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We introduce a framework to adapt large languagemodels for medicine: (1) Modeling: breaking down
medical workflows into manageable steps; (2) Optimization: optimizing model performance via
advanced adaptations; and (3) System engineering: developing agent or chain systems. Furthermore,
we describe varied use cases, such as clinical trial design, clinical decision support, and medical
imaging analysis. Finally, wediscuss challenges and considerations for buildingmedical AI with LLMs.

Artificial intelligence (AI) is increasingly being integrated into various
medical tasks, including clinical risk prediction1, medical image
understanding2, and synthetic patient records generation3. Typically, these
models are designed for specific tasks andwill struggle with unfamiliar tasks
or out-of-distribution data4. Large language models (LLMs) are foundation
models characterized by their extensive training data and enormous model
scale. Unlike traditional AI models, LLMs demonstrate an emergent cap-
ability in language understanding and the ability to tackle new tasks through
in-context learning5. For example,we can teach LLMs to conduct a new task
by providing the text explanation of the task (or “prompts”), the input and
output protocols, and several examples. This adaptability has sparked
interest in employing generalist LLMs to medical AI applications such as
chatbots for outpatient reception6. Contrary to the common belief that
generalist LLMswill excel inmany fields7, we advocate that domain-specific
AI adaptations for medicine are more effective and safe. This paper will
overviewhow various adaptation strategies can be developed formedical AI
applications and the associated trade-offs.

Generalist LLMs such as ChatGPT can support broad tasks but may
underperform in specialized domains8. One notable drawback is the
occurrence of “hallucinations,”which are fabricated facts that look plausible
yet incorrect9. High-stakes medical applications such as patient-facing
diagnosis tools are especially vulnerable to such inaccurate information10. In
response, adaptation methods in LLM for medicine have thrived, focusing
on enhancing LLMs’ domain-specific capabilities (Fig. 1b). They include
finetuning LLMs onmedical data11, adding relevant medical information to
the prompts for LLMs via retrieval-augmented generation (RAG)12,13, and
equipping LLMs with external tools to building AI agents achieving
autonomous planning and task execution14,15. With the increasing practice
in developing LLM-based AI applications, it is becoming evident that

cutting-edge performance is increasingly driven by the mixture of these
adaptations16 and systematic engineering of multiple AI components17.

In thisPerspective,wepresent anoverviewof adaptation techniques for
developing LLM-based medical AI and the workflow to solidify the devel-
opment (Fig. 1). The adaptations can be concluded as:Model development
focuses on designing model architectures and employing learning algo-
rithms to adapt model parameters for medical tasks. Techniques include
injecting medical knowledge into general-purpose models through con-
tinual pretraining on medical datasets18 and finetuning, which aligns the
model’s outputs with domain-specific knowledge and human preferences19.
Model optimization enhances model performance by optimizing its asso-
ciated components, such as optimizing the input prompts16 and imple-
menting retrievers accessing external data to enable RAG12. System
engineering enhances medical AI performance by breaking down tasks into
well-defined, narrow-scope components. LLMs can serve as the computa-
tional core for each specialized component, which can be linked together to
support complex workflows20, or interact autonomously with other com-
ponents to form agent-based systems21.

Next, we provide actionable guidelines on when and how to adopt
these adaptation methods based on the specific task parameters, e.g., time
and cost constraints. Additionally, we present concrete use cases that
demonstrate the practical value of this framework. Finally, we discuss the
associated challenges and opportunities for advancing LLM-based medical
AI applications.

Adapting large language models for medical AI
Model development: building medical-specific LLMs
Generic LLMs such as ChatGPT benefit from vast parameters and are
trained on vast, diverse datasets to develop a broad understanding of
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language5. A continual pretraining of generic LLMs onmedical data, such as
medical publications, clinical notes, and electronic health records (EHRs),
can enhance LLMs’ alignment in medical languages. For example, MEDI-
TRON is based on the open-source LLaMA model22, further trained on
medical data, includingPubMedarticles andmedical guidelines. It performs
comparably to larger generalistmodels such asGPT-423 inmedical question
answering. Another model, PANACEA, shows the benefit of LLMs in
clinical trial search, design, and patient recruitment via a continual pre-
training of generic LLMs on clinical trial documents, including trial pro-
tocols and trial-relatedpublications18. In addition, scalingmodel size using a
mixture-of-experts strategy, where multiple LLMs (i.e., experts) are com-
bined with a router network to select the appropriate expert during infer-
ence, has been found to yield superior performance at significantly lower
computational cost compared to using a single, larger LLM24.

Instead of pretraining with medical data without specific task super-
vision, anLLMcan also learn frompairedcustomqueries and their expected
responses to perform multiple target tasks. A widely used technique is
instruction tuning25. For example, when PaLM, a 540-billion parameter
LLM, underwent instruction tuning, it resulted in MedPaLM, which
achieved 67.6% accuracy on US Medical Licensing Exam-style questions11.
When the computational resources are limited, we can also update a subset
of the model’s parameters or attach an additional small but learnable
component to the model (e.g., prefix-tuning26 and LoRA27).

Another important finetuning objective is alignment, which ensures
LLM outputs are consistent with human preferences, with high quality and
safety. One prominent method for alignment is Reinforcement Learning
from Human Feedback (RLHF), which was instrumental in developing
ChatGPT28. RLHF starts with training a reward model based on human
feedback, which then steers the LLM toward responses that align with
human values and expectations using reinforcement learning. An example
of a medical application of alignment is LLaMA-Clinic, where multiple
clinicians provide feedback to guide the models for generating high-quality
clinical notes19.

