red), extracted whole-body radiomics (upper and blue), and
non-image data (lower and blue). Created in BioRender. Seletkov, D. (2025) https://
BioRender.com/x14itf2.
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Due to the distinct nature and dimensionality of investigated data
modalities, such as whole-body MRI and tabular data encompassing non-
image and image-derived whole-body radiomics and cardiac features, we
employ specialized AI models31,32. Specifically, ResNet18 3D33 is trained on
the whole-body MRI, while Random Forest (RF)34, eXtreme Gradient
Boosting (XGB)35, and Multi-Layer Perceptron (MLP) on non-image and
image-derived whole-body radiomics and cardiac features. To investigate
multi-modal performance, we combine tabular image-derived and non-
image features at the input level. For whole-body MRI, we apply joint and
late fusion strategies5 to combine the images with non-image features and
report the best results achieved.

Building these multi-modal disease-specific datasets and
modality-specific AI models, we investigate the 3-year preclinical risk
assessment as a binary classification problem. All models are trained to
optimize accuracy (ACC), the primary evaluation metric. We addi-
tionally report the F1 score (F1) and area under the receiver-operating
characteristic curve (AUROC) for completeness. The results of the
best-performing models across all modalities and datasets are pre-
sented in Fig. 2.

Unimodal analysis
To understand the impact of eachmodality, we first explore the non-image
data, whole-body MRI, and whole-body radiomics features individually.

The non-image features are predictive for the risk assessment of all
diseases except cancer. We assume that this is due to a broad definition of
cancer in our study, which includes malignancies originating from various
primary organs, and a strong genetic component in cancer development36.

Whole-body MRI achieves a mean accuracy above 0.61 for pancreatic
disease, liver disease, cancer, and COPD, while close-to-random perfor-
mance is observed for CVD, CKD, and osteoarthritis. However, the whole-
body radiomics features perform better in cases of pancreatic disease,
COPD, CKD, and osteoarthritis and on par with CVD, liver disease, or
cancer. We hypothesize this with the ability of radiomics features to extract
consolidated patterns, reducing the noise and irrelevant information
inherent in whole-body MRI. Additionally, the tabular models used with
radiomics undergo rigorous hyperparameter tuning, optimizing their pre-
dictive performance. In contrast, the higher-dimensional whole-body MRI
data poses greater challenges for effective training, potentially limiting its
performance for certain datasets.

Table 1 | Overview of resulting preclinical disease risk datasets using UK Biobank with a number of subjects in subsets and
average characteristics of at-risk and healthy groups

# of subjects in subsets Average statistics

Dataset Group Train Validation Test Age BMI % Female Time-to-event [days]

CVD at-risk 570 64 159 66.3 ± 7.4 27.0 ± 4.5 44.4% 574.6 ± 279.3

healthy 570 63 158 66.3 ± 6.9 25.9 ± 4.0 44.1% no event

Pancreatic Disease at-risk 212 24 59 65.8 ± 7.4 29.6 ± 5.8 35.6% 528.3 ± 277.1

healthy 212 24 59 65.7 ± 6.6 26.2 ± 3.7 33.9% no event

Liver Disease at-risk 146 17 41 64.5 ± 8.2 28.9 ± 5.6 50.7% 592.5 ± 290.4

healthy 145 16 41 64.2 ± 8.0 26.8 ± 4.2 50.2% no event

Cancer at-risk 432 49 121 65.9 ± 6.9 27.1 ± 4.5 40.0% 492.9 ± 268.9

healthy 432 48 120 65.8 ± 6.9 26.5 ± 4.1 40.6% no event

COPD at-risk 139 16 39 67.9 ± 7.2 27.5 ± 4.9 39.9% 529.5 ± 278.5

healthy 138 15 39 68.1 ± 7.1 26.6 ± 4.4 40.6% no event

CKD at-risk 219 25 61 69.9 ± 6.2 28.1 ± 4.8 45.9% 561.7 ± 286.4

healthy 218 24 61 69.7 ± 6.2 26.8 ± 4.3 44.4% no event

Osteoarthritis at-risk 662 74 184 66.5 ± 7.0 27.3 ± 4.6 54.1% 567.8 ± 274.7

healthy 662 74 184 66.5 ± 6.9 26.4 ± 4.2 54.8% no event

Fig. 2 | Results of 3-year preclinical risk assessment for cardiovascular disease
(CVD), pancreatic disease, liver disease, cancer, chronic obstructive pulmonary
disease (COPD), chronic kidney disease (CKD), osteoarthritis. The rows repre-
sent the data modality, in order: non-image, whole-body MRI, whole-body

