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Identification of cohorts at higher risk of cancer can enable earlier diagnosis of the disease, which
significantly improves patient outcomes. In this study, we select nine cancer sites with high incidence
of late-stage diagnosis or worsening survival rates, and where there are currently no national screening
programmes. We use data from medical helplines (NHS 111) and secondary care appointments from
all hospitals in England. We show that features based on information captured in NHS 111 calls are
among the most influential in driving predictions of a future cancer diagnosis. Our predictive models
exhibit good discrimination, ranging from 0.69 (ovarian cancer) to 0.83 (oesophageal cancer). We
present an approach of constructing cohorts at higher risk of cancer based on feature importance and
considering possible bias in model results. This approach is flexible and can be tailored based on data
availability and the group the intervention targets (i.e. symptomatic or asymptomatic patients).

Improving specificity in identifying cohorts at higher risk of developing
cancer could increase rates of early diagnosis and allow more focused
interventions to be delivered. However, diagnosing people early is com-
plicated as early-stage symptoms can be harder to definitively attribute to
cancer pathology. This means a very large number of individuals would
need to be tested to detect a relatively small number of cancers, rendering
using such symptoms impractical as a basis for symptomatic case finding
or population level screening programmes. To achieve more accurate
cancer incidence prediction, the last decade has seen a proliferation of
machine learning models trained with unprecedented access to large
datasets and computing power. Previous research, in that vein, has typi-
cally either (i) used routinely collected data, from either secondary or
primary care'™", or (ii) used imaging and/or biomarker/genetic data,
which are limited to small segments of the population (e.g. those with
specific comorbidities)'* ™.

Previous research has provided a wealth of findings highlighting the
promise of using machine learning for cancer risk prediction. Both these
approaches are not however without their limitations when it comes to early
identification of cohorts at higher risk of cancer among the general popu-
lation. This is because secondary care data may only capture cancer specific
events that are picked up quite late in the patient pathway, which could
result in worse outcomes. On the other hand, focusing only on primary care
data may miss the useful information included in secondary care data, which
has shown promise in recent research'’. Moreover, the use of data that are

available for only a small segment of the population is unsuitable for
identifying high risk cohorts at the population level.

To optimise identification of high-risk cohorts, a combination of both
primary and secondary care data, at the population level, would be prefer-
able. This approach could capture both symptoms and lifestyle factors, as
well as detailed comorbidities, which have previously been shown to be
useful signals for predicting future cancer incidence. In the absence of access
to national level primary care data, we decided to use National Health
Service (NHS) data from medical helplines, specifically, NHS 111 calls data’
¥. The NHS 111 medical helplines aim to provide an alternative channel for
UK patients seeking advice on urgent (but not life-threatening) medical
needs beyond what is available in Accident & Emergency (A&E) depart-
ments or the 999 emergency lines. In 23/24 alone there were 21.8 million
calls to those lines in England"”. In that sense, NHS 111 lines have simila-
rities, in terms of scope and aim, with medical helplines in other countries
including Australia (Healthdirect), Germany (116117), Canada (telephone
triage services) or Sweden (Healthcare guide 1177).

The NHS 111 calls dataset records symptoms individuals were con-
cerned about and could provide early insights of undiagnosed cancer, sig-
nals which we would miss if relying solely on secondary care data. Our
research progresses the field in this direction by matching secondary care
data—capturing important features including pre-existing comorbidities,
frequency of hospital appointments and demographics - to NHS 111 calls
data. This is the first time that data from medical helplines have been used to
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predict future cancer incidence. Data from NHS 111 calls have the addi-
tional advantage that they are not “clinician-initiated data” in the sense that
“they do not reflect data created through specific actions (or inactions) or
insights of the clinician”. This is significant because recent research has
made a compelling case that predictions based on “clinician-initiated data”
may have limited added value, compared to “what the average clinician
would decide for the average similar patient™.

Alongside the rich data from secondary care, we construct detailed
patient pathways covering five years of patient history. By doing so, we
capture comorbidities and frequency of interactions with the healthcare
system. There is some evidence that frequency of interactions in secondary
care may reflect the number of missed appointments in primary care,
arguably a reflection of patient behaviour, and, as such, including frequency
of secondary care interactions could help capture relevant patient behaviour
towards their health’.

We focus on nine cancers (bladder, head and neck, kidney, lymphoma,
myeloma, oesophageal, ovarian, pancreatic, and stomach), which are
associated with a high proportion of late-stage diagnoses (stage I1I and IV)
or worsening survival rates in England, and don’t currently have screening
programmes. We focus on predicting the risk of first cancer diagnosis.

Building on model results and making use of feature importance, we
successfully develop an approach for constructing higher risk cohorts of
varying size while minimising the possible bias that may come from the
relatively small numbers of patients for certain demographics. Our approach
complements a more standard approach of identifying cohorts at higher risk
based on individual risk predictions. It affords greater insights by constructing
higher-risk cohorts based on feature importance, the data available to those
charged with administering the intervention, and the type of intervention (e.g.
whether it targets symptomatic or asymptomatic patients). We illustrate this
approach by applying it to bladder cancer, a priority cancer site.

Ours is the first study looking at multi-cancer prediction modelling
using population level data in England. Recent work has made the case for
the utility of multi-cancer predictive modelling in the context of new liquid
biopsy tests, which are currently under development and evaluation™. The
results presented here could provide further evidence of the possibilities for
multi-cancer prediction afforded by national level health data collections.

Results

Population description

Our dataset includes 23.6 million patient histories of individuals between 40
and 74 years old in England (see Fig. 1, and methods for full details on

Bridges to Health Population
(n = 64.2M)

dataset construction). This age cohort is selected based on the relatively
higher incidence of cancer (compared to younger cohorts), and the fact that
diagnostics and treatment are less likely to pose complications (e.g. due to
frailty), compared to older cohorts. In order to focus on the first cancer
diagnosis, we exclude all those with a previous cancer diagnosis from the
study population. The analysis population is split between training, vali-
dation and testing dataset.