Model optimization: strategies for improving LLM performance
The prompt indicates the inputs to LLMs, which can include the task
description, the expected input and output formats, and some input/output
examples. For example, this input “Your task is to summarize the input
clinical note. Please adhere to these summarization standards: [...list of
criteria]. Refer to these examples: [...list of examples]. Keep inmind: [...list of
important hints],” can guide LLMs towards generating a summary of
patient notes. This practice leverages the principle of in-context learning,
where LLMs adapt to new tasks based on the input prompts without
additional training5. Research shows that the structure and content of the
prompt significantly affect themodel’s performance. For instance, chain-of-
thought prompting29 encourages LLMs to engage in multiple steps of rea-
soning and self-reflection, thereby enhancing the output quality. Another
strategy involves ensembling30,31, where outputs derived from multiple
prompts are synthesized to produce a final, more robust response. In the
medical domain, MedPrompt16 has demonstrated its ability to outperform
domain-tuned LLMs by combining multiple prompting techniques.
Additionally, TrialGPT32 effectively adapts LLMs to match patient notes to
the eligibility criteria of a clinical trial through prompting.

Handcrafted prompts are highly dependent ondomain knowledge and
trial-and-error, but they can still perform suboptimally and cause reliability
issues in applications. Techniques such as automatic prompt generation33

and optimization34 were proposed. These approaches can transform the
adaptation of LLMs for medical tasks into a more structured machine-
learning task. For example, requesting an LLM to summarize clinical notes
could start with a simple prompt like “Summarize the input clinical note.”
Using a collection of example notes and expert-written summaries, auto-
matic summarization evaluationmetrics can serve as the target for iterative
prompt refinement.Theprompt canultimately evolve intoamore advanced
prompt consisting of a professional task description, representative exam-
ples, and a clear output format requirement description.

RAG is an extension of prompting. It dynamically incorporates
information retrieved from external databases into the model’s inputs,
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Fig. 1 | Workflow for adapting generalist LLMs for medical AI through adap-
tation techniques. a Generalist AI models, such as proprietary systems (e.g., Open
AI's GPT-4) and open-source models (e.g., LLaMA), serve as foundational tech-
nologies for developing specialized medical AI models. b Adapting generalist AI to
medical tasks involves several techniques, including model finetuning, prompt
optimization, and the development of AI agents or AI chains. These methods use
diverse medical datasets, such as medical images, electronic health records (EHRs),
clinical notes, publications, and omics data, to enhance AI model training and

performance. c Effective system engineering for medical AI entails integrating AI
modules into comprehensive chains to support tasks like cohort extraction, elig-
ibility assessment, and result verification. This process emphasizes human interac-
tion andAI, resulting in tailoredAImodules for specific applications.dGeneralist AI
applications in medicine span various domains, including conversational diagnosis,
radiology report generation, clinical note summarization, automated medical cod-
ing, drug design, patient-trial matching, and systematic literature reviews. All
require advanced system integration for optimal performance.
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supplementing LLM’s internal knowledge12. In medicine, it is extensively
employed to improve the factual accuracy of LLM responses to medical
questions by fetching the evidence from medical literature, clinical guide-
lines, or medical ontology13,35. In practice, the efficacy of RAG relies on two
aspects: (1) the quality of the external database, which should be high-
quality and up-to-date36,37, and (2) the performance of the retrieval systems,
which are responsible for identifying and extracting the most relevant
content to supplement the LLM’s output38,39.

System engineering: architecture development
Figure 2 illustrates the top-down system engineering process for adapting
LLMs to medical AI applications. The process involves the following steps:
(1) selecting the architecture to be developed (Fig. 2a); (2) designing the
agent-based system (Fig. 2b) or the AI chain system (Fig. 2c); and (3)
developing and finetuning LLMs to integrate with these systems (Fig. 2d).

The first step is to choose the system architecture: AI Chain40 and AI
Agent41, depending on the nature of the tasks and requirements, as illu-
strated in Fig. 2a. AI Chain follows a structured, fixed workflow, making it

ideal for repetitive tasks, professional practices, and scenarios requiring
strict adherence to guidelines or compliance. Example applications include
systematic literature reviews42 and patient-to-trial matching32. In contrast,
AIAgents aremore suitable forflexibleworkflowsandexploratory tasks that
tolerate uncertainty, cost, and time variations. This approach excels in
dynamic and creative tasks such as data science code generation43 and
brainstorming research hypotheses44. However, these two architectures are
notmutually exclusive.Ahybrid approach can be effective, where agents are
embedded within structured workflows to handle steps requiring extensive
reasoning or exploration. For instance, DeepResearch45 follows a systematic
workflow of literature search, information processing, and summarization.
However, within each step, a reasoning agent iteratively refines searches and
processes information until sufficient material is gathered for
summarization.

Developing AI agent systems boils down to designing and integrating
keymodules to facilitate the interactions betweenLLMs andhuman experts,
as demonstrated in Fig. 2b. AI agents embody a vision where AI systems
actively solve problems through autonomous planning, knowledge
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Fig. 2 | This playbook outlines the process of adapting large language models
(LLMs) for medical AI using a systems engineering approach. a Selecting the
overall architecture of the system should be based on the properties and require-
ments of the task at hand. In some scenarios, the best performance can be achieved
with a fusion of the AI chain and AI agents. bAnon-exhaustive list of example agent
modules to be built in an agent-based system. LLMs act in different roles when
equipped with different modules and interact with human experts to dynamically

conduct the target task. c When building AI chain systems, we can first define the
pipeline that decomposes the task into small steps following an expert workflow or
professional guidelines, and then develop the module responsible for each step.
d Adaptation techniques can be applied to enhance LLM's performance for the AI
agent or for the AI module. Adaptation methods need to be selected according to
data availability and task requirements.
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acquisition using diverse tools, and iterative self-reflection41. This concept is
supportedbyvarious agent frameworks that facilitate these capabilities, such
as AutoGPT and AutoGen46,47. Beyond external data sources, these agents
can interact with various external tools, enhancing their operational scope.
This includes interfaces for programming48, autonomous laboratory
equipment21, and integration with other software programs49,50, broadening
the potential applications of AI agents.