radiomics extracted fromwhole-bodyMRI, non-image with whole-bodyMRI, non-
image with whole-body radiomics, cardiac features30, and non-image with cardiac
features. Created in BioRender. Seletkov, D. (2025) https://BioRender.com/
m09n1fh.
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To investigate the effects of varying dataset sizes, shown inTable 1, and
the use of high-parameterized ResNet18 3D, we additionally evaluate a
customCNNmodel with fewer trainable parameters in Supplementary Fig.
1. Findings show that ResNet18 3D performs comparably or better, vali-
dating its selection for consistency in subsequent analyses.

We investigate the poor performance of the imaging modalities for
CVD.Wehypothesize that the information related to the accurateCVD risk
assessment may be present in the image but cannot be fully captured by
static low-resolution whole-body MRI. To address this, we evaluate cardiac
functional and structural features extracted from higher-resolution cardiac
MRI. We observe that this imaging modality contains more relevant
information, making it better suited for CVD risk assessment. We addi-
tionally evaluate the cardiac features in combination with whole-body
radiomics for other datasets and conclude that the cardiac features also
improve the performance for liver disease risk assessment, consistent with
the known link between cardiovascular, metabolic, and hepatic
pathophysiology37. Thedetailed results are reported inSupplementaryFig. 2.

Multi-modal analysis
We explore the fusion of non-image data with whole-body MRI, whole-
body radiomics, and cardiac features. The integration of non-image data
with whole-body radiomics shows better performance compared to whole-
body MRI in terms of accuracy across all datasets except CVD, where the
fusion with image data does not significantly improve the non-image
baseline. Notably, the fusion with whole-body MRI excels for liver disease
and cancer in termsofAUROC, consistentwith unimodal experiments. The
fusion performance of whole-body radiomics and whole-body MRI is
attributed to several factors. First, whole-body radiomics features demon-
strate comparable or superiorperformance towhole-bodyMRI inunimodal
settings. Second, the fusion of image and tabular data can be achieved
through late or joint fusion5.However, late fusion canbe suboptimal due toa
lack of interactionsbetween features fromdifferentmodalities5,7, anddespite
being end-to-end trainable, joint fusion using MLP models is less effective
than not end-to-end trainable tree-based algorithms such as XGB or RF,
which yield the best results, shown in Supplementary Tables 1–7. Fur-
thermore, tabular models undergo extensive hyperparameter tuning,
allowing iteration over thousands of hyperparameters due to their short
training times in seconds compared to the days required for image models,
making the hyperparameter tuning process infeasible.

As shown in Supplementary Fig. 3 and corresponding Supplementary
Tables 8–14, late fusion surpasses joint fusion in most experiments, with a
minimal performance gap in those where joint fusion excels. This supports
adopting late fusion, which offers practical benefits, including combining
unimodal models without additional training and flexibility in model sub-
stitution. Additionally, we investigate the potential influence of dataset size
on fusion strategy performance for the “non-image + whole-body MRI”
experiment in Supplementary Fig. 4. No consistent pattern is observed.
Among larger datasets with more than 1000 total samples, such as CVD,
osteoarthritis, and cancer, both fusion methods show mixed results - late
fusion performs better for CVD and Osteoarthritis, while joint fusion has
slightly better performance for Cancer. Similarly, for the datasets with fewer
samples, such as COPD, liver disease, pancreatic disease, and CKD, the
minimal and inconsistent performance differences are observed. These
findings suggest that dataset size does not systematically favor one fusion
strategy over the other.