We use the period between August 2016 and August 2021 to construct
our predictive features and patient histories. We then use these features to
predict a cancer diagnosis in the period after September 2021. Our results
focus on a 1l-year predictive window between September 2021 and
August 2022.

A stylised version of a patient pathway diagnosed with cancer in year 6
is presented in Fig. 2. In order to maintain a consistent length of 5 years of
patient history, we used a single cut-off date for our analysis, and randomly
split the analysis population between training, validation and testing. In the
Supplementary Information (SI) we show results predicting up to 2 years
after the cut-off date. We also present results when an exclusion gap is
introduced after the cut-off date, to ignore diagnoses which may have
occurred immediately after the cut-off date. These results are presented in
the SI in the ‘Exclusion Gap’ analysis section.

An individual’s patient history includes not only demographic infor-
mation, but also comorbidities diagnosed during the 5-year period (between
2016 and 2021), as well as information on symptoms reported to NHS 111
lines. Individuals calling NHS 111 lines are triaged by trained personnel and
based on their reported symptoms are referred to the appropriate services
for further care. These could include primary care (with varying degrees of
urgency), Accident & Emergency Care (A&E), or community/dental ser-
vices. The dataset captures detailed information on the symptoms indivi-
duals reported as well as the type of referral (if any) the advisor made. For
our analysis, we match the data on symptoms reported based on the
pseudonymised patient number to the rest of the patient’s health record
coming from their interactions with secondary care.

To create our patient histories, we complement data from NHS 111
lines with two national datasets. First, we use data from the Bridges to Health
Segmentation (B2H). The dataset includes information on all individuals
registered with a general practice in England and has rich information on
demographics going beyond standard characteristics such as age, ethnicity
and sex to also include household level information on the socioeconomic
status of the household the person belongs to (e.g. urban professional).
Household type information draws from the Acorn dataset”. The B2H itself

Age exclusions (n = 37.7M)
Age less than 40 or greater than 74 at cut-off date

Population aged 40 - 74
(n =26.5M)

Exclusions (n = 2.9M)
» Current or previous cancer diagnosis
» Passed away prior to cut off date
« Passed away after cut off date (not due to cancer)
» Missing information on gender

Analysis population

(n=23.6 M)
[
! ! v
Training dataset Validation dataset Testing dataset
(n=14.2M) (n=4.7M) (n=4.7M)

Fig. 1| Data flow diagram. The population dataset from Bridges to Health (all those
registered to a GP practice in England) is filtered to the age range of 40-74, and those
with current and previous cancer diagnoses (relative to August 2021) are removed,

resulting in an analysis dataset of 23.6M patients, which are then split into training,
validation and testing datasets.

npj Digital Medicine | (2025)8:551


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01855-0

Article

A condition is first
identified in an A&E setting

Patient has an outpatient
appointment for an
unrelated condition

Outpatient appointment

Cut — off
August 2021

A v

A&E attendance
Hospital admission

Patient calls NHS 111
to report symptoms

Patient has a
cancer diagnosis

NHS 111 call
Cancer diagnosis

Death

dpsom O

Fig. 2 | Patient pathway. The figure shows a stylised patient pathway with various types of events recorded during the 5 (history) + 1 (predictive window) years we observe

the patients.

draws from a large number of specialised national datasets covering health
records beyond secondary care to also include mental health services and
specialised tertiary care services. Drawing from this information several flags
are created capturing a wide range of long-term conditions (e.g. COPD,
physical disability, Downs syndrome). In our analysis, we only exclude those
with the cancer flag as we want to ensure that our model predicts first
incidence of cancer rather than recurrent cancer. In total, we include 59
binary features capturing a wider range of conditions from the B2H dataset.
A detailed list of conditions is provided in Supplementary Table 1.

Second, we use data from the Secondary Uses Service (SUS) datasets
and Emergency Care Services Dataset (ECDS) which covers all appoint-
ments/admissions and attendances to hospital secondary care services in
England***. These datasets allow us to create features capturing the type of
appointment the person had (e.g. outpatient appointment) and the asso-
ciated diagnosis based on ICD-10 and SNOMED codes.

Data on mortality allows us to monitor who may have passed away
after the cut-off date for reasons other than cancer and exclude those
individuals from our data. We also exclude individuals with a previous
cancer diagnosis. More details on dataset construction are included in the
‘methods’ section.

Note that excluding those passing away after the cut-off date due to
other (than cancer) reasons could potentially introduce some bias in the
results. However, the alternative is not without risks. Specifically, keeping
those passing away from other reasons in our sample and treating them as
negative cases (i.e. not diagnosed with cancer) would require assuming that
none of the people passing away for other reasons (e.g. due to an accident)
would have gone to develop cancer later during our prediction horizon.
Clearly, a strong assumption which in our view could negate the potential
advantages of including these individuals in our analysis.

Model prediction

We trained several classification models to predict the probability of being
diagnosed with cancer in the coming year (September 2021-August 2022).
We selected the XGBoost model as our preferred specification based on
comparisons in terms of performance with the other classifiers (see com-
parison of machine learning algorithms in SI). Given the very sharp class
imbalance between cancer and non-cancer cases, we use under sampling in
our training datasets to ensure an equal number of cancer and non-cancer

cases. We verified that the under sampled training dataset accurately
represented the general control population on demographic variables such
as age, gender, ethnicity and levels of deprivation (see Supplementary
Table 7).