An AI agent typically consists of a base generalist AI, such as an LLM,
along with one or more specialized modules that enable it to collaborate
effectively with human experts. A non-exhaustive list of such modules
includes Reasoning, which enhances decision-making through direct
inference and iterative feedback from humans, external tools, or other
agents; Perception, which enables the agent to process and interpret diverse
datamodalities such as text, images, and code;Memory, comprising internal
memory for short-term context retention (e.g., within prompts) and
external memory for long-term storage (e.g., in vector databases); and
Interaction, which facilitates communication with external tools, coordi-
nation among multiple agents, and seamless human-AI collaboration. By
integrating these modules, advanced multi-agent systems can efficiently
decompose complex tasks into more manageable subtasks, such as brain-
storming agents, expert consultation agents, research debate agents, self-
driving lab agents, etc.51,52.

In medicine, AI agents are making remarkable progress in trans-
forming healthcare delivery. For example, Polaris is an agent system
designed to facilitate patient-facing, real-time healthcare conversations53. It
integrates an LLM with automatic speech recognition for speech-to-text
transcription and text-to-speech technology to convert LLM-generated text
into audio, enabling seamless real-time interactions with patients. By
leveraging agent-specific prompts and coordinatingwith specialized sub-AI
models, such as those focused on medication management, laboratory and
vital sign analysis, and clinical nutrition, Polaris functions as a multi-
disciplinary virtual specialist. Agents are also increasingly used in biome-
dical research, assisting in complex data analysis and hypothesis
validation43,54. In addition, multi-agent systems, such as Virtual Lab55,
embody the vision of automatic hypothesis generation, experimentation,
and hypothesis validation in biomedical research.

For tasks that are usually fixed, repetitive, or strictly governed by
professional guidelines, the AI chain is recommended to be developed (Fig.
2c). Rather than allowing LLMs to divide tasks and conduct them with
several AI agents, experts can break down tasks into a chain of multiple
steps. This approach allowsmultiple LLM calls to create an AI chain, which
enhances both the transparency and controllability of the final output40. An
illustrative example is WikiChat56, which addresses hallucinations by
sequentially employing LLMs to query Wikipedia, summarize, filter, and
extract the retrieved facts, performadditional fact-checking, andfinally draft
responses with a round of self-reflection for refinement. As a result, Wiki-
Chat surpassedGPT-4by55%in factual accuracy forquestion-answer tasks.
In addition to optimizing performance, FrugalGPT57 optimizes query
routing to reduce inference costs by using a cascade of LLMs with varying
capabilities. This system utilizes weaker LLMs for initial processing and
escalates to stronger LLMs only as necessary.

AI chain development, as shown in Fig. 2c, consists of three primary
stages: pipeline development, module definition, and module development.
Theprocess beginswithdesigning thepipeline basedonexpertworkflowsor
professional guidelines, breaking it down into subtasks such as search,
reasoning, and data extraction. Next, specializedmodules are developed for
each subtask. Each module is defined by its objectives (e.g., progress note
generation) and constraints (e.g., response time and token usage) and is
optimized using adjustable parameters such as the underlying models,
prompts, and external tools or data sources. During module development,
the focus is on the underlying model adaptations, considering the specifics
of module inputs and outputs, including their format (e.g., text, image,
code), length, and frequency (e.g., real-time or offline batch processing). For
instance, the input length is an important factor for a module for

summarizing multiple long documents, which requires an underlying
model with a long context length optimized for improving fidelity to its
inputs58. For even longer inputs, advanced adaptations such asmap-reduce,
i.e., segmenting inputs, summarizing each segment, and consolidating those
summaries into a global summary59. This process also requires orchestrating
dataflows, integrating inputs fromupstreammodules, external components
(e.g., knowledge bases, vector databases, or machine-learning models), and
human requests. The outputs need to undergo automatic or human ver-
ification to ensure accuracy and reliability.

In medicine, AI chains have been developed to facilitate cohort
extraction from EHR databases using natural language query60. As gen-
erating correct SQL queries aligned with complex EHR database schema is
challenging, the authors break down the task into three steps: concept
extraction, SQLquery generation, and reasoning,where theprompt for each
step is designed andoptimized separately. ChainingAI calls was also proved
effective in parsing eligibility criteria into a structured format61. Thismethod
makes the first LLM call to extract the basic target entity information, then
routes to specializedextractionmodules basedon the entity type,where each
prompt can be optimized, encoding expert knowledge. A post-processing
module is attached to verify the outputs and aggregate the extraction results
into a unified format.

System engineering: adaptations
In system engineering, the next step after deciding on the architecture
development is the adaptation of LLMs, which includes two stages: model
selection andmodel development and optimization, illustrated in Fig. 2d. In
the model selection stage, the choice between proprietary and open-source
models is guided by specific application requirements. Proprietary models,
such as ChatGPT, are accessed via cloud services, enabling lightweight
development and deploymentwithout the need for local GPUresources but
often at a higher cost, making them suitable for well-funded organizations.
In contrast, open-source models such as finetuned LLaMa models offer
greater flexibility for customization and are more cost-effective for high-
volume tasks. They are particularly advantageous for local deployment
scenarios due to privacy or security compliance requirements.