Except for CVD, where whole-bodyMRI and radiomics features show
limited predictive capability, our findings demonstrate that fusing non-
image data with whole-body radiomics features consistently outperforms
individual modalities in terms of average accuracy. This fusion approach
also exhibits the best performance across all datasets. Similarly, forCVD, the
fusion of non-image data with cardiac features indicates superior perfor-
mance compared to other experiments.

To assess the generalization performance and feature importances of
our models, we employ nested cross-validation with non-overlapping
stratified 5 outer and 10 inner folds across 5 seeds, mimicking the initial

fixed train-validation-test evaluation that allowed us a fair comparison with
the “whole-body MRI” experiment. The results are reported in Supple-
mentary Fig. 5 and do not exhibit a significant difference in performance
evaluation.

Cross-validation allowsus to investigate the importance of thedifferent
feature categories across diseases using the best-performancemodels for the
“non-image + whole-body radiomics” experiment applied to the test
datasets in each outer fold. We chose the “non-image + whole-body
radiomics” model for feature importance analysis since it consistently
achieves the best predictive performance across datasets and enables us to
explore the added value of image-derived features when combined with
non-image information, offering a more comprehensive view of the most
informative organ systems.

We compute the mean feature importance across all test datasets for
each category using the model-independent permutation importance
method34 with 100 shuffles. Only the statistically significant feature cate-
gories are used (p-value < 0.05*14 Bonferonni corrected for non-image and
13 whole-body radiomics categories in each dataset).

Figure 3 illustrates the five most important organ systems by feature
importance ranking for each disease. The absolute feature importances of all
categories across all diseases are reported in Supplementary Fig. 6.

We observe that in addition to organ system-specific categories linked
to particular diseases - such as respiratory for COPD, kidney for CKD, and
spine for osteoarthritis - the features related to bone, fat, and muscle also
hold high importance in risk prediction across various diseases, particularly
pancreatic and liver diseases. This finding is expected, given the funda-
mental role of these organs in nutrition and metabolism.

We additionally provide the absolute feature importances for the
“whole-body radiomics” experiment in Supplementary Fig. 7 and discuss in
Supplementary Note 1.

Discussion
In this work, we demonstrate how image data facilitates risk prediction for a
wide range of diseases at an early time point, that is, in a preclinical disease
stage, both as a standalone modality and in combination with non-image
data. In particular, we highlight the potential of whole-body MRI, which
offers a comprehensive multi-organ view in a single screening exam, as
opposed to non-image questionnaire data, which often depends on self-
reported information and is prone to bias and inaccuracies.

Inour study,we applymodality-specificAImodels towhole-bodyMRI
and image-derived features from whole-body and cardiac MRI, and non-
image questionnaire and clinical data from theUKBiobank. This enables an
assessment of the 3-year preclinical risk of CVD, pancreatic disease, liver
disease, cancer, COPD, CKD, and osteoarthritis.

Our findings demonstrate that image-derived features offer several
advantages compared to images. The image-derived features are generally
easier to handle, more interpretable, and exhibit superior performance in
our experiments. This can be attributed to their condensed representation,
which eliminates noise and irrelevant information often present in images.
Specifically, we assume that the structured image-derived features allow the
model to filter out artifacts, unrelated anatomical structures, or variations
due to scanning parameters and patient positioning through segmentation
and quantification pipelines. Furthermore, the lower dimensionality of
image-derived features compared to images simplifies the extensive
hyperparameter tuning, further enhancingmodel performance. As a result,
image-derived features provide a more practical and efficient alternative to
working directly with images.

The combination of image-derived whole-body radiomics or cardiac
features with non-image data shows improved performance in risk pre-
diction for most of the investigated diseases. These results highlight the
complementary nature of each modality and their potential to offset indi-
vidual limitations, paving the way for AI-driven, multi-modal preclinical
disease risk assessment.

The results and generalizability of our experiments should be viewed
under the following limitations. The analysis is based on self-reported and
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hospital in-patient data available in the UK Biobank. Our disease group
selection strategy ensures only that the disease is not reported at the time of
imaging assessment or within the following 3months, and does not include
the radiological validation of theMRI scans bymedical experts. Tomaintain
statistical validity, we are limited to broad disease categories in our experi-
ments.Nevertheless, we believe that such an approach remains valuable and
could trigger additional higher-resolution scans of certain organs or body
regions in the clinical workflow.