We predict the risk of cancer diagnosis for the nine cancer sites selected
for the reasons discussed earlier. We also report the results for a model
trained to predict any cancer diagnosis. By “any cancer diagnosis” we mean
all cancer sites (see Supplementary Table 2 for ICD-10 codes) and not only
the 9 cancer sites mentioned above.

For each of these models, we report several performance metrics for all
cancer specific models, with a threshold value of 0.5 to ensure a balance
between sensitivity and specificity (see Table 1). Each model was trained
separately as a binary classifier. The ovarian cancer model was trained and
tested only on females.

The size of datasets used for training, validation and testing for each of
the cancer types is presented in Supplementary Table 3, and descriptive
statistics on the whole population, and for the cancer and control population
for each cancer site are presented in Supplementary Tables 4 and 5.

Important features

We demonstrate our approach for cohort construction by using bladder
cancer, one of the priority cancer sites as our test case. In Table 2, we present
some descriptive statistics focusing on the comparisons between those
diagnosed with bladder cancer during the 1-year predictive window and
those who were not.

As expected, there are noticeable differences in terms of age and
gender between those diagnosed with bladder cancer in year 6 and
those who were not. Cancer cases are predominantly male and older,
reflecting the well-established link between age and cancer incidence,
as well as the fact that bladder cancer is more frequent among males.
Beyond demographics, the number of 111 calls reporting cancer
related symptoms, as well as the number of A&E attendances, are
higher on average for those diagnosed with bladder cancer in year 6
compared to those who are not. In total the model was trained on 821
features (see Supplementary Table 1 for full list).

Both the number of calls to NHS 111 lines reporting cancer related
symptoms, as well as number of A&E attendances, will end up being among
the most useful features for model prediction, as we will see later.
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Table 1 | Model performance on the test dataset

Cancer site AUC Balanced accuracy Specificity Sensitivity Positive casesintest Negative casesintest Total

Bladder 0.824 0.752 0.717 0.788 1409 4,726,358 4,727,767
Head and neck 0.753 0.686 0.668 0.704 1373 4,726,394 4,727,767
Kidney 0.780 0.699 0.683 0.715 1044 4,726,723 4,727,767
Lymphoma 0.746 0.682 0.654 0.711 1280 4,726,487 4,727,767
Myeloma 0.782 0.716 0.687 0.745 588 4,727,179 4,727,767
Oesophageal 0.827 0.751 0.701 0.800 850 4,726,917 4,727,767
Ovarian 0.691 0.636 0.617 0.655 629 2,324,351 2,324,980
Pancreatic 0.809 0.732 0.680 0.784 809 4,726,958 4,727,767
Stomach 0.790 0.721 0.700 0.743 513 4,727,254 4,727,767
All cancers 0.746 0.680 0.636 0.724 34,269 4,693,498 4,727,767

Results are reported across different cancer sites, and for all cancers (C00-C97, excluding C44), when predicting cancer diagnosis in the 1 year (52-weeks) after the cut-off date. The model probability

threshold value was set at 0.5.

Table 2 | Descriptive statistics bladder cancer diagnosis vs no
bladder cancer diagnosis in the predictive window (year 6)

Bladder cancer No bladder cancer

diagnosis diagnosis
Count 7130 23,620,663
Age 64.7 (7.8) 55.3(9.7)
Gender (male/female) 75.9%/24.1% 50.8%/49.2%
Ethnicity (White British/Other) 85.9%/14.1% 71.6%/28.4%
Residing in 5 most deprived IMD 48.9% 48.2%
deciles (%)
NHS 111 calls reporting cancer 0.17 (0.58) 0.05 (0.4)
related symptoms (during year 5)
A&E attendances (during year 5) 0.54 (1.18) 0.26 (0.85)

IMD stands for Index of Multiple Deprivation. Standard deviation in parenthesis.

In order to improve model accuracy and to inform our work on
constructing higher risk cohorts, we select the most important features using
two metrics, gain and Shapley (SHAP) values.

In Fig. 3a, we show the SHAP values for the top 20 features (our models
include 821 features in total) — ordered based on the gain metric (the average
gain across all splits where the feature is used) for the XGBoost model
(Fig. 3b). The red colour indicates higher values for the selected feature, and
a positive SHAP value means an increase in the risk of cancer. For example,
higher age has overwhelmingly positive SHAP values, which means that
higher age is predicting higher risk of bladder cancer in the next year. By
comparison, we show the mean absolute SHAP value for these features
(Fig. 3c). While there are slight differences in the ordering of the most
informative features, 17 out of the top 20 features based on average model
gain are also amongst the top 20 features as determined by mean absolute
SHAP value.

We observe that beyond age and gender, several comorbidities appear
as relevant predictors of a bladder cancer diagnosis in ways that are con-
sistent with expectations based on the medical literature. For example, the
presence of chronic obstructive pulmonary disease (COPD) and urinary
infections is associated with the incidence of bladder cancer in previous
research™”.

In addition, several features drawn from the NHS 111 calls dataset
appear to be good predictors of bladder cancer incidence. For example,
higher number of calls to NHS 111 lines reporting cancer related symptoms
is one of the features with the highest gain metric value (just below demo-
graphics and long-term condition status). In addition, we also see that
features capturing specific symptoms that are plausibly related to

undiagnosed bladder cancer are also relevant and have the expected
direction of effect. Specifically, higher number of calls to NHS 111 lines
reporting “pain and frequency of passing urine” or “blood in urine” (during
the last year) are both relevant predictors of risk of being diagnosed with
bladder cancer in the next year.

To more comprehensively explore the importance of NHS 111 calls as
predictors of risk of future cancer diagnosis, we replicated the analysis based
on the gain metric for all other priority cancers beyond bladder. In all cases,
features based on NHS 111 calls were among the most influential in pre-
dicting future cancer diagnosis. In Table 3, we report the rank of features,
created from NHS 111 calls data, in terms of feature importance based on
the gain metric. We do this for all cancer sites included in Table 1.