The second stage emphasizes optimizing the selected model based on
data availability and task requirements. Prompt optimization is the
recommended initial approach for cases with limited or no labeled data,
particularly when working with proprietarymodels62. However, if sufficient
domain-specific data is available, continual pretraining can be applied to
inject domain knowledge into generalist LLMs, enhancing their adaptability
to specialized tasks. Nonetheless, sometimes the gainmay bemarginal if the
domain-specific data are publicly available because training data for generic
LLMs may already include the domain-specific data63. When prompt
optimization fails to meet performance expectations, we recommend col-
lecting more task demonstrations (i.e., input-output pairs) and finetuning
the generalist models64. Finetuning offers several advantages: (1) it enables
the model to handle tasks that are rarely encountered in the public corpus,
and (2) it reduces the reliance on lengthy and complex prompts during
inference, leading to faster processing times and lower costs65.

Certain specialized tasks may require structured inputs and outputs.
For instance, information extraction tasks or communication with physical
devices require adherence to a specific input protocol and structured out-
puts, such as JSON objects, to ensure compatibility with machine parsing
andprocessing21. Proprietarymodels often support features like JSONmode
or function call capabilities66, enabling such tasks to be handled efficiently
through prompt optimization alone. Alternatively, open-sourcemodels can
be finetuned on structured input-output pairs to achieve similar capabilities
and can be further enhanced by employing constraint decoding
frameworks67. Additionally, for tasks requiring up-to-date knowledge, such
as summarizing findings from the latest clinical trials, RAG is essential. It
dynamically incorporates external knowledge into the LLM inference pro-
cess, ensuring that outputs remain current and relevant. For instance,
GeneGPT68 generates search queries to biomedical databases from the
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National Center for Biotechnology Information69 to enhance the factual
accuracy of biomedical question answering, achieving an accuracy of 0.83
compared to ChatGPT’s 0.12.

Evaluation is critical when adopting LLMs for medical applications,
with the choice of evaluation metrics playing a central role. In many cases,
general-domain metrics may not suffice. For example, in clinical note
summarization tasks, general natural language processing metrics such as
ROUGE70 or BERTScore71 may fail to adequately capture the quality of
summaries in the medical domain. Instead, metrics tailored to the profes-
sional standards of medicine, such as completeness, correctness, and con-
ciseness, should be prioritized72. Designing these domain-specific metrics is
often a collaborative effort between AI researchers and medical practi-
tioners, and it is advisable to consult relevant medical guidelines or reg-
ulatory policies to ensure the chosen metrics are appropriate and
comprehensive. Furthermore, real-world user studies serve as the gold
standard for evaluation. Such studies typically involve two arms, one
leveragingAI-assistedworkflows and the other relying onmanual efforts, to
assess the practical value and effectiveness of medical AI systems6.

Use cases of LLMs for medical AI applications
Table 1 lists several studies that have explored adapting LLMs tomedical AI
tasks. In this section, we reviewa few example use cases, reinterpreting them
through the lens of the proposed framework. Additionally, we discuss some
potential improvements of those use cases.

Clinical note generation
Creating clinical notes is a routine task forphysicians.Thesenotes record the
patient’smedical history, present conditions, and treatment plans. Recently,
ambient documentation was introduced to record and transcribe provider-
patient conversations and then ask LLMs to summarize them into a clinical
note73,74. This method is gaining popularity with the recent adoption of
automated scribe software75. However, the vanilla way of using LLMs is
flawed in (1) Heterogeneity of note formats across specialties: The vanilla
approach may not effectively adapt the note generation process to meet

varying format preferences specific to different specialties (e.g., internal
medicine versus general surgery), potentially leading to suboptimal
documentation19. (2) Lack of quality control: Ensuring the accuracy and
completeness of generated notes is challenging due to the absence of
accuracy measures and hallucination control for reference-free note gen-
eration. (3) Limited electronic medical record (EMR) integration: LLMs
primarily accept text inputs of limited length. They may not fully integrate
with EMRs, often containing extensive and multimodal historical data. (4)
Inadequate actionable insights: Unlike summarizing the inputs, LLMs
usually perform unreliably in suggesting specific diagnostic tests or treat-
ment actions following the generated summaries.

Next, we provide a deeper technology analysis for developing such a
specializedmedicalAI system fusingAI chain andAI agents for clinical note
generation (Fig. 3a). The primary objective is to produce accurate and
concise notes that adhere to specific formatting requirements. This involves
referencing “best practice” note formats across differentmedical specialties,
clearly outlining the objectives and constraints for the output notes. Pro-
viding example inputs and outputs alongside LLM instructions can enhance
clarity and improve the accuracy of the generated notes. To achieve this,
integrating a knowledge base into the pipeline is crucial. This integration
helps identify relevant sections of clinical guidelines and dynamically
retrieves closely related examples to improve the instructions. Such adapt-
ability ensures the application remains versatile across diverse clinical sce-
narios. For instance, LLMs can surface the latest clinical guidelines using an
external knowledge base. If the notes describe symptoms of hypertension,
LLMs can identify these symptoms, link them to relevant guidelines, and
suggest appropriate diagnostic tests and treatments.

Human oversight plays an essential role in validating the correctness of
the generated notes. LLMs can be instructed to link each sentence in their
summaries to specific indexedparts of the input,making it easier to trace the
source. Incorporating an LLM self-reflection layer to compare the source
and the generated text further streamlines this validation process. This
feature provides clinicians with suggestions for addressing omissions or
inaccuracies in the summaries.