The artificial 1:1 proportion of at-risk and healthy subjects in the
training, validation, and test subsets is chosen intentionally to make the
training on large whole-body 3D fat and water volumes computationally
feasible. However, this choice restricts our ability to accurately assess real-
world model performance, where the distribution of at-risk and healthy
cases differs. Future work may prioritize assessing model performance
under more realistic prevalence scenarios, including imbalanced test sets
that better represent the true distribution of disease in the target population,
where at-risk cases are typically less frequent. Furthermore,whilewe employ
a 3-year risk assessment window, future studies could explore alternative
time horizons, e.g., 4 and 5 years. In addition, an important direction for
futurework lies indevelopingmore effectivemethods for integrating tabular
and image data to enhance predictive performance.

An additional limitation of our radiomics pipeline is the reliance on the
performance of the segmentation algorithm. Errors or biases in segmenta-
tion can propagate to downstream risk predictions. Previous work38,39 has
shown that segmentation performance can vary across demographic
groups, particularly when certain populations, e.g., by sex or ethnicity, are
underrepresented in the training data. This may result in reduced accuracy
or biased risk predictions in those subgroups and should be explored in
future work.

We acknowledge that whole-body MRI is not currently used in
routine screening due to high costs and the limited resolution, which
lowers its sensitivity for disease detection.However, unlike CT,MRI offers
a radiation-free approach, making it a safer option for large-scale popu-
lation applications. Our findings provide proof of concept showing that
whole-body MRI, even at lower resolutions, in combination with AI-

driven image analysis, can capture meaningful information for preclinical
risk assessment.

Methods
UK Biobank dataset
UKBiobank27 is a long-term population study following 500,000 volunteers
40–69 years of age at recruitment in 2006–2010. As a sub-study, 100,000
participants are recalled for a detailed imaging assessment, including a
repeat of the baseline assessment. All assessments encompass a broad range
of data, including sociodemographic, lifestyle, and linked health sources.

The imaging assessment includes, among othermodalities, whole-body
and cardiac MRIs. The whole-body MRI consists of a neck-to-knee T1-
weighted dual-echo DixonMR image with a size of [224 × 168 × 363] voxels
anda resolutionof [2.23 × 3 × 2.23]mmwithwater and fat contrasts.Cardiac
MR (CMR) imaging consists of a multi-view 2D + Time image that com-
prises 2D slices from short-axis and long-axis views in the time dimension.

The UK Biobank has ethical approval from the North West Multi-
centre Research Ethics Committee to handle human participant data, no
additional ethical approval was required because the study involved the
secondary use of data. Written informed consent was obtained from all
participants and all data is deidentified for analysis. Eligible researchersmay
access UK Biobank data on www.ukbiobank.ac.uk upon registration. For
this study, permission to access and analyze the UK Biobank data was
approved under application 87802 from July 2022.

In our work, we define data as a collection of information, including
health history, questionnaires, and imaging. Features are specific attributes
extracted from data used for analysis. Biomarkers are the clinically relevant
discovered features from biological processes.

Construction of multi-modal risk assessment datasets from UK
biobank
We identify the following disease groups, namely CVD, pancreatic disease,
liver disease, cancer (excluding melanoma and other malignant neoplasms
of skin), COPD, CKD, and osteoarthritis, using linked health sources in the
UK Biobank, including hospital in-patient summary diagnoses (field IDs

Fig. 3 | Top-5 organ systems by feature importances for 3-year preclinical risk
assessment for cardiovascular disease (CVD), pancreatic disease, liver disease,
cancer, chronic obstructive pulmonary disease (COPD), chronic kidney disease
(CKD), osteoarthritis in the “non-image + whole-body radiomics” experiment.