Table 3 highlights that features based on information captured in NHS
111 calls are among the top 20 features, based on the gain metric, and often
among the top 5 or 10 for all cancer sites we explored in this study.

A comment regarding the predictive usefulness of symptoms reported
in NHS 111 calls is warranted here. Some of the symptoms such as blood in
urine may suggest that individuals would very quickly undergo medical
evaluation which could lead to a relatively fast diagnosis of cancer. However,
evidence from previous research on NHS 111 calls data suggests that a
surprisingly high share of patients (close to one third) who are referred to
urgent services such as emergency departments for a follow-up are actually
not following the advice and neither appear to contact any other relevant
health services following their call to NHS 111%*. This means that it is very
likely that many of the patients reporting what would appear as serious
symptoms do not actually follow-up promptly thus postponing a potential
diagnosis.

A possible concern with any analysis using patient histories is the
possibility of data leakage. This could be the case if predictive features
included in the analysis are indicative of a future cancer diagnosis in ways
that undermine their predictive usefulness. For example, if a cancer diag-
nosis is recorded with a delay in the data, then it is conceivable that features
strongly related with the diagnosis, such as cancer specific treatments, would
“contaminate” the training data with the information about cancer diag-
nosis which we seek to predict. We however believe that this is unlikely to be
the case here, for several reasons. First, our analysis excludes all those with a
previous cancer diagnosis, and consequently also does not include treat-
ments related to cancer as a predictive feature. Second, we do not include any
cancer specific test results that could be construed as related to a future
cancer diagnosis among our predictive features. Overall, the type of features
we include such as demographics, symptoms reported in NHS 111 lines or
comorbidities do seem much less likely to lead to such contamination as
they are unlikely to be related to a yet not recorded diagnosis. Finally, we test
our predictive models by excluding diagnoses in a time period after the cut-
off date (see Exclusion Gap analysis in the SI) to confirm that our model can
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Table 3| Feature importance rank based on the gain metric for
features based on NHS 111 calls

Cancer site Feature name (rank)

Bladder

Number of 111 calls in last year (4th)

Number of 111 calls relating to pain/frequency of passing urine
in last year (11th)

Number of 111 calls relating to blood in urine in last year (13th)

Head and neck Number of 111 calls in last year (17th)

Number of 111 calls related to cancer symptoms in last year
(2nd)
Number of 111 calls in last year (9th)

Kidney

Number of 111 calls in last year (5th)

Number of 111 calls related to cancer symptoms in last year
(10th)

Number of 111 calls in previous 5 years (13th)

Lymphoma

Number of 111 calls in last year (5th)

Number of 111 calls in previous 5 years (15th)

Number of 111 calls related to cancer symptoms in last
year (17th)

Myeloma

Number of 111 calls in last year (10th)
Number of 111 calls related to cancer symptoms in last
year (11th)

Oesophageal

Number of 111 calls in last year (1st)

Number of 111 calls related to cancer symptoms in last year
(5th)

Number of 111 calls relating to chest and upper back pain in
last year (9th)

Ovarian

Number of 111 calls in last year (5th)

Number of 111 calls related to cancer symptoms in last year
(6th)

Number of 111 calls relating to abdominal pain in last

year (12th)

Pancreatic

Number of 111 calls in last year (5th)
Number of 111 calls related to cancer symptoms in last
year (7th)

Stomach

achieve good predictive performance even when focusing on cancers
diagnosed more than 3 months after the cut-off date.

Constructing higher-risk cohorts

The primary goal for the analysis is to use the model results to construct high
risk cohorts, for a cancer diagnosis within the next year, which can then be
used to inform case finding and appropriate interventions to support earlier
diagnosis and improve survival. We discuss two possible approaches to
achieving this.

In the first, risk-based cohort construction method (Method A), we use
the model risk probability at the individual patient level to create cohorts.
Different sized cohorts can be constructed by varying the threshold for
inclusion in the high-risk group.

The second feature-based cohort construction method (Method B)
identifies cohorts with defined characteristics based on decision rules, uti-
lising the most informative features from the trained model.

Method A: Risk based cohort construction

One approach to constructing higher risk cohorts is to consider capacity
based on the requirements of a specific intervention/screening pro-
gramme and then selecting the appropriate risk threshold which would
lead to the desired cohort size. The risk thresholds are applied to the
individual level predictions of the model. Based on different risk thresh-
olds, higher risk cohorts of varying sizes can be constructed. The lower the
risk threshold, the larger the size of the cohort, but the lower the potential
incidence of cancer within the cohort. An illustration of this method is
shown in Fig. 4.

We define a lift value as the ratio of the cancer incidence within the
cohort to the baseline cancer incidence. The baseline cancer incidence in our
case, refers to those aged between 40-74 with no previous cancer diagnoses
who go on to develop cancer in the next year. Based on different risk
thresholds, one could construct a lift curve which plots the lift value against
the size of the cohort on the x-axis.
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Fig. 4 | Illustration of Method A—the risk-based cohort construction. Cohorts of different sizes are created by applying thresholds to model risk scores. The cancer

incidence in such cohorts is calculated and compared to the baseline cancer rate to generate the lift value.
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demographic variables to showcase the improved accuracy in identifying high risk
groups when additional variables such as comorbidities and symptoms related to 111
calls are added.

An example based on the model on bladder cancer is provided in Fig. 5.
The lift curve exhibits the expected shape where the lift value declines as we
increase the size of the cohort. It also highlights the potential trade-off
between high incidence and the total number of cancers correctly predicted.
As the cohort size is increased, individuals with lower risk scores are
included in the cohort, reducing the incidence and hence the lift value. The
lift curve asymptotically approaches a lift value of 1—this represents the
baseline cancer risk in the population (Fig. 5a).