Table 1 | A list of example use cases of adapting LLMs for medicine

Medical use case Author, year Adaptation methods Data types Model adopted

Outpatient reception Wan6 Finetuning, Prompt optimization Conversation GPT-3.5

Habicht123 Prompt optimization Conversation Unknown

Pais124 Finetuning, Prompt optimization Conversation T5

Medical QA Singhal11 Finetuning Text PaLM

Nori16 Prompt optimization Text GPT-4

Jin15 AI agent Publications, Text GPT-4

Multimodal medical QA Jin125 Prompt optimization X-rays GPT-4v

Zhou126 Finetuning Skin images, Text LLaMA, Vision transformer

Radiology report generation Zhang127 Finetuning X-rays Seq2Seq, Vision transformer

Clinical note summarization Van72 Prompt optimization, Finetuning Clinical notes GPT-3.5, GPT-4, LLaMA, T5

Clinical decision-making Kresevic128 Prompt optimization Clinical guidelines GPT-4

Jiang129 Finetuning EHRs BERT

Sandmann130 Prompt optimization Text GPT-3.5, GPT-4, LLaMA

Patient-trial matching Jin32 Prompt optimization, AI chain Clinical notes, Clinical trials GPT-4

Park60 Prompt optimization, AI chain Clinical notes, Clinical trials GPT-4

Clinical research Wang42 Prompt optimization, AI chain Publications, Clinical trials GPT-4

Tayebi48 AI agent Programs, Structured data GPT-4

Lin18 Finetuning Clinical notes, Clinical trials Mistral

Information extraction Keloth131 Finetuning Text LLaMA

Huang132 Prompt optimization Clinical notes GPT-3.5

Drug discovery He133 Pretraining, Finetuning Protein PaLM

Automatic medical coding Wang77 Finetuning EHRs LLaMA
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Agents can be integrated into the workflow to improve perfor-
mance. For instance, equipping LLMs with programming tools, such as
an SQL interface to the underlying EMR database, can significantly
enhance note generation. This capability enables LLMs to dynamically
access and review previous notes, extracting only the necessary infor-
mation to support the process. Additionally, it facilitates the development
of provider copilots that assist clinicians in retrieving patient information
using natural language queries. These copilots empower providers to
focus more on patient care rather than navigating complex systems. AI
agents can further reduce administrative workloads by assisting provi-
ders with specific tasks. For example, follow-up emails play a crucial role
in reinforcing care plans, clarifying medical instructions, and providing
patient education. LLM agents can create follow-up emails summarizing
the visit, test results, and next steps. This ensures patients understand

their health information, adhere to treatment plans, and feel supported
throughout their care journey.

To structure these capabilities effectively, a pipeline can be developed to
facilitate collaboration between physicians and AI. Upon receiving patient
data, the application will initially present the identified formatting guidelines
(from the RAGmodule) and relevant segments of historical EMR data (from
the EMR integration module) for user verification and selection. Refined
instructions will then prompt LLMs to generate the notes, followed by
validation and action suggestionmodules. A user-friendly interface will guide
users through this process, ensuring an efficient and intuitive workflow.

Automated medical coding
Medical billing codes, such as ICD-10, CPT, and Diagnosis-Related Group
(DRG) codes, are assigned by coding specialists through a time-consuming
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c Patient-trial matching
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Fig. 3 | Illustration of example use cases adapting LLMs tomedical AI tasks with a
hybrid fusion of AI chain and AI agents. a AI chain crafted for clinical note
generation, highlighting the expert involvement in selecting relevant patient data
and adherence to external formatting guidelines. Agents can be integrated into the
data retrieval and data selection steps to work with humans on iteratively retrieving
and selecting the relevant pieces from medical records. Agents can also iterate the
clinical notes by referencing formatting guidelines. b Automate medical coding can
potentially benefit from an AI chain that employs two extraction modules designed
for conditions and complications, respectively. Agents can be integrated so as to

reference coding rules while filtering the input clinical notes. c A patient-trial
matching pipeline adds a prescreening stage to reduce the candidate trial set. It also
provides criterion-level assessment for users to select patients referring to various
dimensions. Agents can dynamically retrieve medical knowledge when assessing
patient eligibility. d Medical systematic review pipeline is built based on the estab-
lished systematic review practice, e.g., PRISMA statement. An agent can optimize
the generated search query by checking the identified studies before passing them to
the screening stage.
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and manual process for healthcare payment systems. We can ask LLMs to
translate EMR data into the most likely billing code76. Finetuning LLMs on
pairs of EMR data and billing codes can further enhance the performance77.
However, these methods are not yet satisfactory for production use because
of (1) Inability to learn coding rules:Clinical coding goes beyondmere entity
extraction. LLMs must be familiar with the potential list of billable codes
relevant to specific input data. Moreover, the subtleties in the criteria for
each billing code are crucial to avoid over-billing or under-billing. Com-
pounding the complexity, each billing code system possesses its own set of
nuanced rules and nomenclatures78–80. (2) Difficulty handling excessive
EMR inputs: In inpatient settings,when apatient has a complex,multi-week
hospital stay, it becomes problematic for an LLM to identify the most
relevant sections of extensive medical record data without a sophisticated
filtering strategy. (3) Lack of explainability: LLM-generated billing codes do
not gain the trust of specialists without the rationale provided. We can
approach these challenges considering (Fig. 3b):

The primary objective is to ensure precise coding from designated
billable code sets, with a secondary objective of providing a rationale for the
assigned codes. Achieving both objectives requires leveraging external
knowledge ofmedical coding guidelines to ensure accuracy and compliance.
Medical coding guidelines are essential for translating clinical notes into
accurate billing codes. To meet these standards, coding rules must be
integrated into LLM instructions. This can be accomplished through an
agent augmented byRAG,which allows the agent to reference relevant rules
throughout the coding process. By embedding coding rules directly into the
workflow, this approach enhances the accuracy and relevance of the gen-
erated codes while enabling traceability back to the source guidelines.