The feature importances are calculated for 13 organ systems: heart, vascular,
respiratory, digestive, liver, pancreas, spleen, endocrine, kidney, spine, bone, muscle,
and fat. Created in BioRender. Seletkov, D. (2025) https://BioRender.com/n21d793.
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41270 and 41280), cancer register (field IDs 40006 and 40005), self-reported
cancer (field ID 20006) and disease (field IDs 20002 and 20008) fields. For
eachdisease, a set of ICD-10 and self-reportedcodes is specifiedby amedical
expert on the basis provided by refs. 40,41. A detailed list of ICD-10 codes
and data fields is reported in Supplementary Data 1. We define an event as
the recordedoccurrenceof adisease-specificdiagnosis in anyof the available
linked health sources. The earliest date of the event is considered when
conflicting dates across linked health sources occur. A subject is classified as
at-risk if the first occurrence of any disease-specific event is recorded within
three years after the imaging assessment in the hospital in-patient summary
diagnosis, and no relevant event appears before orwithin threemonths after
it in any linkedhealth source. The three-month exclusionperiodwas chosen
tominimize the risk of imminent yet unreported diagnoses at the timeof the
imaging assessment. Importantly, the same subject canbe included in the at-
risk cohort for multiple diseases if they meet the criteria for more than one
condition. A subject is classified as healthy if no recorded event from the
disease-specific list exists at any time before or after the imaging assessment
in any linked health source, and the imaging assessment occurred at least
three years before the censoring date provided by UK Biobank. This results
in a higher proportion of healthy subjects than disease-specific at-risk cases.

To address the imbalance between at-risk and healthy cohorts, we
apply propensity score matching28 based on age, sex, BMI, and ethnicity.
Propensity scores are estimated using logistic regression, which predicts the
probability of belonging to the at-risk cohort. We perform 1:1 nearest-
neighbor matching without replacement to ensure that each individual in
the at-risk cohort is matched to an individual from the healthy cohort. This
matching process provides a similar distribution of the variables age, sex,
BMI, and ethnicity across both cohorts, minimizing their potential con-
founding effects. The resulting balanced dataset is randomly split into
training (72%), validation (8%), and test (20%) sets,maintaining the balance
between at-risk and healthy cases in each subset. Table 1 presents the
number of subjects in each subset of the extracteddatasets anddemonstrates
the results of the propensity score matching in aligning age, BMI, and sex.
The results of the statistical testing and absolute standardized mean dif-
ferences for the comparison of the at-risk and healthy groups in age, BMI,
and sex are reported in SupplementaryTables 15 and 16, respectively. These
demonstrate the achieved balance in age and sex variables between at-risk
and healthy groups, but the difference in BMI, especially in pancreatic and
liver diseases, indicating the limited pool of healthy subjectswith sufficiently
high BMI to match the corresponding at-risk cases, making the balance
harder to achieve. The average time-to-event shows the average temporal
interval between the imaging assessment and the first event for corre-
sponding diseases and ranges from 492.9 to 592.5 days, supporting the
datasets’ suitability for a 3-year preclinical risk assessment.

As the next step, we collect relevant data available in the UK Biobank
for multi-modal analysis. To represent non-image modality, we use the
previous works8,9,11,13,17,18 and medical expert input to identify the features
from the following categories available in the UK Biobank at the imaging
assessment: basic features, clinical features, disease history before imaging
assessment, physical activity, general health features, diet, smoking, and
alcohol habits. Basic features include age, sex, BMI, and ethnicity. Clinical
features include waist circumference, systolic and diastolic blood pressure,
and forced expiratory volume in 1 second. Disease history is retrieved as the
one-hot vector of the Elixhauser Comorbidity Disease classes40 based on
ICD-10 codes fromthehospital in-patient summarydiagnoses.Thedisease-
specific history is absent for at-risk and healthy subjects in the respective
dataset, indirectly validating the correct dataset construction pipeline.
General health features encompass self-rated overall health rating, long-
standing illness, disability or infirmity, falls in the last year, and weight
change compared with one year ago. Detailed information on features,
including physical activity, smoking, alcohol, and diet habits, along with
their corresponding field IDs for all non-image feature categories intro-
duced above, is provided in Supplementary Data 1.