Typically, the smaller the selected cohort of the population, the higher
thelift value, as these are the individuals with the highest risk scores from the
model. For example, in the top left of Fig. 5b, considering a cohort size of the
highest risk (based on model probability risk score) 0.5% of the population
(~125,000 individuals), the lift value of the model trained on all variables is

16, representing a cancer rate of 1 in 212 in the cohort. For a model trained
on only demographic and socioeconomic variables (age, gender, ethnicity,
IMD decile, integrated care board, acorn variables), the lift value for an
equivalent cohort size is 9.4, representing a cancer rate of 1 in 357.

These values represent the potential order of magnitude improvement
in cancer incidence in identifying high-risk cohorts using a risk score
approach compared to chance selection from the population (cancer rate of
1 in 3355). If the cohort size is increased to the highest risk 5.8% of the
population (~1.4 million individuals), the lift value reduces to 6.4 for the
model with all variables (cancer rate 1 in 527) and 5.5 (cancer rate 1 in 613)
for the model with demographic variables only. Lift curves for the other
priority cancer sites are presented in Supplementary Fig. 4, and cohort
cancer rates are presented in Supplementary Table 10.
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incidence. These decision rules can be applied either population wide, or to specific
demographic sub-groups.

These results also demonstrate the importance of including features
from calls to NHS 111 lines, as well as comorbidities, to the model, as the
resulting model risk scores can identify the highest risk individuals more
accurately. As the cohort size increases, the difference in lift value between
the two reduces, suggesting that both models capture the background
demographic risk factors.

While more standard in terms of approach, Method A has several
limitations from an operational perspective. First, Method A does not allow
one to filter on features that may be most useful from a practical perspective.
For example, depending on the type of intervention, one may want to focus
on symptomatic patients and therefore select cohorts based on specific
symptoms. Second, those charged with administering the interventions may
not always have access to individual level predictions and instead would
have to rely on flags drawing from specific features that are included in the
data available to them. For example, eligibility for targeted lung health
checks in England relies on age and smoking status.

This method also relies on applying thresholds to individual patient
level predictions. While steps can be taken to explain the model (e.g. through
feature importance and other techniques), ultimately the high-risk groups
are a heterogeneous cohort. In Method B, we demonstrate how clearly
defined cohorts can be created based on specific feature combinations.

A further limitation of this method is that the model may be biased
towards predicting higher risk for certain demographic groups, making the
high-risk cohort non representative of the actual incidence of bladder cancer
in the population. As shown in the SHAP feature importance results (Fig.
3a), higher age, male, and white ethnicity all tend to increase the model risk
score. This does correspond with higher incidence of bladder cancer in this
group, however, given the low counts of bladder cancer among other
demographic groups, it is difficult to ensure fair representation of all strata
when constructing high-risk cohorts using this method, even when steps are
taken to balance the training dataset. In the sub-group cohorts of Method B,
we show how we sought to address this.

Method B: Feature based cohort construction
An alternative method that aims to overcome the above constraints is shown
in Fig. 6 and outlined as follows. First, we select relevant features based on
feature importance and data availability. The most important features,
which were in the top 20 of model gain and SHAP value, were selected.
SHAP was also used to identify the direction of the feature. Features which
had a positive impact on the model output (i.e. which tended to increase the
risk if the feature was present) were selected.

We then filter the population based on those features and examine the
predicted cancer incidence. As is the case with Method A, we can then

compare incidence of cancer in this curated cohort compared to the baseline
incidence in the entire population.

This method has been applied to the whole population, and to sub-
groups of demographic strata, demonstrating how the approach can be used
for targeted interventions.

Population wide cohorts

The pair of features which would yield the highest incidence cohorts
(on the validation data) of varying size (at least 10,000 to at least
250,000) were identified. Subsequently, the selected pair of features was
applied to the test data to evaluate the expected bladder cancer inci-
dence in the whole population. In Table 4, we show some examples of
such curated cohorts based on combinations of just two features among
those that the model considers as high importance for predicting
cancer incidence in the next year. The cohort with highest cancer
incidence, and a size of at least 10,000, is constructed based on inter-
actions with the 111-call service and includes a specific bladder cancer
related symptom of blood in urine. The cancer incidence within this
cohort is 41 times higher than the overall incidence in the analysis
population, with a cancer incidence of 1 in 82, compared to 1 in 3355 in
the study population.

Larger cohorts of high-risk patients are constructed with flags relating
to comorbidities of the genitourinary system and other diseases of the
urinary system. Applying these flags to the population results in a cohort size
of approximately 100,000 individuals, with a cancer rate 6 times higher than
in the overall study population.

An example of a larger cohort of ~290,000 individuals would be con-
structed by applying the filter of patients having at least one long-term
condition, and a diagnosis relating to symptoms and signs involving the
genitourinary system in the last 5 years. This results in a cohort with a lift
value of 4.5.

There is nothing in principle to prevent us from constructing
cohorts based on combinations of more than two features (based on
feature importance). Instead, our decision to opt for pairs of features is
pragmatic. Especially when looking at population sub-groups based on
gender/ethnicity (which we do in the next section) selecting more than
two features would lead to very small cohorts, with sizes which are
neither useful for practical purposes neither suitable for confidently
inferring performance on the test dataset. As an example, the test dataset
for the cohort of white males who had at least one call reporting cancer
related symptoms in last year (AND) at least one call reporting blood in
urine in last year (AND) have been diagnosed with hypertension
includes just 517 individuals.
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Table 4 | Example higher-risk cohorts of varying sizes, applied to the whole population

Feature combination Population size  Incidence in cohort (%)  Lift value

At least one call reporting cancer related symptoms in last year 16,700 1.2% 41

AND

at least one call reporting blood in urine in last year

Diagnosis of “Symptoms and signs involving the genitourinary system” (ICD10 R30-R39) in the last 5 years 98,300 0.18% 6