When dealing with prolonged hospital stays, it is crucial to identify
which clinical notes should be processed for billing code assignment. To
optimize prediction performance, priority should be given to the most
clinically relevant notes, such as admission notes and discharge
summaries77. Additionally, implementing a filtering strategy to remove
duplicate content, common in clinical documentation due to copy-pasting
practices, improves efficiency and reduces costs by eliminating redundant
information.

Building an advanced coding-specific extraction pipeline requires a
deep understanding of billing regulations. For example, the DRG coding
system for hospital stays involves two critical decisionpoints: identifying the
primary medical issue as the principal diagnosis and detecting any com-
plications or comorbidities80. To address this, two tailored extraction
modules can be developed: one dedicated to identifying the principal
medical condition and another to detecting associated complications or
comorbidities. The outputs of these modules are then combined to provide
comprehensive coding results.

Patient-trial matching
Matching patients with appropriate clinical trials is crucial for ensuring
sufficient trial recruitment and significantly impacting trial outcomes. The
manual recruitment process, which involves screening surveys, is labor-
intensive, time-consuming, and prone to errors. Efforts have been made to
optimize prompts for powerful LLMs like GPT-4 to assess patient eligibility
by matching patient records and trial eligibility criteria81. To mitigate con-
cerns about Protected Health Information (PHI) leakage when using pro-
prietary models, another approach has been proposed: leveraging the
knowledge of these proprietary models to generate synthetic patient-trial
pairs, which are then used tofine-tune smaller open-source LLMs for secure
local deployment82. However, challenges remain, including (1) scalability:
Existing methods typically assume a limited set of candidate trials or
patients. However, with over 23,000 active trials on ClinicalTrials.gov and
patient databases containingmillions of records, screening on a patient-by-
patient or trial-by-trial basis using LLMs becomes intractable. (2) Lack of
medical expertise: Generalist LLMs may still struggle with medical rea-
soning when assessing eligibility. For example, a patient record noting a
“prescription history of blood thinners due to recurrent chest pain” was
incorrectly labeled as “not enough information”byGPT-4 in response to the

criterion “patientmust have a history of cardiovascular disease.”32. A system
engineering can be made to approach this task (Fig. 3c).

The primary objective is to achieve accurate eligibility predictions, with
secondary objectives aimed at optimizing speed and cost, particularly when
managing large datasets. Enhancing themedical capabilities of LLMs can be
achieved through finetuning on high-quality patient-trial pairs82. This
process requires a streamlined method for annotating patient eligibility
against trial criteria or access to historical records of participants in previous
trials. A collaborative reasoning of AI agents and clinical guidelines, and
medical ontologies can further enhance eligibility assessments83. Specifically,
correlations betweenmedical terms, including therapies and conditions, can
be drawn from clinical guidelines, while medical ontologies provide hier-
archical mappings from umbrella terms to specific subsets. These resources
can be integrated into the LLM workflow to improve reasoning and ensure
more accurate predictions.

Scalability challenges in eligibility prediction can be addressed through
the addition of a prescreeningmodule. For example, TrialGPT32 introduces
a trial retrieval step by generating search queries based on patient sum-
maries, reducing the candidate set by over 90% without compromising the
recall of target trials. Similarly, prescreening can involve LLM-driven
information extraction from both patient records and eligibility criteria,
followed by entity matching to streamline the process84.

Building on these methodologies, a structured pipeline can be devel-
oped to optimize eligibility predictions. This pipeline may include the fol-
lowing steps: (1) finetuning underlying LLMs using patient-trial data; (2)
initiating a prescreening process to narrow down the pool of clinical trials
relevant to the target patient; (3) extracting key terms from patient records
and retrieving supplementary knowledge from clinical guidelines and
medical ontologies; and (4) performing the final eligibility assessment using
LLM calls. This comprehensive approach ensures accuracy, scalability, and
cost-effectiveness in processing large datasets.

Medical systematic review
Clinical evidence can be synthesized through the review of medical litera-
ture, but this process is increasingly challenged by the rapid growth of
published research. LLMs have been employed to synthesize evidence from
multiple articles using text summarization techniques58,85.However, this text
summarization approach raises significant concerns about the quality of the
outputs, including issues like a lack of specificity, fabricated references, and
potential for misleading information86. Moreover, conducting a systematic
review involves more than just summarization; it encompasses multiple
steps, as outlined in PRISMA87. AI should be integrated into the established
systematic review workflow with careful consideration of user experience
optimization, such as offering verification, referencing, and human-in-the-
loop42,88. From a systems engineering perspective, the following elements
should be incorporated (Fig. 3d).

The primary objective is to generate trustworthy clinical evidence from
medical literature, with sub-objectives focused on ensuring the compre-
hensiveness of collected studies and the accuracy of extracted results. To
meet these objectives, strict formatting constraints should be established for
outputs at each step. For example, synthesized evidence must be directly
supported by the results of individual studies and should ideally be pre-
sented as a meta-analysis.

Generating effective search queries requires expertise in bothmedicine
and library sciencess89. The search query building process can be performed
by an AI agent in an iterative search and refinement process. Once citations
are identified, a refined screening process is necessary to ensure relevance to
the research question. This involves evaluating the population, intervention,
comparison, and outcome elements. Additionally, a risk-of-bias assessment
should be conducted to filter out low-quality citations. Developing specia-
lized prompts incorporating itemized scoring guidelines can further
improve the accuracy and consistency of this screening process.

A robust data extraction process is critical for handling the original
study content. A PDF extraction module, leveraging Optical Character
Recognition techniques, can extract essential details, including tables and
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figures. To maintain transparency and enable verification, LLM-generated
outputs should include references to the original content, allowing users to
identify and correct any potential misinformation. Synthesizing evidence
from clinical studies requires accurate extraction of key numerical results,
such as evaluated endpoints, sample sizes, and treatment effects. This task is
particularly challenging but can be supported by equipping LLMs with an
external program interface that facilitates numerical reasoning during evi-
dence extraction and synthesis42.