To represent the imaging modality, we select the 3D whole-bodyMRI
with fat and water contrasts, which captures all organ systems related to the

investigated diseases. We further extract whole-body radiomics features,
using the whole-body MRI segmentation tool29 and PyRadiomics42. The
radiomics includefirst-order statistics, gray level co-occurrencematrix, gray
level run length matrix, gray level size zone matrix, neighboring gray-tone
difference matrix, gray level dependence matrix, and shape-based features.
Except for shape-based features, we extract radiomics features for fat and
water contrasts separately.

For the CVD dataset, we employ additional cardiac structural and
functional features30. These features contain volumetricmeasurements of all
four cardiac chambers, including end-systolic and end-diastolic volumes of
the left and right ventricles andmaximumandminimumvolumes of the left
and right atria. Functional features contain volumetric measurements, such
as ejection fractions, stroke volumes for all chambers, and ventricular car-
diac output. Structural measurements include the ventricular mass and the
detailed assessment of myocardial wall thickness. The wall thickness is
measured globally and across 16 segments according to theAmericanHeart
Association (AHA) model, providing a comprehensive map of myocardial
thickness. The full list of image-derived features is provided in Supple-
mentary Data 1.

AI pipelines
The non-image and image-derived cardiac and whole-body radiomics
features undergo the following preprocessing pipeline43. First, continuous
and categorical features are identified. The continuous missing values are
imputed using the mean and subsequently standardized. Categorical fea-
tures are encoded using ordinal encoding when applicable; otherwise, one-
hot encoding is used. Sparse categorical one-hot features (occurring in less
than 1% of cases) are merged into one ‘other’ category. The combination of
features from different categories occurs at the input level.

Thewhole-body radiomics features are split into anatomical categories:
heart, vascular, respiratory, digestive, liver, pancreas, spleen, endocrine,
kidney, spine, bone, muscle, and fat. For each category, we select 20 features
based on the mRMR44 feature selection algorithm, which maximizes rele-
vance to the target variable while minimizing redundancy among features.
Following the approach of Borga et al.45 for fat normalization, the shape
features from bone, spine, muscle, and fat categories are normalized by
height squared to account for individual body size differences. For all
continuous features, including radiomics, the standard scaler is fitted to the
training set and applied to validation and test.

Three distinct tabular models are trained: Random Forest (RF)34,
eXtreme Gradient Boosting (XGB)35, and Multi-Layer Perceptron (MLP)46

using Scikit-learn47. Each model is trained for each target disease five times
with different random seeds. Other hyperparameters are tuned using Tree-
Structured Parzen Estimator inOptuna48 with 500 trials for eachmodel and
seed to optimize model accuracy. The hyperparameter space is limited to
avoid overfitting and is reported in Supplementary Table 17.

For image data, ResNet18 3D33, awell-establishedmodel in themedical
domain49–51, is trained using PyTorch52 on whole-body MRI. Fat and water
contrasts are provided as two input channels. A separatemodel is trained for
each target disease. The hyperparameters for the training are reported in
Supplementary Table 18.

To merge tabular and image data, we experiment with both late and
joint fusionmethods5. Late fusion is performed by averaging the prediction
probabilities from the previously described tabular and image models,
requiring no additional training.

For joint fusion, anMLP encoder is utilized for the tabular data, while
the same ResNet18 3D, modified by removing all fully connected layers to
serve as an encoder, is employed for the image data. The image encoder is
initializedwith the weights from the image-only experiment. A fusionMLP
is applied on top of image and tabular encoders, and the entire network is
trained end-to-end. The latent dimensions of both the image and tabular
encoders are set to be the same before fusion to facilitate the equal con-
tribution of bothmodalities to the final prediction. Since tree-basedmodels
like RF andXGB cannot be jointly trainedwith CNNs, they are used only in
late fusion.
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Data availability
Eligible researchers may access UK Biobank data on www.ukbiobank.ac.uk
upon registration. For this study, permission to access and analyze the UK
Biobank data was approved under application 87802, with initial approval
granted in July 2022.

Code availability
The code used in this work is available at https://github.com/yayapa/
ukbb_risk.
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