AND

Diagnosis of “Other diseases of the urinary system” (ICD10 N30-N39) in last 5 years

Has a long-term condition 290,000 0.14% 4.5

AND

Diagnosis of “Symptoms and signs involving the genitourinary system” (ICD10 R30-R39) in the last 5 years

Clearly defined rules, based on the most informative model features, are used to construct the cohorts of varying sizes. Higher cancer incidence is found in smaller cohorts.
Table 5 | Example higher-risk cohorts applied to demographic strata

Demographic strata Feature combination Cohort size Incidence in cohort (%) Lift value

Female —non white ethnicity At least 1 A&E attendance in the last year 195000 0.01% 2.9
AND diagnosis of a long- term condition

Female — white ethnicity At least one call reporting cancer related symptoms in last year 6800 0.8% 47.5
AND at least one call reporting blood in urine in last year

Male—non white ethnicity At least 1 A&E attendance in the last year 7000 0.07% 4.9
AND diagnosis of COPD

Male —white ethnicity At least one call reporting cancer related symptoms in last year 7600 1.9% 36

AND at least one call reporting blood in urine in last year

For each stratum, the feature combination which resulted in the highest cancer incidence in the cohort (of minimum size 5000) is shown.

Sub-group cohorts

The population was segmented into demographic groups to investigate if
different sets of features can create higher risk cohorts across demographic
strata. This was also to address one of the limitations of method A, namely
how we can ensure equality of opportunity if model predictions may be
biased when there is insufficient training data from all demographic groups.

The segmentation was based on gender (male/female) and broad
ethnicity (White/Non-white), resulting in four groups. Due to the low
incidence of bladder cancer, more granular segmentation would have
resulted in very small sample sizes.

For each population segment, the same methodology as described
above was applied, with the cohort with the highest incidence of cancer cases
being identified. These decision rules were then applied to the test dataset to
evaluate the efficacy of the cohort. The lift value was calculated based on the
incidence of cancer for each stratum. The results are shown in Table 5.

For the white ethnicity group, features related to 111 calls are parti-
cularly effective in identifying high risk groups. The specific nature of the
symptom information (blood in urine) can result in small cohorts with lift
values of 47.5 for white females, and 36 for white males.

In contrast, for the non-white ethnic group, more general health factors
(e.g. A&E attendance) and comorbidities (e.g. COPD) result in the highest
risk groups. These cohorts are still significantly higher in cancer incidence
compared to baseline rates for these populations, as shown by the lift values
of 2.9 for females, and 4.9 for males. However, they are also significantly
lower than the lift values obtained for the white ethnic group. This poten-
tially reflects health inequalities in the utilisation of services such as 111 calls.
A key challenge here, which is not unique to our project, is the relatively
fewer counts of cancer cases amongst the non-white ethnicities. For
example, we observe only 97 instances of bladder cancer in the 1 year after
the cut-off date in the non-white female population, compared to 4984 in
the male white population. This presents the challenge of fewer samples to
train the model on certain subgroups.

Discussion
This study makes several contributions to the burgeoning literature that
seeks to use machine learning to develop useful predictive models for cancer

incidence. First, our results demonstrate that information included in
medical helplines such as NHS 111 calls contains useful signals predicting a
future cancer diagnosis. Our is the first study that uses information on
reported symptoms from medical helplines to predict a future cancer
diagnosis. Our results, show that without exception for the nine cancer types
we examined, features based on NHS 111 calls are among the most sig-
nificant in terms of importance for predicting a future cancer diagnosis.
While data quality and coverage are high when it comes to reported
symptoms in NHS 111 calls, this dataset is not as comprehensive as primary
care datasets. Future work should look to leverage those datasets alongside
the information included in secondary care and NHS 111 calls to create a
more complete patient history.

The second contribution of the study is to describe a practical method
of constructing higher risk cohorts that could be tailored based on data
availability, type of intervention, and desired levels of accuracy. We show-
case this approach drawing from the model predictions for bladder cancer
incidence. Beyond its greater flexibility, our approach also could mitigate the
potential for bias due to the underrepresentation of certain demographic
groups in the data.

Finally, ours is the first study employing multi-cancer prediction
modelling using population level data from England. Our models exhibit
good performance for most cancer types. These results further strengthen
the case for using routinely collected national health data to stratify the
population based on risk for future cancer incidence.

Our study is not without its limitations. For one, coverage of early
reported symptoms of underlying disease is not as complete as it would have
been if we had been able to use data from primary care. Second, predicting
future cancer incidence does not differentiate based on stage of cancer
diagnosis. It could be argued that predicting cohorts at risk of presenting at a
late stage of cancer would be more valuable in terms of improving early
diagnosis, as it could allow better targeting of those interventions to such
populations. This information is available in the cancer registry database in
England but was not available to the authors at the time of this research. Our
study also does not include any information on lifestyle factors, which
almost certainly play an important role in affecting the baseline risk of future
cancer incidence. This is a limitation that is common in much of the
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Table 6 | Cancer related symptoms reported in NHS 111 calls

Cancer related symptoms reported in NHS 111 calls

Abdominal flank groin or back pain or swelling

Abdominal pain pregnant over 20 weeks

Abdominal pain rectal bleeding pregnant over 20 weeks

Abdominal pain

Blood in urine

Breast lump pregnant

Breast lump

Breathing problems breathlessness or wheeze pregnant

Breathing problems breathlessness or wheeze

Chest and upper back pain

Constipation

Cough

Coughing up blood

Diarrhoea

Difficulty passing urine

Easy or unexplained bruising

ED Triage chest pain

Face neck pain or swelling

Fever

Genital problems
ltch

Mouth ulcers

Pain and/or frequency passing urine

Rectal bleeding

Rectal pain swelling lump or itch

Skin lumps

Skin problems

Tiredness fatigue

Urinary problems

Vaginal bleeding

Vaginal discharge

Vomiting

Vomiting blood

previous work relying on secondary care data and this study is not going
beyond previous research in that regard. Finally, while our approach to
cohort construction can elucidate different risk factors that could be relevant
for a variety of subgroups, it cannot ultimately overcome the limitations that
stem from very low incidence among certain groups. As such, while absolute
risk is always orders of magnitude higher than the baseline, relative accuracy
is much more constrained for groups with very low incidence of the disease.