Mapping data privacy legislations
The challenge of aligning diverse and evolving privacy, data protection, and
AI legislation with standardized frameworks such as the National Institute
of Standards and Technology (NIST) has become increasingly complex,
especially when dealing with multiple jurisdictions90,91. For instance, in a
recent U.S.-based project for a health application, an LLM pipeline is
implemented by IQVIA to analyze privacy legislation across several states,
identifying over 3000 overlaps between legislative requirements and NIST
privacyactions92. This level of analysis, achieved in a short timeframe,would
have been near impossible to accomplish manually at the necessary scale
and depth. The same approach is being used to identify controls and gov-
ernance for a data platform in the Middle East.

The LLM pipeline we devised automates identifying and mapping
privacy, cybersecurity, and AI risk management actions, offering a scalable
solution that can navigate a complex and rapidly changing regulatory
landscape. The pipeline enables more efficient compliance management by
processing extensive legal texts and implementation guidelines and aligning
themwith structured frameworks. Integrating a human-in-the-loop, expert
verification and tuning process, while leveraging established NIST cross-
walks to validate accuracy, provides a robustmethod for tackling large-scale
data and AI compliance challenges93. The primary objective is to automate
the mapping of regional and global legislation to the NIST Frameworks,
providing a scalable and efficient approach to compliance management.
Secondary objectives include ensuring the comprehensiveness of the legis-
lative documents analyzed, the accuracy of identified compliance actions,
and the risk-based prioritization of implementation activities.

The process begins with data collection and preprocessing, where
relevant legislative and regulatory texts, including regional and sectoral
guidelines, are gathered.This data is ingested into theLLMpipeline,which is
optimized to process large volumes of documents efficiently. Preprocessing
steps include document parsing, natural language normalization, and seg-
mentation to ensure the model focuses on actionable items relevant to
compliance management. After generating initial matches against the fra-
meworks, a risk-based thresholding system is applied. Each compliance
action identified by the LLM is scored based on its relevance and alignment
with NIST compliance actions. The scoring incorporates a risk-based
assessment, factoring in the overlap with sourced documents andweighting
the importance of the business context, such as usability, implementation
guardrails, and effort.

To enhance accuracy and relevance, the process integrates human-in-
the-loop expert guidance. Experts validate the LLM’s outputs, resolving
ambiguities and accounting for jurisdiction- and sector-specific variations
that the model may misinterpret. They refine the mappings and scoring
while interpreting and summarizing the results to align with client needs.
This approach ensures evidence-based decision-making and tailored
recommendations. The pipeline incorporates benchmarking and con-
fidence validation to further ensure accuracy. Pre-established NIST cross-
walks, developed by legal and other experts, serve as benchmarks for
comparison, enabling the system to validate its outputs against known
mappings. Advanced confidence elicitation strategies are used to address
LLM overconfidence in ambiguous or novel situations.

Finally, the LLM pipeline synthesizes its outputs into a comprehensive
report. This report includes detailed references to the relevant legislative
texts and framework categories, ensuring traceability for every mapping
decision. The synthesis process enables users to verify the source of each

decision and provides evidence of how features are prioritized, ensuring a
transparent and reliable compliance management solution.

Opportunities and challenges in LLMs for medical AI
Here, we describe the challenges that need to be addressed to embody the
benefits of adapting LLMs tomedical AI, with a focus on three critical areas:
enhancing multimodal capabilities, ensuring trustworthiness and com-
pliance, and managing system lifecycle through evaluation and continuous
optimization.

Multimodality
Multimodal capabilities represent a key growth direction for LLMs in
medical applications. A patient journey naturally comprises many
information-richmodalities such as lab tests, imaging, genomics, etc.While
generalist AI has demonstrated amazing capabilities in understanding and
reasoning with biomedical text (e.g., MedPrompt94), competence gaps
abound in the multimodal space, with vision-language models being a
prominent example. E.g., GPT-4V performs poorly on identifying key
findings from chest X-rays, even compared to much smaller domain-
specific models (e.g., LLaVA-Rad95). Efficiently bridging such multimodal
competency gaps thus represents a key growth frontier for medical AI.
Progress is particularly fast in biomedical imaging, from harnessing public
image-text data (e.g., BiomedCLIP96, PLIP97, CONCH98) to efficiently
training vision-language models (e.g., LLaVA-Med99) to learn text-guided
image generation and segmentation (e.g., BiomedJourney100, RoentGen101,
BiomedParse).While promising, challenges abound inmultimodalmedical
AI, from pretraining in challenging modalities (e.g., GigaPath102) to multi-
modal reasoning for precision health.

Trustworthiness and compliance
While adapting powerful AI models like LLMs to medicine holds great
promise, significant challenges persist in building trustworthiness and
ensuring compliance with their use. Here, we identified several challenges:
(1) hallucinations, (2) privacy risks, (3) explainability, and (4) regulations.

The risk of “hallucinations” in LLM outputs, where the model gen-
erates plausible but incorrect or fabricated information, is widely
mentioned103. In the medical domain, such errors can have severe con-
sequences, including misdiagnoses, inappropriate treatments, and flawed
research conclusions104. To address hallucinations, RAG is often employed
to guide LLM outputs and ground them in verifiable citations51. However,
failuremodes persist, such as LLMs citing incorrect sources or hallucinating
citations altogether105. Future efforts should focusonfinetuningmodelswith
high-quality, domain-specific datasets, implementing rigorous validation
mechanisms, and incorporating human-in-the-loop workflows106, where
medical professionals review and correct AI-generated content to ensure
accuracy and reliability.