There are numerous potential practical applications of this analysis.
Data could be used to inform case finding services for the high-risk cohorts
identified. Such case finding services may be used to identify populations ata
higher risk of developing cancer, who would benefit from ongoing sur-
veillance, as well as individuals who may warrant an urgent diagnostic test
for cancer. Populations with red flag symptoms of cancer, who meet referral
thresholds indicated in NG12 (NICE guidelines on suspected cancer), could
be triaged directly into urgent suspected cancer pathways”. Cohort char-
acteristics could also be used to inform and better target opportunistic
cancer checks, as well as local public awareness campaigns, reflecting
symptom combinations and/or geographies with increased risk.

Our results for bladder cancer also suggest that the most informative
high-risk cohorts cover symptomatic, rather than asymptomatic, patients.

In that sense, our analysis is more directly relevant to interventions that seek
to improve early diagnosis rates among those with symptoms that could be
indicative of undiagnosed cancer rather than screening for asymptomatic
patients.

More generally, considering previous research findings showing rela-
tively low compliance with advice given in NHS 111 calls (e.g. among those
advised to attend emergency services) and the fact that reported symptoms
appear to strongly predict a future cancer diagnosis, interventions which
would aim to increase compliance with triage advice may have considerable
benefits in terms earlier diagnosis. More research is, however, required to
better understand outcomes among those not following triage advice when
it comes to cancer related symptoms. Exploring similar data sources in other
settings could also help clarify the extent to which the type of symptom
related signals we find in NHS 111 calls, in terms of future cancer diagnosis,
are also relevant in other countries or useful for conditions beyond cancer.

Methods

Datasets

Our predictive models are trained on a dataset that captures an individual’s
previous interactions with the healthcare system, their comorbidities, as well
as a rich set of socio-demographic information. To create these patient
histories, we combine several large datasets including the National Bridges
to Health Segmentation Dataset, Secondary Use Services (SUS) data, ECDS,
NHS 111 calls data, as well as ONS mortality data. A brief description of
these datasets is provided below.

The National Bridges to Health Segmentation Dataset (B2H), which
draws on a large number of datasets, provides information on long-term
conditions for all patients, over 60 million, registered with General Practices
in England™. In addition, we use the information included in B2H for socio-
demographic characteristics (e.g. including race, age, sex, deprivation,
household type) that could affect the risk of a future cancer diagnosis.

To complement the information included in B2H, we draw on data
from the SUS and ECDS datasets, which include information on all out-
patient, inpatient and emergency attendances in hospitals in England. This
allows us to capture information on the number of previous inpatients/
outpatients and emergency attendances. Frequency of interactions with the
health system could reflect attitudes towards one’s health, beyond capturing
underlying healthcare needs. For this reason, we construct several features
which capture separately the number of previous hospital admissions,
outpatient appointments, and emergency attendances within different time
periods in the past (e.g. last year, last 5 years).

The SUS/ECDS datasets also allow us to capture detailed comorbidities
as diagnosed in secondary care. We use ICD-10 codes covering 263 groups
of comorbidities. ICD-10 codes are also used to construct the cancer diag-
nosis target flags (e.g. bladder cancer diagnosis in the next 52 weeks after the
cut-off date). Supplementary Table 2 lists the ICD-10 codes used to identify
the nine priority cancer sites, and for identifying any cancer (C00-C97,
excluding C44).

A key dataset used in the analysis is the NHS 111 calls dataset. This
dataset covers all calls made to NHS 111 lines between 2018-2023. It
includes information on the symptoms the caller reported, as well as the date
of the call. With the help of clinicians, we identified symptoms which may be
related to cancer and constructed the relevant features capturing both the
frequency of any cancer related symptoms reported, as well as the frequency
for specific symptoms (e.g. blood in urine). Table 6 lists the cancer related
symptoms.

Finally, to account for censoring due to death, we use person level data
from the Office for National Statistics (ONS) death on mortality to capture
those passing away during the period.

The various datasets are linked together using the pseudonymised ID
that is common across the datasets. This allows us to create patient histories
that capture all patient interactions with secondary care in the NHS, as well
as any calls to the NHS 111 lines. Alongside any diagnosed comorbidities
and sociodemographic information, this dataset provides rich information
on which to build our predictive modelling.
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Feature construction and preprocessing

In the section below, we describe in more detail how the features are con-
structed. We aimed to include a breadth of features capturing comorbidity,
socio-demographic, geographic, symptom and healthcare system interac-
tions. The complete variable list of features is listed in Supplementary
Table 1. Predictive features were constructed for the period of the patient
history (2016-2021) until the cut-off date of 31st August 2021. Cancer flags
were constructed for the period after the cut-off date, identifying cancer
diagnoses that occurred up to 2 years after the cut-off date.

Comorbidity

For each ICD-10 category 3 code block (e.g. A00-A09, A15-A19 ... Z80-
799), we create a flag per patient, to indicate if they received a diagnosis in
this category, in the last year or last 5 years relative to the cut-off date. This
was done by evaluating all diagnosis fields from SUS Inpatient, outpatient,
A&E, and the ECDS.

Interactions with the healthcare system

The number of attendances at A&E, inpatient, and outpatient settings
was calculated for each patient in the last year and the last 5 years from
the cut-off date. The number of calls to 111 in the last year, and the
number of calls with potentially cancer related symptoms was
calculated.

Socio-demographic

We use one-hot encoding for categorical variables (Ethnicity, Index of
multiple deprivation, Integrated Care Board, Acorn household type). The
latter variables segment households into 6 categories (and 62 types) cap-
turing financial circumstances, benefit receipt, health, wellbeing, and leisure
and shopping behaviours. In addition, we include age, as well as an indicator
variable capturing whether the individual is residing in a care home. For
modelling purposes, we also impose several exclusions which we
discuss below.

Exclusions and missing data

Our starting population is all individuals in England who are registered to a
GP practice (the Bridges to Health Population). The focus of this analysis is
individuals who are aged between 40 and 74 at the cut-off date between the
observation and prediction window. We therefore exclude younger cohorts
who are likely to have a much lower risk of developing cancer, as well as
older individuals as shown in the data flow diagram in Fig. 1.

We then impose the following restrictions: we exclude those with a
previous cancer diagnosis, as our focus here is on first diagnosis of cancer.
We also exclude those who passed away before the cut-off date as well as
those who passed away for any other reason than cancer after the cut-off
date. We finally exclude the small number of individuals (1824) with
missing information on gender.

Where data was missing for categorical variables, the null value was
replaced with an ‘unknown’ string value. For those with missing data on
ethnicity, we create an “unknown” flag and include this in the analysis.

Machine learning analysis

The dataset was split into train (60%), validation (20%), and test (20%)
datasets through a random split. We performed a series of statistical tests to
examine whether there were still systematic differences between the datasets
in terms of demographics. No differences were observed between the
datasets (details are included in Supplementary Table 6). The size of the
datasets is shown in Supplementary Table 3.

For training models, the train dataset was randomly under sampled to
ensure an equal number of cancer and non-cancer cases. This was done to
avoid the issues stemming from large class imbalance due to the very small
incidence of cancer in the data. We verified that the under sampled training
dataset accurately represented the general control population on demo-
graphic variables such as age, gender, ethnicity and levels of deprivation (see
Supplementary Table 7).

We trained four machine learning models: logistic regression, multi-
layer perceptron, random forest, and XGBoost. Hyperparameter optimi-
sation was performed by optimising the receiver operating curve area under
the curve, using the train and validation datasets with the hyperopt package.
The hyperparameters and the ranges for optimisation are provided in
Supplementary Table 8. We report model performance using the test
dataset. XGBoost appears to perform better compared to the alternatives
(see comparison of machine learning algorithms in SI—Supplementary
Table 9, Supplementary Figs. 2 and 3), a fact consistent with its reputation in
terms of performance when it comes to tabular data.

Analysis was performed using python 3.10 on a spark cluster (3.5.0).
Versions of the key packages used in the analysis are described in Supple-
mentary Table 12.

Training features

The XGBoost model was trained with all features (Supplementary Table 1)
and also with only demographic and socio-economic variables: age, gender,
ethnicity, index of multiple deprivation, geographical variable (Integrated
Care Board), care home flag, and acorn household type in order to explore
the impact of features relating to 111 calls, comorbidities, and healthcare
interactions on the model performance and high-risk cohorts.

Feature importance

Model feature importance was obtained from the XGBoost model by
ranking features by their average gain across all splits the feature is used in.
SHAP values were calculated on the validation dataset from trained models.
SHAP calculates the contribution of each variable to the model predicted
probability output™.

Method A: Risk based cohort construction
Individual patient level predictions were obtained on the test dataset. High-
risk cohorts were constructed by varying the risk threshold and evaluating
the cancer incidence within the cohort.

The cohort size (as shown in the lift curve in Fig. 5) was obtained by
extrapolating to the whole population from the test dataset (which is a
random sample comprising 20% of the whole study population).

Method B: Feature based cohort construction
The top 20 most informative features from model gain and SHAP were
identified. Features which were present in both lists, and which tended to
increase the risk if the feature was present, were selected. Demographic
(gender and ethnicity) features were not selected as they were used to seg-
ment the population in the sub-group cohorts.

Each pair of selected features was used to filter the validation dataset.
The size and incidence in the resulting cohort were calculated. For a par-
ticular cohort size, the combination of features which resulted in the highest
cancer incidence was identified. This pairing of features was then applied to
the unseen hold out test dataset to calculate the expected cancer incidence in
the wider population. The cohort size in the whole study population was
obtained by extrapolating from the test dataset.

For sub-groups, the same process as above was applied, with the dif-
ference that an additional filtering of the data by demographic strata was also
applied.

Ethical approval

Not applicable. Data is collected and used in line with NHS England’s
purposes as required under the statutory duties outlined in the NHS Act
2006 and Health and Social Care Act 2012. Data is processed using best
practice methodology underpinned by a Data Processing Agreement
between NHS England and Outcomes Based Healthcare Ltd (OBH), who
produce the Segmentation Dataset on behalf of NHS England. This ensures
controlled access by appropriate approved individuals, to anonymised/
pseudonymised data held on secure data environments entirely within the
NHS England infrastructure. Data is processed for specific purposes only,
including operational functions, service evaluation, and service
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improvement. Where OBH has processed data, this has been agreed and is
detailed in a Data Processing Agreement. The data used to produce this
analysis has been disseminated to NHS England under Directions issued
under Section 254 of the Health and Social Care Act 2012.

Data availability
All data used in this study are held internally by NHS England. The data
cannot be shared publicly as they contain patient level sensitive information.

Code availability

Link to data processing notebook: https://github.com/nhsengland/cancer_
foundry_data_modelling/. Code for data modelling available upon request
from the authors. We plan to publish this code in the near future.
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