The development and deployment of medical AI applications involve
multiple stakeholders, including medical data providers (such as health
systems, pharmaceutical companies, and real-world data companies),
model providers (like healthcare AI startups), and users (comprising clin-
icians, patients, and these data-providing companies). AI developers play a
crucial role in constructing pipelines that process data from these data
providers into actionable knowledge, which is thenmade accessible to users
by leveraging intelligence from model providers. It has been noted that
LLMs are vulnerable to attacks using malicious prompts that aim to extract
their training data107. This risk necessitates the de-identification of the PHI
information from training data. When real data can now be acquired,
synthetic training data can be incorporated108,109, which can be further
protectedwith differential privacy110.Moreover, whenAI developers handle
data frommultiple providers and present it to various users, it is essential to
implement access controlswithin theAI applications. These controls ensure
that users can only access specific datasets relevant to their queries. In
addition, protecting user inputs is crucial, especially if they are utilized to
optimize the pipeline and stored in prompts or databases for RAG. LLMs
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must prevent inadvertently disclosing one user’s data to another, main-
taining strict confidentiality in user interactions.

LLM’s interpretability remains a critical challenge. It appears to show
“emergent” intelligence, but that propertymay also disappear whenwe take
different evaluation metrics111. As deep learning models, LLMs often
function as black boxes, making it difficult to trace the reasoning behind
specific outputs. This lack of transparency can hinder clinical decision-
making and raise concerns about accountability. To address these issues,
developing explainable AI methodologies is essential for gaining a deeper
understanding of LLMs112. At present, techniques such as chain-of-thought
and program-of-thought can be employed to reveal the step-by-step rea-
soning and operational processes behind LLM outputs, improving their
interpretability in medical applications29,113. Researchers have also tried to
dive into the inner workings of AI systems by introducing mechanistic
interpretability, which is promising to provide a more interpretable and
controlled LLM behavior114.

The development, deployment, and production of LLMs in medical
practice must adhere to strict regulatory standards and compliance
requirements to ensure patient safety and data privacy115. Regulatory bodies
such as the FDA, EMA, and others have established guidelines for medical
devices, which increasingly include AI-driven tools116. Developers of med-
ical AI applications must navigate these regulations, establish robust prac-
tices, and process procedures to ensure that their models are validated,
transparent, and compliant with relevant laws, such as HIPAA in the U.S.
Additionally, as AI applications are continuously updated and retrained,
maintaining compliance over time requires ongoing monitoring, doc-
umentation, and potentially re-certification.

Evaluation and continuous improvement
Amedical AI systemmay comprise various modules and pipelines, each of
which has the potential to malfunction, posing challenges in output
assessment and debugging. Human oversight can be integrated to enhance
validation, allowing users to confirm the accuracy of outputs through the
provided references117. Furthermore, validation processes can be automated
by leveraging LLM capabilities. For example, assertions can be embedded
within the pipeline, enabling LLMs to self-correct their outputs during
inference118. The increasing complexity of LLM-based systems, consisting of
multiple interconnected components, can overwhelm any individual’s
capacity tomanage the entire architecture. LangSmith119 is aDevOps tool for
AI applications that aims to support deploying and monitoring LLM-
powered applications. It allows developers to visualize traces and debug
problematic components. Additionally, it facilitates the collection and
extraction of erroneous inputs and outputs, which can then be utilized to
build and augment validation datasets to enhance the applications.

Maintaining medical AI applications poses significant challenges in
ensuring systemstability and reliability.Onemajor concern is the variability
of the underlying LLMs, as version updates can alter model behavior and
capabilities, potentially disrupting the functionality of integrated systems120.
Additionally, the interdependence of system components means that
changes to one element can impact the overall performance, necessitating
rigorous testing and calibration whenever modifications are made. Fur-
thermore,managing distribution shifts, particularly in edge cases, remains a
critical issue. An effective strategy to address these challenges is the con-
struction of robust development datasets for evaluating and finetuning AI
pipelines. These datasets can be sourced from real-world tasks or simulated
scenarios generated by LLMs121. However, current approaches often rely on
heuristic methods, underscoring the need for further research to enhance
dataset creation. Another significant challenge lies in selecting appropriate
evaluationmetrics, as many standards are embedded in specializedmedical
guidelines or regulatory documents. Bridging the knowledge gap between
AI scientists andmedical practitioners through increased collaboration and
interdisciplinary research is essential for establishing reliable evaluation
frameworks.

User feedback is a crucial source of supervision for the continual
optimization of AI pipelines. This feedback can take various forms, ranging

from explicit expressions of preference, such as likes or dislikes, to more
subtle indicators found in user interaction logs or direct textual comments
on specific aspects of the system. Such feedback is valuable not only for
refining the pipeline’s final outputs but also for improving any intermediate
stages where user engagement occurs, whether through active participation
or the generation of usage logs. Techniques like RLHF28 have been used to
enhance LLM models based on ranked human preferences. Recently, a
framework called TextGrad122 has shown promising results by enabling the
backpropagation of textual feedback within LLM pipelines to optimize
prompts across different components.

Discussion
Generalist AImodels have the potential to revolutionize themedicalfield. A
range of adaptation methods has been proposed to tailor these models for
specialized applications. In this Perspective, we documented existing
adaptation strategies and organized them within a framework designed to
optimize the performance of medical AI applications from a systems
engineering perspective. Our analysis and discussion of published use cases
demonstrate the benefits of this framework as a systematic approach to
developing and optimizing LLM-based medical AI. However, we also
recognize the potential challenges that arise as the complexity ofmedical AI
applications increases, particularly in monitoring, validation, and main-
tenance. Future research and development are essential to solidify the utility
of LLM-driven medical AI applications, enhance patient outcomes,
democratize access to quality healthcare, and reduce the workload on
medical professionals.
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